Optimal generation of single-qubit operation from an always-on interaction by algebraic decoupling

Jun Zhang1,2 and K. Birgitta Whaley1

1Department of Chemistry and Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA
2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

(Received 18 April 2005; published 2 February 2006)

We present a direct algebraic decoupling approach to generate arbitrary single-qubit operations in the presence of a constant interaction by application of local control signals. To overcome the difficulty of undesirable entanglement generated by the untunable interaction, we use an algebraic approach to decouple the two-qubit Hamiltonian into two single-qubit Hamiltonians and the desired single-qubit operations are then generated by steering on the single-qubit operation spaces. Specifically, we derive local control fields that are designed to drive the qubit systems back to unentangled states at the end of the time interval over which the desired single-qubit operation is completed. As a result of the decoupling, optimal control strategies may be carried out on single qubit subspaces rather than on the full coupled qubit Hilbert space. This approach is seen to be particularly relevant for the physical implementation of solid-state quantum computation.

DOI: 10.1103/PhysRevA.73.022306 PACS number(s): 03.67.Lx, 03.65.Fd, 03.65.Ta, 89.70.+c

Most schemes for implementation of quantum computation require achieving both single- and two-qubit operations in order to realize the speedup associated with quantum algorithms [1]. Typically, single-qubit operations are implemented by external local control fields applied to individual qubits, whereas two-qubit operations are generated by interplay of the couplings between qubits and local fields [2]. To simplify engineering design and reduce decoherence channels, many physical proposals of quantum computation have “always-on” and fixed couplings between qubits. This is often the case in arrays of solid-state qubits, which constitute a very attractive research direction because of the inherent scalability of the required microfabrication techniques. For example, in superconducting systems the interaction between qubits is often coupled by a capacitor or inductor, whose value is fixed by the fabrication and generally cannot be tuned during the computations [3,4]. Several variable coupling schemes have been suggested [5–9], but it is generally agreed that none of these is completely satisfactory. In contrast, proposals for using electron spins in quantum dots do in principle allow for electrical gating of the exchange interaction between dots [10,11], but engineering such control in practice still remains extremely challenging [12]. Other spin-coupled implementations of current interest include endohedral fullerenes for which nontunable magnetic dipole coupling between electron spins of neighboring endohedral species provide the required qubit coupling [13,14].

Coupling between qubits is essential for the implementation of two-qubit operations. An always-on and untunable coupling leads to additional complications in implementation of single-qubit operations. However, because the qubits may become entangled as a result of the coupling, causing errors in the target state, it is desirable to eliminate the effect of this coupling during single-qubit operations. This general issue of suppressing an always-on interaction is also encountered in nuclear magnetic resonance, where the nuclear spins are coupled by dipolar interactions and broaden the spectral resonances. A great deal of work has focused on decoupling of spins in NMR in order to achieve high-resolution spectra [15–19]. The use of refocusing pulse sequences designed to cancel out the effects of interactions in successive time intervals and to generate precise quantum evolutions has been extensively explored in NMR implementations of quantum information processing [20–24]. This approach includes numerical solutions based on extensive search methods that allow for short and strong pulses to minimize decoherence [21], as well as optimization in the limit of zero time local control pulses [24]. However, for low-power pulses such as are often used in homonuclear spin systems, the radio frequency signals can be of the same order of magnitude as the coupling strengths [22,25]. In such a “soft” pulse situation, single-qubit rotations cannot be assumed to be implemented instantaneously as is often the case with hard pulses, and consequently the interactions may strongly affect the intended operations. This situation arises in many prototypical coupled qubit systems in the solid state. An additional factor here is the requirement of low temperature operation which means that refocusing pulses should be as low power as possible in order to minimize heating [26,27].

