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Abstract—Multiplier is an important arithmetic circuit. State-
of-the-art designs consist of a partial product generator (PPG), a
compressor tree (CT), and a carry propagation adder (CPA), with
the last two components dominating the area and delay. Existing
representative works optimize the CT and the CPA separately,
adding a rigid boundary between these two components. In this
paper, we break the boundary by proposing GOMIL, a global
optimization for multiplier by integer linear programming. Two
ILP sub-problems are first formulated to optimize the CT and the
prefix structure in the CPA, respectively. Then, they are unified
to provide a global optimization to the multiplier. The proposed
method is applicable to not only multipliers with the AND gate-
based PPG, but also those with Booth encoding-based PPG. The
experimental results showed that the multipliers optimized by
GOMIL can reduce the power-delay product by up to 71%,
compared to the state-of-the-art multipliers developed in industry.
The code of GOMIL is made open-source.

Index Terms—Multiplier, Compressor Tree, Prefix Tree, Integer
Linear Programming, Optimization

I. INTRODUCTION

Digital multiplier has widespread applications in many fields,
such as digital signal processing and artificial neural networks,
in which the power dissipation and processing performance are
dominated by it. Hence, many architectures have been proposed
to design multipliers with low power consumption and high
speed [1]-[3]. A multiplier is composed of three main parts: a
partial product generator (PPG), a compressor tree (CT), and
a final carry propagation adder (CPA) [4].

There are two major types of PPGs: AND gate-based and
modified Booth encoding (MBE)-based [5]. As Booth encoding
can reduce the circuit delay, it is often applied in parallel
multipliers [6]. The output of the PPG is a bit matrix (BM),
with each entry corresponding to a partial product. CT further
reduces each column in BM to only 1 or 2 remaining bits
by using the basic operator, the compressor. There are several
famous partial product reduction schemes such as Wallace tree
and Dadda tree. To generate the final product, a CPA is applied
to sum up the final output BM of the CT.

Many previous works aim at improving the CT due to its
occupancy of most area in a multiplier. The main focus of them
is to reduce BM rapidly by improving the existing reduction
schemes [3], [7]. The CPA is a key arithmetic circuit and
some works propose methods to reduce its area and delay. A
Kogge-Stone parallel prefix network for carry computation is
proposed to significantly reduce the circuit delay, but it takes
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more area [8]. A high-speed CPA consisting of a prefix tree and
a carry select adder (CSL) is proposed to reduce the area [9].
Moreover, a carry select and skip adder (CSSA) improving the
CSL is designed for reducing the delay [10].

However, the research works focusing on improving the CT
are mainly based on the heuristic methods [7], [11], [12], in-
dicating additional room for further optimization. Furthermore,
all these works optimize each part of the multiplier separately,
which implies that the design is not optimal and we may
achieve improvement if a global optimization is adopted.

In this paper, we propose GOMIL, a global optimization
for multiplier by integer linear programming. First, an integer
linear programming (ILP) problem is set up to optimize the area
of the CT. Then, a dynamic programming-based method is pro-
posed to co-optimize the area and delay of the prefix structure
of the CPA, which is further transformed into an ILP problem.
The above two ILP problems are then unified to globally
optimize the major part of a multiplier that dominates both area
and delay. For simplicity, the proposed method is illustrated on
multipliers with two operands of the same length. However, it
can be easily adapted to handle more general case with unequal
operand length. The proposed method is applicable to not only
multipliers with the AND gate-based PPG, but also those with
MBE-based PPG. The experimental results showed that the
GOMIL-optimized multipliers using AND gate-based PPG and
MBE-based PPG can reduce the power-delay product (PDP) by
up to 71% and 9%, respectively, compared to the state-of-the-
art multipliers developed in industry. The code of GOMIL is
made open-source at https://github.com/SJITU-ECTL/GOMIL.

II. PRELIMINARIES AND RELATED WORKS

In this section, we discuss preliminaries and related works.

A. Partial Product Generator and Compressor Tree

The output of a PPG is a BM. For example, for a 6-bit
multiplier, the output BM of an AND gate-based PPG is the
BM BMj in Fig. 1. Its height is 6.

