
Discrete Mathematics

Assignment 8
Date Due: 8:00 PM, Thursday, the 14th of July 2011

Office hours: Tuesdays, 1:00-3:00 PM, and Wednesdays, 12:00-1:00 PM

Exercise 1. Let (an) be a sequence of real numbers. We define the sequences of backward differences (∇kan)
as follows:
• The first (backward) difference is given by ∇an = an − an−1.

• The kth (backward) difference is given by ∇kan = ∇k−1an −∇k−1an−1.

i) Find (∇an) and (∇2an) for the following sequences:

a) an = 4, b) an = 2n, c) an = n2, d) an = 2n.

ii) Show that an−2 = an − 2∇an +∇2an. Use this to express the recurrence relation an = an−1 + an−2 in
terms of an, ∇an and ∇2an.

iii) Prove that an−k can be expressed in terms of an,∇an, . . . ,∇kan. Deduce that any recurrence relation
for the sequence an can be written in terms of backward differences. The resulting equation is called
a difference equation. Such equations occur when “discretizing” differential equations, for example, in
numerical solution algorithms.

(4 × 1 + 2 + 3 Marks)
Exercise 2. Solve the following recurrence relations:

an = an−1 + 6an−2, n ≥ 2, a0 = 3, a1 = 6,

an+2 = −4an+1 + 5an, n ≥ 0, a0 = 2, a1 = 8.

(2 × 2 Marks)
Exercise 3.
i) Use the solution obtained from solving the recurrence relation for the Fibonacci numbers to show that fn
is the integer closest to Φn/

√
5, where Φ := (1 +

√
5)/2 is the golden ratio.

ii) Determine the values of n for which fn > Φn/
√
5 and the values of n for which fn < Φn/

√
5.

(2 + 2 Marks)
Exercise 4. The Lucas numbers are defined by

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

i) Show that Ln = fn−1 + fn+1 for n = 2, 3, 4, . . ., where fn is the nth Fibonacci number.

ii) Find an explicit formula for the Lucas numbers.
(2 + 2 Marks)
Exercise 5. Prove Theorem 2.4.11 of the lecture, which states that all solution to a linear homogeneous
recurrence relation of degree two are of the form

an = α1 · rn0 + α2 · nrn0 , α1, α2 ∈ R, n ∈ N.

if there is only a single characteristic root r0.
(3 Marks)



Exercise 6. Find all solutions of the following recurrence relations:

an = −5an−1 − 6an−2 + 42 · 4n,
an = −5an−1 − 6an−2 + 2n + 3n,

an = 7an−1 − 16an−2 + 12an−3 + n4n,

(3 × 2 Marks)

Exercise 7. In this exercise, assume that f is an increasing function satisfying the recurrence relation f(n) =
af(n/b) + cnd with a ≥ 1, b ∈ N \ {0, 1}, c, d ∈ R+. Our goal is to prove the Master Theorem 2.4.22 of the
lecture.

i) Show that if a = bd and n is a power of b, then f(n) = f(1)nd + cnd logb n.

ii) Show that if a = bd, then f(n) = O(nd logn).

iii) Show that if a ̸= bd and n is a power of b, then

f(n) = C1n
d + C2n

logb a, C1 =
bdc

bd − a
, C2 = f(1) +

bdc

a− bd
.

iv) Show that if a < bd, then f(n) = O(nd).

v) Show that if a > bd, then f(n) = O(nlogb a).

(2 + 1 + 2 + 1 + 1 Marks)

Exercise 8. A recursive algorithm for modular exponentiation is given in Example 3 of Section 4.4, page 312
of the textbook.

i) Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to
compute an mod m, where a,m, n ∈ Z+.

ii) Construct a big-O estimate for the number of modular multiplications required to compute an mod m

(2 + 1 Marks)


	