While numerical construction of refocusing pulse sequences is always an option, several systematic attempts to overcome this problem more generally have been also been made in recent years in the context of quantum information processing. Reference [28] proposed to employ an encoding of logical qubits and to perform logic operations using an analog of the NMR selective recoupling method. Reference [29] presented another encoding scheme to realize universal quantum computation on carefully designed interaction free subspaces. Recently, Ref. [30] showed that one can also avoid this undesirable entanglement by tuning the transition energies of individual qubits. More complex schemes involving auxiliary degrees of freedom have also been proposed [13,14]. In this paper we present a direct approach for the design of local control signals enacting single-qubit operations in the presence of an always-on interaction, that is based on an exact algebraic decoupling of the two-qubit...
Hamiltonian. To eliminate the accompanying entanglement generated by this untunable interaction, we derive local control fields that drive the qubit systems back to unentangled states at the end of the time interval over which the desired single-qubit operation is completed. The algebraic approach provides a significant improvement over proposals involving encoding of qubits, since it avoids the additional overheads and potential for decoherence incurred by encoding and decoding. The approach also has the benefit of leading naturally to optimization strategies that involve steering only on single-qubit Hilbert spaces, SU(2), rather than on higher dimensional spaces. It thereby presents an attractive route for implementation of optimal control of the single qubit operations. We derive an approximation solution to the control problem that can be readily optimized to arbitrary numerical accuracy of gate fidelity, and compare this with exact results obtained from minimal time and minimal energy control strategies based on Pontryagin’s maximal principle. For the example of single-qubit operations on two identical spins that is studied here, we find that the fidelity optimal solution is very close to the minimum-energy solution. This is encouraging for applications to solid-state implementations where low temperatures and minimal-energy implementations are essential [26,27].

We consider a two-qubit system with the following Hamiltonian:

\[
H = \frac{\omega_1}{2}(\cos \phi_1 \sigma_x^1 + \sin \phi_1 \sigma_y^1) + \frac{\omega_2}{2}(\cos \phi_2 \sigma_x^2 + \sin \phi_2 \sigma_y^2) + J \sigma_z^1 \sigma_z^2,
\]

where \(\sigma_x, \sigma_y, \) and \(\sigma_z\) are the Pauli matrices, \(J\) the always-on and untunable coupling strength, \(\omega_1\) and \(\omega_2\) the amplitude and phase of the external control fields, respectively. This Hamiltonian describes a wide range of two-qubit systems, e.g., solid-state quantum computation with superconducting Hamiltonian. To eliminate the accompanying entanglement from the two-qubit Hamiltonian, Eq. (1), by algebraically decoupling this into two unentangled single-qubit Hamiltonians. The problem then reduces to generation of two local unitaries which can further be readily implemented using optimal control methods, either to minimize an imposed cost function (e.g., minimal time or energy) or to maximize the fidelity of the desired quantum operation.

An arbitrary local unitary operation \(k_1\) on two qubits, the target operation here, can be written using Euler’s XYX decomposition as

\[
k_1 = (e^{-i\alpha_1 \sigma_z^1} \otimes e^{-i\alpha_2 \sigma_z^2}) (e^{-i\beta_1 \sigma_y^1} \otimes e^{-i\beta_2 \sigma_y^2}) \times (e^{-i\gamma_1 \sigma_z^1} \otimes e^{-i\gamma_2 \sigma_z^2}),
\]

where \(\alpha_i, \beta_i, \) and \(\gamma_i\) are the Euler angles. In order to generate \(k_1\), we need to generate arbitrary \(\sigma_z\) and \(\sigma_y\) rotations on each qubit. However, we can simplify this problem to the generation of only \(\sigma_z\) rotations \(k_2 = e^{-i\gamma_1 \sigma_z^1} \otimes e^{-i\gamma_2 \sigma_z^2}\) from the following Hamiltonian:

\[
H_1 = \frac{\omega_1}{2} \sigma_y^1 + \frac{\omega_2}{2} \sigma_y^2 + \frac{J}{2} \sigma_z^1 \sigma_z^2,
\]

where \(H_1\) is obtained from Eq. (1) by setting the phases \(\phi_1 = \phi_2 = 0\) for external control pulses. This leads immediately to the implementations of the first and third operations in Eq. (2). For the second operation in Eq. (2), we can set \(\phi_1 = \phi_2 = \pi/2\) in Eq. (1) to obtain a Hamiltonian