A CT compresses the output BM of the PPG to a BM with
two rows. In this work, 3:2 and 2:2 compressors are used.
Note that there exist some other compressors, like 4:2 and 7:3
compressors [13]. However, they are built from 3:2 and 2:2
ones. Therefore, 3:2 and 2:2 compressors are the basic ones,
which give finer granularity to build CT, leading to a larger
optimization space and a potential better solution. A 3:2 (resp.
2:2) compressor is a 1-bit full (resp. half) adder. It takes 3
(resp. 2) bits as input and outputs 2 bits: a sum bit and a carry-
out bit. If a 3:2 (resp. 2:2) compressor is applied at column 4,
then the bit number in column % reduces by 2 (resp. 1) and
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Fig. 1. The compressing process of a 6-bit Wallace tree.

that in column (i + 1) increases by 1. A CT has multiple
compression stages. An example of the compressing process
of a 6-bit Wallace tree with 3 stages is shown in Fig. 1. By the
convention used in this paper, compression stage ¢ is applied
at BM BM,_; and produces BM BM;, as shown in Fig. 1.

B. Prefix Structure-based CPA

In this section, we describe prefix structure-based CPA used
in multiplier. First, we introduce some definitions.

An n-bit CPA has two operands A = a,,_1a,_2...ap and
B = b,_1by_o...by. For the i-th bit (0 < i < n — 1), the
sum signal s;, the carry-out signal c;, the generate signal g;,
and the propagate signal p; are:

$i=a; Db ®ci, ¢; = gi +pici-1, gi = aibi, pi =a; +b;.
Following [14], we define the generate and propagate (GP)

pair of the i-th bit as (g;,p;). An initial GP pair is produced

from an input pair (a;,b;) through a circuit, which is repre-

sented as an input node B. We also define a Boolean operator

o on two GP pairs as [14]:

(g;p)o(g",0)=(g+p-g"p-P)

The operator o satisfies the associative law [14]. The group GP

(GGP) pair (G;.5, P;.;) (0 <j <i<n-—1) is calculated from

the GP pairs from continuous bit positions ¢,7 — 1,...,7 as:

(Giij, Piij) = (9i,pi) © (gi—1,Di—1) © - - 0 (g5, P5)-
A basic GP pair is a special case of a GGP pair when ¢ = j.

By the associative law of the operator o and the definition
of the GGP pair, we have

(Giijy Pij) = (Giwk, Pik) © (Gr—155 Pr—1:5) (D)
where 7 < k < ¢. Thus, in more general cases, the inputs of
the operator o are two GGP pairs. The circuit that implements
the operator o is represented as an internal node @ [14].

When the CPA is used within a multiplier, its carry-in signal
¢in 18 0. Given this, the -th carry-out signal ¢; equals G;.g,
since ¢; = G;.0 + Pj.o - ¢;n = Gy.0. Thus, we have
(¢ci, Pro) = (Gi:os Pino) =
(Gijis Pijr) 0 (Gji—1:as Pjy—1:55) © - 0 (Gj.—1:0, Pj—1:0)
where 0 < j, < jr—1 < --- < j1 < 4. This indicates that
¢; can be computed from multiple continuous GGP pairs. One

classic prefix structure to generate each carry-out signal is the
Kogge-Stone prefix network [8]. With a prefix structure, the
final CPA can be implemented.

In [14], a hybrid parallel-prefix/carry-select (PPF/CSL) adder
is proposed to reduce the area of Kogge-Stone prefix network at
the cost of delay. In our work, this adder architecture is selected
as the final CPA. It consists of a prefix structure for generating
carry signals and a set of CSLs for producing the final sum. To
further reduce the delay of the CSL, a CSSA [10] is proposed
to replace the CSL. We refer the readers to [10] for details on
CSL and CSSA.

C. Related Works

We point out some previous works applying ILP to optimize
multipliers. In [15], [16], ILP is applied to optimize the CT of
the multiplier. The basic compressor is the generalized parallel
counter that can be efficiently realized in FPGA. The work [17]
proposes to split a large multiplier into small sub-circuits that
are implemented by LUTs/DSPs in FPGA. It is modeled as the
tiling problem and solved by ILP. Note that the above works
all aim at designing efficient multipliers for FPGA. In contrast,
our work focuses on ASIC multipliers. Another work applies
ILP to optimize constant multipliers [18], which are different
from the focus of this paper, general multipliers.

