

Discrete Mathematics

Assignment 8

Date Due: 8:00 PM, Thursday, the 14th of July 2011

Office hours: Tuesdays, 1:00-3:00 PM, and Wednesdays, 12:00-1:00 PM

Exercise 1. Let (a_n) be a sequence of real numbers. We define the sequences of backward differences $(\nabla^k a_n)$ as follows:

交大密西根学院

UM-SJTU Joint Institute

- The first (backward) difference is given by $\nabla a_n = a_n a_{n-1}$.
- The *kth* (backward) difference is given by $\nabla^k a_n = \nabla^{k-1} a_n \nabla^{k-1} a_{n-1}$.
- i) Find (∇a_n) and $(\nabla^2 a_n)$ for the following sequences:

a)
$$a_n = 4$$
, b) $a_n = 2n$, c) $a_n = n^2$, d) $a_n = 2^n$.

- ii) Show that $a_{n-2} = a_n 2\nabla a_n + \nabla^2 a_n$. Use this to express the recurrence relation $a_n = a_{n-1} + a_{n-2}$ in terms of a_n , ∇a_n and $\nabla^2 a_n$.
- iii) Prove that a_{n-k} can be expressed in terms of $a_n, \nabla a_n, \dots, \nabla^k a_n$. Deduce that any recurrence relation for the sequence a_n can be written in terms of backward differences. The resulting equation is called a *difference equation*. Such equations occur when "discretizing" differential equations, for example, in numerical solution algorithms.

$(4 \times 1 + 2 + 3 \text{ Marks})$

Exercise 2. Solve the following recurrence relations:

$a_n = a_{n-1} + 6a_{n-2},$	$n \ge 2,$	$a_0 = 3, \ a_1 = 6,$
$a_{n+2} = -4a_{n+1} + 5a_n,$	$n \ge 0,$	$a_0 = 2, \ a_1 = 8.$

$(2 \times 2 \text{ Marks})$

Exercise 3.

- i) Use the solution obtained from solving the recurrence relation for the Fibonacci numbers to show that f_n is the integer closest to $\Phi^n/\sqrt{5}$, where $\Phi := (1 + \sqrt{5})/2$ is the golden ratio.
- ii) Determine the values of n for which $f_n > \Phi^n/\sqrt{5}$ and the values of n for which $f_n < \Phi^n/\sqrt{5}$.

(2+2 Marks)

Exercise 4. The *Lucas numbers* are defined by

$$L_n = L_{n-1} + L_{n-2}, \qquad L_0 = 2, \qquad L_1 = 1.$$

- i) Show that $L_n = f_{n-1} + f_{n+1}$ for n = 2, 3, 4, ..., where f_n is the *n*th Fibonacci number.
- ii) Find an explicit formula for the Lucas numbers.

(2+2 Marks)

Exercise 5. Prove Theorem 2.4.11 of the lecture, which states that all solution to a linear homogeneous recurrence relation of degree two are of the form

$$a_n = \alpha_1 \cdot r_0^n + \alpha_2 \cdot nr_0^n, \qquad \alpha_1, \alpha_2 \in \mathbb{R}, \ n \in \mathbb{N}.$$

if there is only a single characteristic root r_0 . (3 Marks)

Exercise 6. Find all solutions of the following recurrence relations:

$$a_n = -5a_{n-1} - 6a_{n-2} + 42 \cdot 4^n,$$

$$a_n = -5a_{n-1} - 6a_{n-2} + 2^n + 3n,$$

$$a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3} + n4^n,$$

$(3 \times 2 \text{ Marks})$

Exercise 7. In this exercise, assume that f is an increasing function satisfying the recurrence relation $f(n) = af(n/b) + cn^d$ with $a \ge 1$, $b \in \mathbb{N} \setminus \{0,1\}$, $c, d \in \mathbb{R}_+$. Our goal is to prove the Master Theorem 2.4.22 of the lecture.

- i) Show that if $a = b^d$ and n is a power of b, then $f(n) = f(1)n^d + cn^d \log_b n$.
- ii) Show that if $a = b^d$, then $f(n) = O(n^d \log n)$.
- iii) Show that if $a \neq b^d$ and n is a power of b, then

$$f(n) = C_1 n^d + C_2 n^{\log_b a},$$
 $C_1 = \frac{b^d c}{b^d - a},$ $C_2 = f(1) + \frac{b^d c}{a - b^d}$

- iv) Show that if $a < b^d$, then $f(n) = O(n^d)$.
- v) Show that if $a > b^d$, then $f(n) = O(n^{\log_b a})$.

$$(2+1+2+1+1 \text{ Marks})$$

Exercise 8. A recursive algorithm for modular exponentiation is given in Example 3 of Section 4.4, page 312 of the textbook.

- i) Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to compute $a^n \mod m$, where $a, m, n \in \mathbb{Z}_+$.
- ii) Construct a big-O estimate for the number of modular multiplications required to compute $a^n \mod m$

(2+1 Marks)