

Discrete Mathematics

Assignment 5

Date Due: 8:00 PM, Thursday, the 23rd of June 2011

Office hours: Tuesdays, 1:00-3:00 PM, and Wednesdays, 12:00-1:00 PM

Exercise 1. What sequence of pseudorandom numbers is generated using the linear congruential generator $x_{n+1} = (4x_n + 1) \mod 7$ with seed $x_0 = 3$? (2 Marks)

Exercise 2. Find the following using the algorithm for modular exponentiation given in the lecture. Show all the steps in the algorithm.

 $11^{644} \mod 645$, $123^{1001} \mod 101$, $3^{2003} \mod 99$

(1+1+1 Marks)

Exercise 3. Find the following using the Euclidean Algorithm. Show all the steps in the algorithm.

gcd(1529, 14039), gcd(1111, 11111), gcd(9888, 6060)

(1+1+1 Marks)

Exercise 4. All books are identified by an *International Standard Book Number* (ISBN), a 10-digit code $x_1x_2...x_{10}$ assigned by the publisher. (The 10-digit code was used until 2007, when it was replaced by a 13-digit code.) These 10 digits consist of blocks identifying the language, the publisher, the number assigned to the book by the publishing company and, finally, a 1-digit check digit that is either a digit or the letter X (used to represent 10). This check digit is selected so that $\sum_{i=1}^{10} ix_i \equiv 0 \mod 11$ and is used to detect errors in individual digits and transposition of digits.

- i) The first nine digits of the ISBN of the european version of the fifth edition of Rosen's book are 0-07-119881. What is the check digit for this book?
- ii) The ISBN of the fifth edition of *Elementary Number Theory and its Applications* is 0-32-123Q072, where Q is a digit. Find the value of Q.
- iii) Check whether the check digit in the ISBN-10 number for the edition of Rosen's book that you are using is correct.

(1+1+1 Marks)

Exercise 5. Adapt the proof that there are infinitely many primes to show that there are infinitely many primes of the form 4k + 3, where k is an integer. *Hint*: suppose that there are only finitely many such primes, q_1, \ldots, q_n and consider $4q_1q_2 \ldots q_n - 1$.

(3 Marks)

Exercise 6. We call a positive integer *perfect* if it equals the sum of its positive divisors other than itself.

- i) Show that 6 and 28 are perfect.
- ii) Show that $2^{p-1}(2^p-1)$ is perfect when 2^p-1 is prime.
- iii) Mersenne primes are prime number of the form $2^p 1$. Which of the following are Mersenne primes?

$$2^7 - 1,$$
 $2^9 - 1,$ $2^{11} - 1,$ $2^{13} - 1.$

(1+3+2 Marks)

Exercise 7. The sums of the digits of numbers can be used to obtain a variety of results about the numbers:

- i) Show that a positive integer is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.
- Show that a positive integer is divisible by 11 if and only if the difference of the sum of its decimal digits in even-numbered positions and and the sum of its decimal digits in odd-numbered positions is divisible by 11.
- iii) Show that a positive integer is divisible by 3 if and only if the difference of the sum of its binary digits in even-numbered positions and and the sum of its binary digits in odd-numbered positions is divisible by 3.

(2+2+2 Marks)

Exercise 8. The well-ordering property can be used to show that there is a unique greatest common divisor of two positive integers. Let $a, b \in \mathbb{Z}_+$ and efine $S := \{n \in \mathbb{N} : \exists n = sa + tb\}$.

- i) Show that $S \neq \emptyset$ and conclude that there exists a least element $c \in S$.
- ii) Show that if $d \in \mathbb{Z}_+$ is a common divisor of a and b, then d is a common visor of c.
- iii) Show that $c \mid a$ and $c \mid b$. *Hint:* First, assume that $c \nmid a$. Then a = qc + r, 0 < r < c. Show that $r \in S$, contradicting the choice of c.
- iv) Conclude that gcd(a, b) exists and has the form gcd(a, b) = sa + tb for some $s, t \in \mathbb{Z}$.

(1+2+2+2 Marks)

Exercise 9. Let $p \in \mathbb{N} \setminus \{0, 1\}$ be a prime number and $a_1, \ldots, a_n \in \mathbb{Z}$. Use mathematical induction to prove that if $p \mid a_1 a_2 \ldots a_n$ then $p \mid a_i$ for some a_i .

Exercise 10. Show that if a and m are relatively prime positive integers, then the inverse of a modulo m is unique modulo m.

(3 Marks)