

Discrete Mathematics

Assignment 10

Date Due: 8:00 PM, Thursday, the 28th of July 2011

Office hours: Tuesdays, 12:00-2:00 PM, and Wednesdays, 12:00-1:00 PM

Exercise 1. Use induction in $(\mathbb{Z}^2_+, \preccurlyeq)$, the set of pairs of natural numbers with lexicographic ordering induced by the ordering \leq of \mathbb{Z}_+ , to show that if the numbers $a_{m,n}$, $m, n \in \mathbb{Z}_+$, are defined recursively by

$$a_{m,n} = \begin{cases} 5 & m = n = 1, \\ a_{m-1,n} + 2 & n = 1 \land m > 1, \\ a_{m,n-1} + 2 & n > 1, \end{cases}$$

then $a_{m,n} = 2(m+n) + 1$ for all $m, n \in \mathbb{Z}_+$. (3 Marks)

Exercise 2. Let (S, \preccurlyeq) be a poset. We say an element $y \in S$ covers and element $x \in S$ if $x \prec y$ and there is no element $z \in S$ such that $x \prec z \prec y$. The set of pairs (x, y) such that y covers x is called the *covering relation* of (S, \preccurlyeq) .

- i) Find the covering relation for (S, |) with $S = \{1, 2, 3, 4, 6, 12\}$.
- ii) Find the covering relation for $(\mathcal{P}(S), \subset)$ where $\mathcal{P}(S)$ is the powerset of $S = \{1, 2, 3, 4\}$.
- iii) Show that (x, y) belongs to the covering relation of (S, \preccurlyeq) if and only if x is lower than y and there is an edge joining x and y in the Hasse diagram of this poset.
- iv) Show that a finite poset can be reconstructed from its covering relation by showing that it is the reflexive transitive closure of the covering relation.

(2+2+2+3 Marks)

Exercise 3. Consider the poset $(\{2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72\}, |)$.

- i) Draw the Hasse diagram for this poset.
- ii) Find all maximal and minimal elements.
- iii) Find the least and greatest elements of the poset, if they exist.
- iv) Find all upper bounds of $\{2,9\}$ and $\sup\{2,9\}$, if it exists.
- v) Find all lower bounds of $\{60, 72\}$ and $\inf\{60, 72\}$, if it exists.

$(5 \times 1 \text{ Marks})$

Exercise 4. Which of the following posets are latices?

- i) $(\{1, 5, 25, 125\}, |)$
- ii) $(\{1, 3, 6, 9, 12\}, |)$

as shown in the figure at right.

- iii) (\mathbb{Z}, \geq)
- iv) $(\mathcal{P}(S), \subset)$, where $\mathcal{P}(S)$ is the power set of a set S.

Exercise 5. Schedule the tasks needed to build a house, by specifying their order, if the Hasse diagram representing those tasks is

 $(4 \times 1 \text{ Marks})$

(3 Marks)

Framing Foundation Exercise 6. Let (S, \preccurlyeq) be a poset. We say that (S, \preccurlyeq) is *well-founded* if there does not exist a sequence $(x_n)_{n \in \mathbb{N}}$,

- $x_n \in S$ such that $x_{n+1} \prec x_n$ for $n \in \mathbb{N}$. We say that (S, \preccurlyeq) is *dense* if for all $x, y \in S$ with $x \prec y$ there exists a $z \in S$ such that $x \prec z \prec y$.
 - i) Show that $(\mathbb{Z}, \preccurlyeq)$ with $x \prec y \Leftrightarrow |x| < |y|$ is a well-pounded poset. Sketch (part of) the Hasse diagram for $(\mathbb{Z}, \preccurlyeq)$. Show that $(\mathbb{Z}, \preccurlyeq)$ is not well-ordered.
 - ii) Show that a dense poset with at least two elements that are comparable is not well-founded.
- iii) Show that (\mathbb{Q}, \leq) is a dense poset.
- iv) Show that the set of all bit strings with lexicographic order is neither well-founded nor dense.
- v) Show that a poset is well-ordered if and only if it is well-founded and totally ordered.

$(5 \times 2 \text{ Marks})$

Exercise 7. Let (S, \preccurlyeq) be a well-founded poset. The *principle of well-founded induction* states that P(x) is true for all $x \in S$ if

$$\underset{x \in S}{\forall} \left(\begin{array}{c} \forall \\ y \in S \end{array} \left(y \prec x \Rightarrow P(y) \right) \Rightarrow P(x) \right)$$
(*)

- i) Show that no induction basis is needed, i.e., P(u) is true for all minimal eleents of S if (*) holds.
- ii) Prove that the principle of well-founded inducton is valid.
- iii) Use the principle of well-founded induction on the well-founded poset $(\mathbb{Z}, \preccurlyeq)$, $x \prec y \Leftrightarrow |x| < |y|$, with the product rule of differentiation to show that

$$\frac{d}{dx}x^n = \begin{cases} 0 & \text{for } n = 0, \\ nx^{n-1} & \text{for } n \in \mathbb{Z} \setminus \{0\} \end{cases}$$

(1+3+2 Marks)