III. OPTIMIZATION OF MULTIPLIER

In this section, we present the proposed global optimization
method for multipliers. We use multipliers with AND gate-
based PPG to illustrate our method. It should be noted that the
method is also applicable to multipliers with MBE-based PPG.

GOMIL jointly optimizes the CT and the prefix structure in
the CPA. Note that the CT dominates the area of a multiplier,
while the CT and the prefix structure together dominate the
delay of a multiplier. Thus, by jointly optimizing the CT and
the prefix structure, the majority of the area and the delay of a
multiplier is optimized.

In the following, Section III-A will introduce an ILP-based
formulation to optimize the CT. Section III-B will present
another ILP-based formulation to optimize the prefix structure.
Finally, Section III-C will describe the joint optimization by
integrating these two ILP formulations together.

A. Compressor Tree Optimization

In this section, we present an ILP-based formulation for
optimizing the CT. Denote the word length of the multiplier
as m. As described in Section II-A, CT reduces the output
BM of the PPG into a BM with two rows through multiple
compression stages. We denote the number of compression
stages as s. In order to minimize the delay of the CT, we fix s as
the number of compression stages of an m-bit Wallace tree, as
this reduction scheme provides the minimum stage number [4].

We model a BM by a bit count vector (BCV) V =
[€1—1,%1—2,...,%0], where [ is the number of columns of the
BM and z; is the number of bits at column ¢ of the BM. We
denote the BCV for the output BM of the PPG as Vj. An
example of Vj for the AND gate-based PPG of a 6-bit multiplier
is shown in Fig. 1. For a general m-bit multiplier, we have

Vo ={1,2,... , 1}
After each compression stage, since the BM changes, the
corresponding BCV changes. We denote the BCV after com-

pression stage ¢ (1 < i < s) as V;. Fig. 1 shows the BCVs after
the 1st, 2nd, and 3rd compression stages, i.e., V1, V5, and V5.

ym—1mm—1,...



In general case, a compressor can be applied at the left-
most column in a BM, e.g., the compressor shown in the
dashed rectangle in Fig. 1. However, in this work, we avoid
applying compressors at the leftmost column to simplify the
later optimization formulation for the prefix structure. Although
this limits the design space of the multiplier, however, the
application of a compressor to the leftmost column in a BM
within the compression process occurs very infrequently. Thus,
the optimality is minimally affected. Under this constraint, the
lengths of all the BCVs remain with the same value of 2m — 1.

We denote the numbers of 3:2 and 2:2 compressors applied
at column j (0 < j < 2m — 2) of the BM processed at stage
i (1 < i < s)as f;; and h;;, respectively. They are the
unknowns to be solved and they determine the area of the CT.

The ILP formulation is shown below.

min oF 4+ SH @)
st F=30 S g, H=1_ 3" hij, 3)
fz72m—2 — hz,2m—2 — Oa for 1 S 1 S S, (4)

fij >0, hij>0,for1<i<s,0<j<2m-—3, (5

3fij+2hi; <Vi_qlj], for 1 <i<s,0<j<2m—2,(6)

Vilil= Vicalil = @fig + hig)+ (fojoathig), (D)
for 1 <i<s5,1<5<2m—2,

Vi[0] = Vi1 [0] — (2fi0 + hio), for 1<i<s,  (8)
0<Vi[j] <2, for0<j <2m —2.

We aim at minimizing the area of all the compressors,
which is modelled by Eq. (2). In Eq. (2), @ and S are two
constants, representing the areas of the 3:2 and 2:2 com-
pressors, respectively; F' and H are calculated by Eq. (3),
which correspond to the total numbers of the 3:2 and 2:2
compressors, respectively. In this work, we set a and 3 as 3
and 2, respectively, according to their approximate area ratio in
the NanGate 45nm Open Cell Library [19]. Eq. (4) corresponds
to our enforced constraint mentioned above that no compressor
can be applied at the leftmost column in the BM at any stage.
Eq. (5) corresponds to the natural requirement that f; ; and h; ;
should be non-negative. Eq. (6) corresponds to the requirement
that the number of inputs of all the compressors applied at
column 5 (0 < 7 < 2m — 2) of the BM processed at stage @
(1 €4 < s) should be no more than the length of column j
of the BM, i.e., V;_1[j]. For example, as shown in Fig. 1, one
3:2 compressor and one 2:2 compressor are applied at column
4 of the BM processed at stage 0, BMj. The total number of
inputs of both compressors is 5, no more than V5[4] = 5.