\[
H_2 = \frac{\omega_1}{2} \sigma_y^1 + \frac{\omega_2}{2} \sigma_y^2 + \frac{J}{2} \sigma_z^1 \sigma_z^2 = V^\dagger H_1 V,
\]

where \(V = e^{i\pi \sigma_z^2} \otimes e^{i\pi \sigma_z^2}\). Now if \(H_1\) generates a quantum operation \(e^{-i\beta_1 \sigma_y^1} \otimes e^{-i\beta_2 \sigma_y^2}, H_2\) will generate the second operation in Eq. (2), since

\[
e^{-i\beta_1 \sigma_y^1} \otimes e^{-i\beta_2 \sigma_y^2} = V^\dagger (e^{-i\beta_1 \sigma_y^1} \otimes e^{-i\beta_2 \sigma_y^2}) V.
\]

Our task has therefore been simplified to the generation of an arbitrary local unitary operation \(e^{-i\gamma_1 \sigma_z^1} \otimes e^{-i\gamma_2 \sigma_z^2}\) from the Hamiltonian \(H_1\) in Eq. (3). We now observe that the terms \(i \sigma_z^1/2, i \sigma_z^2/2, i \sigma_y^1 \sigma_z^2/2\) appearing in \(H_1\) generate the following Lie algebra:

\[
\mathfrak{t}_1 = \frac{1}{2} (\sigma_x^1 \sigma_z^2, \sigma_y^1 \sigma_z^2, \sigma_z^1 \sigma_x^2, \sigma_z^1 \sigma_y^2, \sigma_z^1 \sigma_z^2).
\]

It is straightforward to show that \(\mathfrak{t}_1\) satisfies the same commutation relations as so(4), where so(4) denotes the Lie algebra formed by all the \(4 \times 4\) real skew symmetric matrices. Therefore \(\mathfrak{t}_1\) is isomorphic to so(4). We also know that so(4) is isomorphic to su(2) \(\otimes\) su(2) [32]. To realize this fact, let

\[
\begin{align*}
\epsilon_x^1 &= \frac{\sigma_x^1 - \sigma_x^2}{4}, & \epsilon_y^1 &= \frac{\sigma_y^1 \sigma_z^2 + \sigma_z^1 \sigma_y^2}{4}, & \epsilon_z^1 &= \frac{\sigma_z^1 \sigma_z^2 - \sigma_y^1 \sigma_y^2}{4}, \\
\epsilon_x^2 &= \frac{\sigma_x^1 + \sigma_x^2}{4}, & \epsilon_y^2 &= \frac{\sigma_y^1 \sigma_z^2 - \sigma_z^1 \sigma_y^2}{4}, & \epsilon_z^2 &= \frac{\sigma_z^1 \sigma_z^2 + \sigma_y^1 \sigma_y^2}{4},
\end{align*}
\]

and use \(\mathfrak{t}_2\) to denote the Lie algebra generated by \(\{i \epsilon_x^1, i \epsilon_y^1, i \epsilon_z^1, i \epsilon_x^2, i \epsilon_y^2, i \epsilon_z^2\}\). We have the following commutation relations for \(\mathfrak{t}_2\):

\[
[e_i^1, e_i^2] = e_i^3, \quad [e_i^1, e_j^2] = i \epsilon_i^{ij}, \quad [e_i^2, e_j^2] = i \epsilon_i^{ij}, \quad [e_i^1, e_j^1] = i \epsilon_i^{ij},
\]

where \(\epsilon_i^{ij}\) is the Levi-Civita symbol.
It is clear that the Lie algebra \mathfrak{t}_x satisfies the same commutation relations as $i/2(\sigma_x^1, \sigma_x^2, \sigma_x^3, \sigma_y^1, \sigma_y^2, \sigma_z^1)$, and therefore it is isomorphic to $\mathfrak{su}(2) \otimes \mathfrak{su}(2)$. This isomorphism allows great simplification for the generation of single-qubit operation from Hamiltonian (3), because it provides an algebraic way to decouple the entangling Hamiltonian into two untangled single-qubit Hamiltonians. To our knowledge, this fact has not been recognized, although a transformation similar to Eq. (6) was presented in Ref. [31].

