Discrete Mathematics

Assignment 4

Date Due：8：00 PM，Thursday，the $16^{\text {th }}$ of June 2011
Office hours：Tuesdays，1：00－3：00 PM，and Wednesdays，12：00－1：00 PM

Exercise 1．Order the letters M，I，C，H，I，G，A，N alphabetically using
i）merge sort，
ii）insertion sort，
iii）bubble sort
algorithms．（Note that it does not matter that the letter＂ I ＂is repeated．）For each algorithm，show what the arrangement is after each pass／merge．How many comparisons are made using each algorithm？
（3×3 Marks）
Exercise 2．Verify that the program segment

```
if \(x<y\) then \(\min :=x\)
else \(\min :=y\)
```

is correct with respect to the initial assertion p ：T and the final assertion $q:(x<y \wedge \min =x) \vee(x>y \wedge \min =y)$ ． N．B．：you have to show that the program is partially correct as well as that it actually terminates．
（3 Marks）
Exercise 3．Use a loop invariant to prove that the following program segment for comupting the nth power， $n \in \mathbb{Z}_{+}$，of $x \in \mathbb{R}$ is correct：

```
power := 1
i:=1
while }i\leqn\mathrm{ do
    loop
            power := power *x
            i:=i+1
    end loop
end while
```

N．B．：you have to show that the program is partially correct as well as that it actually terminates．
（4 Marks）
Exercise 4．This program computes quotients and remainders

```
r:=a
q:= 0
while }r\geqd\mathrm{ do
        loop
            r:=r-d
            q:=q+1
        end loop
end while
```

Verify that it is partially correct with respect to the initial assertion $P: a, d \in \mathbb{Z}_{+}$and the final assertion $Q:(r=a \bmod d) \wedge(q=a \div b)$ ．
（4 Marks）

Exercise 5. Prove that the product of any three consecutive integers is divisible by 6 .
(3 Marks)
Exercise 6. The iterated integer sum of $n \in \mathbb{Z}_{+}$is calculated as follows: The decimal digits of n are added to yield a sum n_{1}. If n_{1} is greater than 9 , the integers of n_{1} are added. This process is repeated until a number between 0 and 9 is obtained. For example, the iterated integer sum of 54469 is calculated as follows: $5+4+4+6+9=28,2+8=10,1+0=1$.
i) Write pseudocode for an iterative algorithm to find the iterated integer sum.
ii) Give the worst-case number of additions that the program needs to perform to calculate the iterated integer sum of $n \in \mathbb{Z}_{+}$.
iii) Prove or disprove the following: the iterated integer sum of a product of two numbers is equal to the iterated integer sum of the product of their iterated integer sums.

(2+2+3 Marks)