By the compression procedure depicted in Section II-A, the
bit count in column j (1 < j < 2m — 2) of the BM produced
by stage i (1 < i < s), V;[j], should satisfy Eq. (7), since
each 3:2 (resp. 2:2) compressor applied at column j reduces
the bit count in column j by 2 (resp. 1), while each compressor
applied at column (j — 1) increases the bit count in column j
by 1. Eq. (8) corresponds to the special case of V;[j] occurs
at column 0. Finally, Eq. (9) corresponds to the requirement
that each entry in the BCV after the final stage, Vs, should be
non-negative and no more than 2.

B. Prefix Structure Optimization

As described in Section II-B, the basic operands of the prefix
structure in a CPA are the GGP pairs, while the basic operators
are the input nodes M and the internal nodes @, both taking
two GGP pairs as input and outputting a GGP pair.

In the context of designing multipliers, the input to the prefix
structure in a CPA is an irregular BM of two rows, with some
columns containing just 1 bit, e.g., the BM BMj3 shown in
Fig. 1, which will be further processed by a CPA. This is
different from the general adder where each bit position has
two input bits. Such a difference leads to a further optimization
opportunity, which we explore in this section.

1) Modelling: In order to illustrate the proposed optimiza-
tion method later, we first present some related modelling. We
denote the input pair at column ¢ as (u;,v;). First, an input
node M for a bit position can be simplified if that position has
just 1 input bit. In this case, the input pair can be represented as
(0,v;) and by definition, the GP pair (g;, p;) reduces to (0, v;),
which requires no logic gate in the implementation. To capture
this special case, we denote the input node for this case as 0.

Furthermore, an input GGP pair to an internal node,
(Gi:k, Pi.i), can be a special case with G, = 0, leading
to simplification of the internal node. Given this observation,
we distinguish two types of GGP pairs, one with G;;; as a
constant 0 and the other with G;.; as a normal variable. We
introduce a binary variable b;.; to indicate these two types:
bi;; = 0 and 1 correspond to the first and the second types,
respectively. Note that the type of an input node (i.e., B or O)
is characterized by the type of its input GP pair (G;.;, P;.;) and
thus, can be uniquely identified by the variable b;.;, which is
listed in Table I.

TABLE 1
THE ENCODING, AREAS, AND DELAYS OF THE BASIC NODES.
Node | Symbol Encoding Area | Delay

Input ] bij.i =0 0 0
P [ b = 1 2 T
O Ebl P ]%:E0,0% 1 1
A bikes bi—1 = (0,1 2 1

l t 1 1 ) ] b
e A i by 1) = (LO) | T [ 1
O ik, bp—1:;) =1, 1) | 3 2

For an internal node, it takes two GGP pairs (Gj.x, P;.;;) and
(Gg—1:j, Px—1.;) as input. Its logic function can be simplified
differently for different type combinations of the two GGP
pairs. Specifically, there are four type combinations. Encoded
by the pair (b;.x,bk—1.5), they are (0,0), (0,1), (1,0), and
(1,1). Correspondingly, we introduce four types of internal
nodes, O A, A\, and @, with Boolean functions listed below:

: (Gijs Prij) = (0, Pig) © (0, Py—15)
(O sz Pk 1])
A : (G, Pij) = (0, Py) o (Gr—1:5, Pr—1:5)
=(Pi - Gr—1.5, Piek - Pr—1:5) ©)
A (Gigs Pij) = (Giks Piik) © (0, Pe—1:5)
=(Giks Pik - Pr—1)
o: (G”,P”) (sza ) (Gk 135> Pr— 1J)
=(Gix + Py - Gk-l;J,Pz:k Py_1.5)

Their logic-level implementations can be easily derived from
the above equations. Table I lists the one-to-one mapping
between the node type and the corresponding (b;.1, br—1. j) pair.

