## Discrete Mathematics

## Assignment 10

Date Due：8：00 PM，Thursday，the $28^{\text {th }}$ of July 2011
Office hours：Tuesdays，12：00－2：00 PM，and Wednesdays，12：00－1：00 PM

Exercise 1．Use induction in $\left(\mathbb{Z}_{+}^{2}, \preccurlyeq\right)$ ，the set of pairs of natural numbers with lexicographic ordering induced by the ordering $\leq$ of $\mathbb{Z}_{+}$，to show that if the numbers $a_{m, n}, m, n \in \mathbb{Z}_{+}$，are defined recursively by

$$
a_{m, n}= \begin{cases}5 & m=n=1 \\ a_{m-1, n}+2 & n=1 \wedge m>1 \\ a_{m, n-1}+2 & n>1\end{cases}
$$

then $a_{m, n}=2(m+n)+1$ for all $m, n \in \mathbb{Z}_{+}$．
（3 Marks）
Exercise 2．Let（ $S, \preccurlyeq$ ）be a poset．We say an element $y \in S$ covers and element $x \in S$ if $x \prec y$ and there is no element $z \in S$ such that $x \prec z \prec y$ ．The set of pairs $(x, y)$ such that $y$ covers $x$ is called the covering relation of（ $S, \preccurlyeq$ ）．
i）Find the covering relation for $(S, \mid)$ with $S=\{1,2,3,4,6,12\}$ ．
ii）Find the covering relation for $(\mathcal{P}(S), \subset)$ where $\mathcal{P}(S)$ is the powerset of $S=\{1,2,3,4\}$ ．
iii）Show that $(x, y)$ belongs to the covering relation of $(S, \preccurlyeq)$ if and only if $x$ is lower than $y$ and there is an edge joining $x$ and $y$ in the Hasse diagram of this poset．
iv）Show that a finite poset can be reconstructed from its covering relation by showing that it is the reflexive transitive closure of the covering relation．
$(2+2+2+3$ Marks $)$
Exercise 3．Consider the poset $(\{2,4,6,9,12,18,27,36,48,60,72\}, \mid)$ ．
i）Draw the Hasse diagram for this poset．
ii）Find all maximal and minimal elements．
iii）Find the least and greatest elements of the poset，if they exist．
iv）Find all upper bounds of $\{2,9\}$ and $\sup \{2,9\}$ ，if it exists．
v）Find all lower bounds of $\{60,72\}$ and $\inf \{60,72\}$ ，if it exists．
（ $5 \times 1$ Marks）

Exercise 4. Which of the following posets are latices?
i) $(\{1,5,25,125\}, \mid)$
ii) $(\{1,3,6,9,12\}, \mid)$
iii) $(\mathbb{Z}, \geq)$
iv) $(\mathcal{P}(S), \subset)$, where $\mathcal{P}(S)$ is the power set of a set $S$.

## (4×1 Marks)

Exercise 5. Schedule the tasks needed to build a house, by specifying their order, if the Hasse diagram representing those tasks is as shown in the figure at right.
(3 Marks)


Exercise 6. Let $(S, \preccurlyeq)$ be a poset. We say that $(S, \preccurlyeq)$ is well-founded if there does not exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$, $x_{n} \in S$ such that $x_{n+1} \prec x_{n}$ for $n \in \mathbb{N}$. We say that $(S, \preccurlyeq)$ is dense if for all $x, y \in S$ with $x \prec y$ there exists a $z \in S$ such that $x \prec z \prec y$.
i) Show that $(\mathbb{Z}, \preccurlyeq)$ with $x \prec y \Leftrightarrow|x|<|y|$ is a well-pounded poset. Sketch (part of) the Hasse diagram for $(\mathbb{Z}, \preccurlyeq)$. Show that $(\mathbb{Z}, \preccurlyeq)$ is not well-ordered.
ii) Show that a dense poset with at least two elements that are comparable is not well-founded.
iii) Show that $(\mathbb{Q}, \leq)$ is a dense poset.
iv) Show that the set of all bit strings with lexicographic order is neither well-founded nor dense.
v) Show that a poset is well-ordered if and only if it is well-founded and totally ordered.

## ( $5 \times 2$ Marks)

Exercise 7. Let $(S, \preccurlyeq)$ be a well-founded poset. The principle of well-founded induction states that $P(x)$ is true for all $x \in S$ if

$$
\begin{equation*}
\underset{x \in S}{\forall}(\underset{y \in S}{\forall}(y \prec x \Rightarrow P(y)) \Rightarrow P(x)) \tag{*}
\end{equation*}
$$

i) Show that no induction basis is needed, i.e., $P(u)$ is true for all minimal eleents of $S$ if $(*)$ holds.
ii) Prove that the principle of well-founded inducton is valid.
iii) Use the principle of well-founded induction on the well-founded poset $(\mathbb{Z}, \preccurlyeq), x \prec y \Leftrightarrow|x|<|y|$, with the product rule of differentiation to show that

$$
\frac{d}{d x} x^{n}= \begin{cases}0 & \text { for } n=0 \\ n x^{n-1} & \text { for } n \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

$(1+3+2$ Marks $)$