We can now rewrite H_1 as

$$H_1 = (\omega_1 - \omega_2) \epsilon^1_x + J \epsilon^1_x + (\omega_1 + \omega_2) \epsilon^2_x - J \epsilon^2_x,$$

and the desired operation k_2 as

$$k_2 = e^{-i\gamma_1 \sigma_x^1/2} \otimes e^{-i\gamma_2 \sigma_x^2/2} = e^{-i[(\gamma_1 + \gamma_2) \epsilon^1_x + (\gamma_1 - \gamma_2) \epsilon^2_x]}.$$ \hspace{1cm} (8)

We now transform the parameters in k_2 and H_1 to reformulate the problem as generation of the local unitary

$$e^{-i[(\gamma_1 - \gamma_2) \sigma_z^1/2 + (\gamma_1 + \gamma_2) \sigma_z^2/2]}.$$ \hspace{1cm} (9)

from the Hamiltonian

$$\frac{\omega_1 - \omega_2}{2} \sigma_x^1 + \frac{J}{2} \sigma_x^1 + \frac{\omega_1 + \omega_2}{2} \sigma_x^2 - \frac{J}{2} \sigma_x^2.$$ \hspace{1cm} (10)

To obtain Eqs. (9) and (10) we simply replaced ϵ^i_x in Eqs. (7) and (8) by $\sigma_x^i/2$, which is warranted by the fact that $\{\epsilon^1_x, \epsilon^2_x, i \epsilon^1_x, i \epsilon^2_x, i \epsilon^1_x, i \epsilon^2_x\}$ is isomorphic to the Lie algebra $\mathfrak{su}(2) \otimes \mathfrak{su}(2)$. Taking advantage of the commutation of σ_x^i and σ_y^j, the problem then naturally decomposes into two well-defined problems of generating single-qubit rotations:

(i) generate $e^{-i(\gamma_1 - \gamma_2) \sigma_z^i/2}$ from the Hamiltonian $(\omega_1 - \omega_2) \sigma_x^i/2 + J \sigma_x^i/2$; and

(ii) generate $e^{-i(\gamma_1 + \gamma_2) \sigma_z^i/2}$ from the Hamiltonian $(\omega_1 + \omega_2) \sigma_x^i/2 - J \sigma_x^i/2$.

By making the transformation from \mathfrak{t}_x to $\mathfrak{su}(2) \otimes \mathfrak{su}(2)$, we have therefore arrived at two decoupled single-qubit quantum systems, solutions of which both reduce to a general steering problem on the Lie group $SU(2)$ with dynamics determined by the Schrödinger equation:

$$i \dot{U} = \left(\frac{\omega(t)}{2} \sigma_x^1 + \frac{J}{2} \sigma_x^1 \right) U, \quad U(0) = I.$$ \hspace{1cm} (11)

In general, $\omega(t)$ is a time-dependent external control field. The minimum energy control on the Lie group $SU(2)$ has been studied in Ref. [33]. Here we will use Lie-Poisson reduction to derive both the minimum energy and time optimal control. We will also give a good approximate solution to this problem that can be further fidelity optimized.

Pontryagin’s maximal principle provides an important mathematical tool for solving the optimal steering problem on Lie groups [34]. We solve for a control field ω that drives the system from the initial operation $U(0)=I$ to a prescribed target operation $U(T)=e^{-i\gamma_2 \sigma_z}$, which also minimizes the cost function:

$$J = \int_0^T L(\omega(t)) dt,$$ \hspace{1cm} (12)

where $L(\omega(t))$ is a general functional of the control field $\omega(t)$ and is often referred to as the running cost. The first step is to construct the control Hamiltonian:

$$\mathcal{H}(t) = L(\omega(t)) + \langle X, -iU(t)^\dagger (\frac{\omega(t)}{2} \sigma_x^1 + \frac{J}{2} \sigma_x^1) U(t) \rangle,$$ \hspace{1cm} (13)

where M is a constant matrix in $\mathfrak{su}(2)$, and $\langle X, Y \rangle$ is inner product defined on $\mathfrak{su}(2)$. For the ease of notation, we will suppress the time parameter unless otherwise specified. Proceeding further, we can write Eq. (13) as

$$\mathcal{H} = L(\omega) - \frac{1}{2} \langle M, iU^\dagger \sigma_x U \rangle \omega - \frac{1}{2} \langle M, iU^\dagger \sigma_x U \rangle J.$$ \hspace{1cm} (14)

We then define three parameters p_1, p_2, and p_3 in terms of U and the matrix M by $p_1 = \langle M, iU^\dagger \sigma_x U \rangle/2$, $p_2 = \langle M, iU^\dagger \sigma_x U \rangle/2$, and $p_3 = \langle M, iU^\dagger \sigma_x U \rangle/2$, so that the control Hamiltonian can be written in terms of the parameters p_i as

$$\mathcal{H} = L(\omega) - p_1 \omega - p_2 J.$$ \hspace{1cm} (15)

Taking the derivative of p_1, we obtain

$$\dot{p}_1 = \frac{1}{2} \langle M, iU^\dagger \sigma_x U \rangle + \frac{1}{2} \langle M, iU^\dagger \sigma_x U \rangle = Jp_3.$$ \hspace{1cm} (16)

By similar means, we can get the dynamics for p_2 and p_3. Combining these together, we have the dynamics for p_i as

$$\dot{p}_1 = Jp_3,$$

$$\dot{p}_2 = -\omega p_3,$$

$$\dot{p}_3 = \omega p_2 - Jp_1.$$ \hspace{1cm} (17)

Equation (17) is indeed the Lie-Poisson equation on $SU(2)$ [35]. Using this to solve for the parameters p_i as a function of time then allows explicit construction of the control Hamiltonian in Eq. (15) for a given control field ω. It is easy to verify that the functions $C_1 = p_1^2 + p_2^2 + p_3^2$ and $C_2 = p_1^2 + 2Jp_2$ are both invariant along the system trajectory. For a general optimal control problem on Lie group $SU(2)$, one usually needs to solve a set of six differential equations. However, here we can obtain the reduced dynamics of three differential equations in Eq. (17) by using the Lie-Poisson reduction theorem [35]. The two conditions for this theorem are the vector field is right invariant and the cost function being independent of the quantum states, and they are both satisfied in this case. This reduces the number of the differ-
ential equations to be solved by half. This approach is a

general technique applicable also to analysis of optimal con-

trol on multiqubit systems.

Now we derive the time optimal control, that is, the form

of control field \(\omega \) that achieves the target operation in

the minimum time possible. In this case, the cost function can be

written as

\[
\min J = \int_0^T 1 dt,
\]

and the running cost \(L(\omega) = 1 \) is independent of control field

\(\omega \). The corresponding control Hamiltonian is

\[
\mathcal{H} = 1 - \omega p_1 - Jp_2.
\]

(18)

Let us assume that the control field \(\omega \) is restricted to an

interval \([\omega_m, \omega_M]\) due to physical bounds on the available

frequencies. From Pontryagin’s maximum principle, the op-
timal control field \(\tilde{\omega}(t) \) will minimize the control Hamil-
tonian (18) pointwise. Therefore \(\tilde{\omega}(t) \) can take only extremal

cases:

\[
\tilde{\omega}(t) = \begin{cases}
\omega_m, & \text{if } p_1(t) \geq 0, \\
\omega_M, & \text{if } p_1(t) < 0.
\end{cases}
\]

This means that the time optimal control will switch back

and forth between two extremal control values. This pro-
drome is usually called bang-bang control in the control theory

literature. (Note that the term “bang-bang control” has re-

cently been adopted with a somewhat different meaning in

the study of dynamical coupling of open quantum systems

[36–39], where it is referred to as performing a set of instan-
taneously or as fast as physically possible hard pulses.) An

elementary functions. However, when

example of this is given in Ref. [2] in the context of deriva-
tation of a constructive approach for steering on the Bloch

sphere under general control fields. There we gave an ex-

plicit solution for achieving an arbitrary single-qubit quantum

operation by switching between two constant control

fields and showed that this had the minimum number of

such switchings. From the arguments above, we conclude

now that this bang-bang control is also a time optimal con-

trol strategy and that the explicit solution presented in Ref.