Next, we mention a few properties of b;.;, as they will be
used in later solution of the optimization problem. First, we
consider b;.;, which corresponds to the GGP pair produced by
an input node. It relates to the input to a prefix structure, which
is the output BCV V; of the CT. As mentioned in Section III-A,
we avoid applying compressors at the leftmost column of a BM.



This ensures that there is no leading 0 in V. Consequently, each

entry of Vs can only be 1 or 2. By definition, b;.; equals 0, if
Vili] = 1, and 1, if V[i] = 2. Thus, we have

bii = Vi[i] — 1. (10)

Second, we derive b;.; for the output GGP pair of an internal

node taking input GGP pairs with the type combination encoded
by (bs.k, be—1:5). By Eq. (9), we have the following relation

b — 0 if by = br—1,5 =0,

“J 7)1 otherwise,
which is equivalent to
1D

Obviously, the areas and delays of the two input nodes and

four internal nodes differ. The area and delay of these nodes
used in our modeling are listed in Table I, which are based
on the approximate area and delay ratios of the gates in the
NanGate 45nm library [19]. To facilitate the later optimization
solution, we further establish an analytical relation between the
area/delay of a node and its encoding. Based on the values listed
in Table I, for an input node, its area A and delay D satisfy

bi;j = byi + bp—15 — bipbr—1:5.

A(bi:i) = 2bi:i,  D(bisi) = by (12)
For an internal node, its area A and delay D satisfy
Abi‘7b—:‘:bi:b—:’ b—:’ 17

(bik klj) kOk—1:j + Ok—1:5 + (13)

D(bi:k, b—1.5) = bi:xbr—1.; + 1.
Note that the above relations depend on the particular area and
delay values we use. However, for a different set of area and
delay values, we can easily derive a similar set of relations,
only with different coefficients.
2) Optimization Problem and Solution: In this section, we
present the optimization problem and the proposed solution.
For an input BCV V; of length 2m — 1, we focus on
synthesizing the prefix tree producing the final GGP pair
(G2m—2.0, Pam—2.0). First, we observe that different internal
node connections may lead to different prefix trees with differ-
ent areas and delays, which leads to an optimization problem.

Example 1. Suppose that the input BCV of a prefix structure is
(2,2,1,2,1,1]. Two prefix trees producing the final GGP pair
(Gs.0, Ps.0) with different connections of the internal nodes are
shown in Fig. 2. Note that we represent the two types of GGP
pairs using different lines. The red lines in each figure plot a
critical path of the prefix tree. According to Table I, the area
and delay of the first prefix tree are 16 and 6, respectively,
while those of the second are 16 and 5, respectively. O

— > (Gij, Pij)
-=>(0,Pi)

Guo Gso G| | Gio

Fig. 2. Two prefix trees for the same input BCV.

Since the operator o satisfies the associative law, the final
computed GGP pair is independent of the connection order
of the internal nodes. Our goal is to find the best connection

order for an input BCV to co-minimize the area and delay of
the prefix tree.

In order to solve the optimization problem, we first define a
general problem @;.;, which is constructing an optimal prefix
tree for producing the GGP pair (Gj.;, P;.;). Then, the original
problem to be solved is just Q2,,_2.0- We denote the optimal
solution of Q;.; as S;.;. Since our target is to co-minimize the
area and delay, we use a linear combination of the area A and
the delay D of a prefix tree as the optimization target, i.e.,
C = A+ wD, where w is a parameter controlling the weight
of delay in the optimization target. Denote the optimal cost
of problem @;:; as c;;; and the area and delay of the optimal
solution S;.; as a;.; and d;.;, respectively. Clearly, we have

Cij = Q5 + wdi:j.

