Discrete Mathematics

Assignment 2

Date Due：8：00 PM，Thursday，the $2^{\text {nd }}$ of June 2011
Office hours：Tuesdays，1：00－3：00 PM，and Wednesdays，12：00－1：00 PM

Exercise 1．Show that in defining the natural numbers as follows，

$$
\operatorname{succ}(n):=\{n, \emptyset\}, \quad \mathbb{N}:=\{\emptyset\} \cup\{n: \underset{m \in \mathbb{N}}{\exists} n=\operatorname{succ}(m)\}
$$

the Peano axioms are satisfied．
（3 Marks）
Exercise 2．Determine whether the relation R on the set of all rational numbers is reflexive，symmetric and／or transitive，where $(x, y) \in R$ if and only if
i）$x+y=0$
iii）$x y=0$
v）$x= \pm y$
vii）$x y \geq 0$
ii）$x-y \in \mathbb{Z}$
iv）$x=1$ or $y=1$
vi）$x=2 y$
viii）$x=1$
（ 8×1 Mark）
Exercise 3．Let \mathbb{Z}^{2} be the set of all pairs of integers．Define addition and multiplication on \mathbb{Z}^{2} by

$$
\begin{equation*}
(m, n) \cdot(p, q):=(m \cdot p, n \cdot q) \quad \text { and } \quad(m, n)+(p, q):=(q \cdot m+p \cdot n, n q) \tag{1}
\end{equation*}
$$

for $(m, n),(p, q) \in \mathbb{Z}^{2}$ ．Define the equivalence relation

$$
\begin{equation*}
(n, m) \sim(p, q) \quad: \Leftrightarrow \quad n \cdot q=m \cdot p \tag{2}
\end{equation*}
$$

giving rise to the partition \mathbb{Z}^{2} / \sim ．
i）Show that the multiplication in（1）can be used to define multiplication on \mathbb{Z}^{2} / \sim via

$$
\begin{equation*}
[(m, n)] \cdot[(p, q)]:=[(m \cdot p, n \cdot q)] \tag{3}
\end{equation*}
$$

for classes $[(m, n)],[(p, q)] \in \mathbb{Z}^{2} / \sim$ ．In particular，you need to show that this multiplication is well－defined， i．e．，it doesn＇t depend on the representatives of the classes．In other words，if $(m, n),\left(m^{\prime}, n^{\prime}\right) \in[(m, n)]$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in[(p, q)]$ ，then

$$
\begin{equation*}
[(m \cdot p, n \cdot q)]=\left[\left(m^{\prime} \cdot p^{\prime}, n^{\prime} \cdot q^{\prime}\right)\right] \quad \text { that is } \quad(m \cdot p, n \cdot q) \sim\left(m^{\prime} \cdot p^{\prime}, n^{\prime} \cdot q^{\prime}\right) \tag{4}
\end{equation*}
$$

ii）Do the same for the addition in（1）．
（2 +2 Marks）
Exercise 4．Prove the following statements by induction：
i）Let $n \in \mathbb{N} \backslash\{0\}$ ．Show that $133 \mid\left(11^{n+1}+12^{2 n-1}\right)$ ．
ii）Let $n \in \mathbb{N} \backslash\{0,1\}$ ．Show that $\prod_{j=1}^{n-1}\left(1+\frac{1}{j}\right)^{j}=\frac{n^{n}}{n!}$ ．
iii）Let $n \in \mathbb{N}$ and $h>-1$ ．Show that $1+n h \leq(1+h)^{n}$ ．
（ 3×2 Marks）

Exercise 5. A guest at a party is celebrity if this person is known by every other guest, but knows none of them. There is at most one celebrity at a party, for if there were two, they would know each other. A particular party may have no celebrity. You assignment is to find the celebrity, if one exists, at a party, by asking only one type of question - asking a guest whether they know a second guest. Everyone must answer your qestion truthfully.
Use mathematical induction to show that if there are n people at the party, then you can find the celebrity, if there is one, with at most $3(n-1)$ questions.
(3 Marks)
Exercise 6. Use strong induction to show that every $n \in \mathbb{N} \backslash\{0\}$ can be written as a sum of distinct powers of 2 , i.e., as a sum of a subset of integers $2^{0}=1,2^{1}=2,2^{2}=4$ etc.
(Hint: For the inductive step, separately consider the case where $k+1$ is even and where it is odd. When it is even, note that $(k+1) / 2 \in \mathbb{N}$.)
(3 Marks)
Exercise 7. Show that $P(n, k)$ is true for all $n, k \in \mathbb{N}$ if
i) $P(0,0)$ and $\underset{n, k \in \mathbb{N}}{\forall} P(n, k) \Rightarrow(P(n+1, k) \wedge P(n, k+1))$
ii) $\underset{k \in \mathbb{N}}{\forall} P(0, k)$ and $\underset{n \in \mathbb{N}}{\forall} P(n, k) \Rightarrow P(n+1, k)$
(2 + 2 Marks)
Exercise 8. Use Exercise 7 to prove that for all $n, k \in \mathbb{N} \backslash\{0\}$

$$
\sum_{j=1}^{n} \prod_{i=0}^{k-1}(j+i)=\frac{1}{k+1} \prod_{i=0}^{k}(n+i)
$$

(3 Marks)

Exercise 9. Use mathematical induction to prove the multinomial expansion

$$
\left(x_{1}+\cdots+x_{k}\right)^{n}=\sum_{n_{1}+\cdots+n_{k}=n} \frac{n!}{n_{1}!\cdots n_{k}!} x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}
$$

where $k \in \mathbb{N} \backslash\{0\}$ and $n_{1}, \ldots, n_{k} \in \mathbb{N}$.
(3 Marks)
Exercise 10. Prove that the induction axiom implies the well-ordering principle.
(3 Marks)