[2] is indeed the time optimal solution.

Next we consider the minimum-energy control which is

encoded by the following cost function:

\[
\min J = \frac{1}{2} \int_0^T \tilde{\omega}^2(t) dt.
\]

The control Hamiltonian is now

\[
\mathcal{H} = \frac{1}{2} \tilde{\omega}^2 - \omega p_1 - Jp_2,
\]

and thus the minimum-energy control is \(\tilde{\omega}(t) = p_1(t) \). Taking

the derivative of \(p_1 \) in Eq. (17), we have

\[
\dot{\tilde{\omega}} = \left(\frac{C_2}{2} - J \right) \tilde{\omega} - \frac{1}{2} \tilde{\omega}^3,
\]

(19)

where \(C_2 = p_1^2 + 2Jp_2 \) is constant along the optimal trajectory.

The solution of this differential equation is given by the Ja-
cobi elliptic function \(Cn \) [33]:

\[
\tilde{\omega}(t) = 2b\text{nc}(bt + f, k),
\]

(20)

where \(b, f, \) and \(k \) are real numbers. We can numerically
determine the values of these parameters such that the con-
trol function (20) steers the Hamiltonian (3) from the initial

operator \(U(0) = I \) to the target operation \(U(T) = e^{-i\gamma_{2}\sigma_x} \).

Finally we give an approximate solution to the control

problem in terms of a sinusoidal control function

\(\omega = A \cos(\vartheta t) \), and show that this can be further fidelity opti-
mized. Letting \(U_1 = e^{i\vartheta_{2}\sigma_x/\vartheta}U \), we transform the system (11)

into the following form:

\[
i\dot{U}_1 = \left(\frac{A}{2}(1 + \cos 2\vartheta t)\frac{\sigma_x}{\sqrt{2}} + (J - \nu) \frac{\sigma_y}{\sqrt{2}} + \frac{A}{2} \sin 2\vartheta t \frac{\sigma_z}{\sqrt{2}} \right) U_1.
\]

(21)

The usual technique to solve this differential equation in the

case of NMR is to drop the oscillating terms to get a

time-independent Hamiltonian (rotating wave approxima-
tion). In order to get a more accurate solution, we use the

Wei-Norman formula [40] to transform Eq. (21) to a dynamical

system on \(\mathcal{R}^3 \). From Euler’s ZXZ decomposition, a gen-

eral solution to Eq. (21) can be written as

\[
U_1(t) = e^{-i\alpha_1(t)\sigma_z/2}e^{-i\alpha_2(t)\sigma_x/2}e^{-i\alpha_3(t)\sigma_z/2}.
\]

(22)

Taking the time derivative of \(U_1 \), we have

\[
i\dot{U}_1 = \left(\alpha_2\cos\alpha_1 + \alpha_3\sin\alpha_1\sin\alpha_2 \right) \frac{\sigma_x}{\sqrt{2}} + \left(\alpha_2\sin\alpha_1 \right. \\
\left. - \alpha_3\cos\alpha_1\sin\alpha_2 + \alpha_4\cos\alpha_2 \right) \frac{\sigma_x}{\sqrt{2}} \right) U_1.
\]

(23)