As shown in Fig. 2(a), producing a GGP pair (G;.;, P;.;)
with ¢ > j reduces to producing two GGP pairs (Gj.k, Pi.i)
and (Gg—1.j, Py—1.;) for a particular k € {j +1,j +2,...,4}
and then combining the GGP pairs by a proper internal node.
We refer to the value k as the cut point. For example, producing
the GGP pair (Gs.0, Ps.0) in Fig. 2(a) is achieved by producing
the GGP pairs (Gs.2, Ps.2) and (Gi., P1o) first and then
combining them by an internal node /. The cut point is k = 2.

Given the above construction pattern, we can see that in
order to construct an optimal solution for problem Q;.;, we
need to find a proper cut point k£ and the optimal solutions for
two sub-problems (., and Qi—1.;. This leads to a dynamic
programming-based solution as described next.

For the base case where 7 = j, the prefix tree just contains
a single input node. Thus, we have

ai; = A(bii), dii = D(bsi),
where A(b;.;) and D(b;.;) are given by Eq. (12).

Now suppose we know ¢;.; for any 0 < j <4 < 2m — 2
satisfying that 7 — j < [ together with the area a;.; and delay
b;.; of the optimal solution. Next we try to get c;.; for any
0<j<i<2m—2satisfying that i — 5 =1+ 1.

If the cut point is &, then we have the area of the optimal
solution S;.; as a;.; = @ik + ak—1.5 + A(bik, br—1.;) and the
delay as d;;; = max{d;,dg—1.;} + D(bix,bx—1.;), where
A(bjig, be—1:5) and D(b;.i, bp—1.;), given by Eq. (13), corre-
spond to the area and delay, respectively, of the internal node
combining the GGP pairs (Gi.i, Pi.x) and (Gr_1.5, Pr—1:j).
Thus, we have

Ciij = Gisj +wdij = Ak + ag—1.j + A(bik, b—1:5)
+ w (max{d;.x, di—1.;} + D(bi:k, bp—1.5)) -

However, since the cut point is unknown, the actual c;.;

should be calculated as
¢i;; = min {a;.x + ak—1.; + A(bix, br—1:5)
J<k<i

+ w (max{d.x, dp—1:5} + D(bi:k, br—1:5)) }-

The above equation solves c;.; for any ¢ —j = [+ 1. In order
to solve for ¢;;; with any ¢ — 5 > [ + 1 later, it is critical to
also record the values a;.; and b;.; of the optimal solution .S;. ;.
In other words, suppose p;.; is the optimal cut point giving the
minimum c¢;.;. We need to obtain the following two values:

Qizj = Qizp;.; + Ap;.;—1:5 + A(biipi:j’bpi:jflzj%
diij = max{diipi;j ) dpz‘:jflij} + D(biipi;j ) bpi:jflij)'
By repeating the above procedure until 1—j7 = 2m—2, we can
eventually obtain the optimal solution for problem Q2,,_2.0.

Note that the optimization of CT is based on ILP, a special
case of integer programming (IP). In order to facilitate a global

(14)

(15)

(16)



optimization over the CT and the prefix structure together,
we further transform the above dynamic programming-based
solution into an IP, as shown below.

min  Com—_90 a7

st by =Vili]—1, for0<i<2m—2,  (I8)

bi:j =bi:i + bi—1.5—bs:ibi—1:5, for 0 <j< i < 2m —2,(19)
Qi = 2bj, di; = by, for 0 <4 < 2m — 2, (20)
Ci:j:jrgggi{(ai:k“"akfl:j+bi:kbk71:j+bk71:j 21

+1) + w(max{d;.x, dr—1.; } +bibr—1.; + 1)},
for0 <j<i<2m-—2,
tijn €{0,1}, for0< j<i<2m—2,j<k<i, (22)
Shojrtip =1 for0<j<i<2m—2,  (23)
aij= > tijk(air+ag—1.j+birbr—1+bk—1.;+1),24)
k=j+1
for0 <j<i<2m-—2

> tijr(max{di, dp—1:5} +bikbr—1.5 + 1), (25)
k=j+1

di:j =

for0 <j<i<2m-—2
Ci:j = Qj:j + U}di:j, for 0 < ] < 1 < 2m — 2. (26)

Eq. (17) gives the final optimization target, which is the
optimal cost of problem ()2,,—2.9. The variable b;.;’s introduced
before play an important role in the IP formulation, as the
area and delay of a node can be characterized by them. Thus,
the formulation has Egs. (18) and (19); the former is just
Eq. (10) and the latter is derived from Eq. (11) by setting the
variable k as i. Eq. (20) corresponds to the base case values
in the dynamic programming-based solution. It is derived from
Egs. (12) and (14). Eq. (21) corresponds to the key recurrence
relation in the dynamic programming-based solution. It is
derived from Eqgs. (13) and (15).

As we mentioned before, the values a;.; and d;.; of the
optimal solution S;.; are needed to drive the recurrence in
the dynamic programming-based solution. They depend on the
optimal cut point p;.;, as shown in Eq. (16). However, it is
challenging to obtain p;.; directly in an IP formulation and
hence, challenging to obtain a;.; and d;.; by Eq. (16). To solve
this problem, we introduce binary variables ;;; to indicate the
optimal cut point p;.;: ¢35, = 1 (j < k < %) if and only if
pi:; = k. Based on the definition of ¢;;1, Egs. (22) and (23) give
the basic constraint on it. Then, by Egs. (24), (25), and (26),
we are able to get a;.; and d;.;.

The above formulation is not an ILP since it contains three
basic non-linear components: max{xz, y}, min{x,y}, and b- x
with b as a binary variable. Fortunately, all of them can be
transformed into linear constraints [20]. Thus, the above IP
formulation can be transformed into an ILP formulation. Due
to the space limit, we omit the final ILP formulation.

C. Global Optimization

In this section, we present the joint optimization for the CT
and the prefix structure. For this purpose, we only need to put
the constraints of the two ILP formulations together and adjust
the final objective function as:

alF + /BH + Cam—2:0- (27)
Note that the previous two ILP formulations share the common

variable V;[i]’s, which serve as the connection between the two
ILP formulations.

The final ILP formulation can be solved efficiently for a
small word length m. However, as the size of the ILP increases
with m, it causes a long time to solve for a large m. In order
to improve the runtime, we introduce a speed-up technique by
defining an upper bound parameter L (1 < L < 2m —1). With
this L, we only keep those constraints in Eqs. (19) and (21)—
(26) satisfying that :—j < L. We also update the final objective
function to aF + SH + c¢p_1.9. After solving this modified
global ILP problem, a specific BCV V; will be obtained. We
then reuse the normal ILP formulation for the prefix structure
to generate the final prefix tree for this particular V5.

After the joint optimization of the CT and the prefix struc-
ture, we further include CSLs for computing the final product.
However, in some cases, the length of some CSLs is long,
causing a CSL to dominate the delay of a CPA. In this case, a
CSSA can be used to replace the CSL to reduce the delay.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
proposed GOMIL method. The mixed ILP solver Gurobi Op-
timizer 9 [21] was used to solve the ILP problems. We also
implemented a C++ program that takes the solution of the
optimization problem as input and generates Verilog HDL code
for the final optimized multiplier. It was further synthesized by
the Synopsys Design Compiler using a 2008-version typical
NanGate 45nm Open Cell Library and placed and routed by
Cadence Innovus. Synopsys PrimeTime was used to measure
the delay and power. As some designs have a delay larger than
10ns, power was measured at SOMHz working frequency.

The proposed method has two important parameters: the
weight w for controlling the weight of delay in the optimization
target in the ILP for the prefix structure and the parameter L for
accelerating the ILP solving. We set w = 8 and L = 10, as this
combination gives a small area-delay product, while ensuring
an affordable runtime, according to our experimental results.
Since our proposed method takes a very long runtime for a large
L and m, we set a empirical runtime bound of (3600 + L?)
seconds for each benchmark, where the term L3 comes from the
fact that the number of variables and the number of constraints
of our ILP formulation are both ©(L?).

We compared the hardware cost of the GOMIL-optimized
multiplier with existing fast multipliers. We applied GOMIL to
optimize two types of multipliers, those with AND-gate based
PPG and those with MBE-based PPG. They are denoted as
GOMIL-AND and GOMIL-MBE, respectively.