Comparing Eqs. (21) and (23), we get

\[
\begin{bmatrix}
A/2(1 + \cos 2\vartheta t) \\
J - \nu \\
A/2 \sin 2\vartheta t
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & \cos\alpha_1 & \sin\alpha_1\sin\alpha_2 \\
0 & \sin\alpha_1 & -\cos\alpha_1\sin\alpha_2 \\
1 & 0 & \cos\alpha_2
\end{bmatrix}
\begin{bmatrix}
\dot{\alpha}_1 \\
\dot{\alpha}_2 \\
\dot{\alpha}_3
\end{bmatrix}.
\]

Therefore we obtain a set of differential equations of the

parameters \(\alpha_i \) in \(\mathcal{R}^3 \):

\[
\begin{bmatrix}
\dot{\alpha}_1 \\
\dot{\alpha}_2 \\
\dot{\alpha}_3
\end{bmatrix} = \begin{bmatrix}
-\frac{\sin\alpha_1}{\tan\alpha_2} & \frac{\cos\alpha_1}{\tan\alpha_2} & 1 \\
\frac{\cos\alpha_1}{\sin\alpha_2} & \frac{\sin\alpha_1}{\sin\alpha_2} & 0 \\
\sin\alpha_1 & -\cos\alpha_1 & 0
\end{bmatrix}
\begin{bmatrix}
A/2(1 + \cos 2\vartheta t) \\
J - \nu \\
A/2 \sin 2\vartheta t
\end{bmatrix}.
\]

(24)

Rigorous solution of Eq. (24) cannot be given in terms of

elementary functions. However, when \(\vartheta \) is close to \(J \), a very

good approximate solution can be found as

\[
\alpha_1(t) = \frac{A}{2\nu} \sin^2 \vartheta t.
\]
OPTIMAL GENERATION OF SINGLE-QUBIT...

\[\alpha_2(t) = \frac{A}{2} + \frac{A}{4J} \sin 2\sigma, \]
\[\alpha_3(t) = 0. \]

Hence a sinusoidal control function \(\omega = A \cos(\sigma) \) can achieve the following unitary operation at a final time \(T \):
\[U(T) = e^{i\alpha_2(t)/2} e^{-i\alpha_1(t)/2} e^{-i\alpha_2(T)/2}. \] (25)
To generate an operation \(e^{-i\gamma_2 \sigma_i} \) with \(\gamma \in [0, 2\pi] \), we only need that \(v = J, AT/2 = \gamma \), and \(JT = 2/n \pi \), where \(n \) is an integer. This leads to the conditions
\[v = J, \quad A = \frac{\gamma J}{n \pi}, \quad T = \frac{2n \pi}{J}. \] (26)

From Eq. (8), to implement a two-qubit local unitary operation \(e^{-i\gamma_2 \sigma_i^{12}} \otimes e^{-i\gamma_2 \sigma_i^{12}} \), we require that
\[\omega_1 = \frac{\gamma J}{n \pi} \cos Jt, \quad \omega_2 = \frac{\gamma J}{n \pi} \sin Jt, \] (27)
with a time duration \(2n \pi/J \). Note that this is an approximate solution. Numerical simulations reveal that the greater the value of \(n \), the better the approximation. To improve the accuracy, we can numerically search for the parameter values that maximize the fidelity of the actual achieved operation \(U(T) \) to the desired target operation \(U_T \) as follows:
\[F(U(T), U_T) = \text{Re} \text{ Tr}\{U(T)U_T^\dagger\}. \] (28)

The values given by Eq. (26) can be used as a starting guess for the numerical optimization. This gives rise to a fidelity optimized control that can be made arbitrarily accurate.

We illustrate the control strategies aforementioned with a numerical example. Let \(J = 200 \text{ Hz} \) in Eq. (1), and our target the generation of a 90° rotation about the \(x \) axis on the first qubit, that is, the operation \(e^{-i\pi/4 \sigma_i^x} \). Choosing \(\phi_1 = \phi_2 = 0, n = 1 \), the analytic approximation Eq. (26) yields
\[v = 200 \text{ Hz}, \quad A = 100 \text{ Hz}, \quad T = 10 \pi \text{ ms}, \] (29)
which leads to an approximate solution:
\[\omega_1 = 100 \cos 200r, \quad \omega_2 = 0. \] (30)