The existing multipliers include Wal-RCA, Wal-PPF, B-Wal-
RCA, B-Wal-PPF, pparch, and apparch. Wal-RCA and Wal-PPF
are based on Wallace compressor tree structure. Wal-RCA uses
the ripple carry adder (RCA) as the final CPA, while Wal-PPF
uses the PPF/CSL structure. B-Wal-RCA and B-Wal-PPF are
similar to Wal-RCA and Wal-PPF except that they are based on
Booth encoding. pparch and apparch are provided by Design-
Ware [22]. They are state-of-the-art multipliers from industry,
and optimized for delay and area, respectively. For any given
word length, both pparch and apparch will consider various
multiplier architectures, including those based on Radix-2 non-
Booth, Radix-4 Booth recoded, and Radix-8 Booth recoded,
and finally pick the optimal choice.

We considered 4 word lengths m = 8§,16,32,64. Fig. 3
plots the comparison between the proposed multipliers and the
other existing multipliers on delay, area, and PDP, which are all
normalized to those of B-Wal-RCA. Each figure also includes
the average result over the 4 word lengths.
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Fig. 3. Delays, areas, and power-delay products of the existing and the proposed multipliers for different word lengths. The values of B-WAL-RCA are listed

above each group.

As shown in Fig. 3(a), for traditional multipliers, Wal-PPF is
faster than Wal-RCA. This shows that the prefix structure-based
CPA helps improve the delay. GOMIL multipliers also apply
such adders. As a result, compared to B-Wal-RCA and Wal-
RCA, GOMIL-AND reduces the delay by 27.45% and 27.26%,
respectively, on average. Furthermore, due to the optimization
of the prefix structure, GOMIL-AND is even 8.75% and 1%
faster than the prefix structure-based multipliers B-Wal-PPF
and Wal-PPF, respectively. Compared to apparch and pparch
from industry, GOMIL-AND improves the delay by 41.02% and
31.84%, respectively. The other GOMIL multiplier, GOMIL-
MBE, is also faster than apparch and pparch.

As shown in Fig. 3(b), the areas of the prefix structure-
based traditional multipliers are mostly larger than those of
the RCA-based ones. Thus, prefix structure is area-consuming.
Owing to the area optimization of GOMIL, GOMIL-AND
reduces area by 36.41% and 31.88% over B-Wal-PPF and
Wal-PPF, respectively. Moreover, GOMIL-AND is 33.36% and
37.99% smaller than B-Wal-RCA and Wal-RCA, respectively.
Compared to apparch and pparch, GOMIL-AND reduces the
area by 24.36% and 4.4%, respectively. In contrast, GOMIL-
MBE is 18.37% and 28.29% larger than apparch and pparch,
respectively. One reason is that the depth of the BM is smaller
for GOMIL-MBE, leading to smaller optimization space for
CT. Although GOMIL-MBE is larger than GOMIL-AND in
most cases, it is more competitive for small m on both area
and delay. Thus, it is more suitable for small multipliers.

The power comparison of GOMIL multipliers over the
existing multipliers has a similar trend as the area, and is
omitted due to space limit. In terms of the more comprehen-
sive measure, PDP, as shown in Fig. 3(c), the DesignWare
multipliers, particularly pparch, are the best ones among the
6 existing multipliers, which shows the superiority of the
industrial design. GOMIL-AND can further reduce the PDP by
70.99% and 62.74% over apparch and pparch, respectively,
demonstrating the effectiveness of GOMIL. The runtime of
GOMIL for m = 8, 16, 32, and 64 is 2325s, 4840s, 5510s and
7200s, respectively. Although GOMIL takes a long runtime for
a large word length, it is still affordable as the design of a
multiplier is usually a one-time effort.

V. CONCLUSIONS

In this work, we propose GOMIL, a novel global optimiza-
tion technique for designing better multipliers. The main idea
of GOMIL is to establish an ILP formulation to jointly optimize
the CT and the prefix structure in a multiplier, which together
dominate the area and delay of a multiplier. GOMIL breaks the
rigid boundary between the CT and the CPA in a multiplier and
hence, can obtain multipliers that have a lower PDP than the
state-of-the-art multipliers from industry. In our future work,

we plan to extend GOMIL to synthesize multipliers for FPGA
architecture and approximate multipliers.
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