Numerical optimization via the maximization of the fidelity of actual achieved operation and the desired target operation, using the parameters in Eq. (29) as an initial guess, leads to the following fidelity optimized control function:
\[\omega_1 = 98.062 \cos 196.900r, \quad \omega_2 = 0. \] (31)
with a final time \(T = 31.911 \text{ ms} \). The corresponding fidelity error is \(4.104 \times 10^{-11} \) and can be further minimized to arbitrary accuracy (within machine precision). These two control functions, the analytic approximation and the fidelity optimized function, are shown in Fig. 1(A). The alternative minimum energy control function is determined numerically, resulting in parameters \(b = 210.744, f = -0.00549, \) and \(k = 0.00236, \) in Eq. (20), and the minimum energy control:
\[\omega_1 = 99.678 \text{Cn}(210.744t - 0.005 49, 0.002 36). \] (32)

This minimum-energy control solution is seen to be very close to the fidelity optimized control function of Eq. (31). The difference between these two control functions is plotted in Fig. 1(B).

In summary, we have presented a direct design of control pulses for an interacting two-qubit system that can implement any arbitrary single-qubit operations in a quantum system possessing an always-on interaction. This is crucial for the physical implementation of precise quantum operations in solid-state quantum computation where one needs to be able to generate all \(SU(2) \) operations on all individual spins. We derived here continuous control fields that can implement this in optimal fashion, by making use of an algebraic decoupling of the two-qubit Hamiltonian and combining this with Lie-Poisson reduction techniques. The generality of this algebraic decoupling approach, namely, its validity for all ratios of single-qubit frequencies \(\omega_i \) to two-qubit interaction \(J \), renders it useful for the design of low-power pulses in many situations, including low-temperature solid-state implementations of quantum information processing as well as broadband excitation in NMR. For generation of precise single-qubit operations, after the two-qubit system has been algebraically decoupled, we employ local control fields to drive the qubit systems to unentangled states at the end of the time interval over which the desired single-qubit operation is completed. The procedure thereby removes any undesirable entanglement generated by the untunable interaction. Furthermore, the local control fields may be steered with optimal control methods on \(SU(2) \) spaces, avoiding expensive numerical searches in higher-dimensional coupled qubit Hilbert spaces.

We have derived three explicit control strategies to generate arbitrary target quantum operations using this approach, namely, minimum time, minimum energy, and a third approximate analytic solution. The first two optimal strategies implement a desired target quantum operation exactly, whereas the approximate control strategy can be further optimized to perfect fidelity. Explicit solution for an example two-spin problem indicate that this fidelity optimized control strategy gives results very close to that obtained from the
minimum-energy control strategy. This is very encouraging for use of this technique to decouple qubits with always-on interactions in solid-state implementations of quantum computation that require low-temperature (mK) operation [26,27]. The fidelity optimized control strategy based on the approximate solution to the control equations possesses the attractive feature that we can easily determine the control parameters and we expect that it will consequently be very useful for applications to all systems of coupled spins and qubits characterized by always-on interactions.

The direct algebraic decoupling approach presented here can be extended to larger numbers of qubits. In its current form, the method allows straightforward implementation of optimal control strategies to find arbitrary quantum operations for any two-spin system with an always-on interaction, regardless of pulse durations and relative amplitude of single- and two-qubit terms in the Hamiltonian. Because of the decoupling, the optimization can be carried out as a steering problem on SU(2) and does not require numerical searches in higher-dimensional spaces. It also removes the need for expensive encoding steps, and the associated overhead and possible additional decoherence that this might introduce. In general the algebraic decoupling method thus provides an efficient, high-fidelity, and readily implementable approach to manipulation of individual spins in any coupled spin or qubit system with an always-on interaction.

We thank the NSF for financial support under ITR Grant No. EIA-0205641, and DARPA and ONR under Grant No. FDN0014-01-1-0826 of the DARPA SPINS program. We also thank Dr. Rogerio de Sousa for helpful discussions.