Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 11

Exercise 11．1．Complete the IDEA survey for Vv286．
（5 Bonus Marks）

Exercise 11．2．

i）Show that

$$
\mathcal{B}:=\left\{\frac{1}{\sqrt{2}}, \cos (\pi n x), \sin (\pi n x)\right\}_{n=1}^{\infty}
$$

is an orthonormal system in $L^{2}([-1,1])$ ．
ii）Show that if $\left\{e_{n}\right\}$ is an orthonormal system in $L^{2}([-1,1])$ ，then $\left\{\widetilde{e}_{n}\right\}$ defined by

$$
\widetilde{e}_{n}(x)=\sqrt{\frac{2}{b-a}} \cdot e_{n}\left(\frac{2}{b-a}\left(x-\frac{b+a}{2}\right)\right)
$$

is an orthonormal system in $L^{2}([a, b])$ ．
iii）Use ii）to construct orthonormal systems from \mathcal{B} in i）for the spaces $L^{2}([-\pi, \pi])$ ，and $L^{2}([0, L])$ for any $L>0$ ．
（ $2+2+2$ Marks）
Exercise 11．3．Calculate the Fourier series of the function f defined on $[-1,1]$ and given by $f(x)=x^{2}$ ．
Evaluate the series at a suitable point to find the value of the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

By evaluating the series at a different point，find the value of

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}
$$

（4 Marks）
Exercise 11．4．Consider the equation for a vibrating beam of length $l>0$ ，

$$
u_{t t}+c^{2} u_{x x x x}=0, \quad(x, t) \in(0, l) \times \mathbb{R}_{+}
$$

Find the solution to the initial－boundary value problem

$$
\begin{aligned}
u(0, t)=u(l, t) & =0, & u_{x x}(0, t)=u_{x x}(l, t) & =0, \\
u(x, 0) & =x(l-x), & & t \in \mathbb{R}_{+} \\
u_{t}(x, 0) & =0, & & x \in(0, l)
\end{aligned}
$$

（4 Marks）

Exercise 11．5．Use a separation－of－variables approach to solve the damped wave equation

$$
c^{2} u_{x x}-u_{t t}-\mu u_{t}=0, \quad(x, t) \in(0, L) \times \mathbb{R}_{+}, L>0
$$

with Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(L, t)=0, \quad t>0
$$

and initial conditions

$$
u(x, 0)=\sin \left(\frac{\pi x}{L}\right), \quad u_{t}(x, 0)=0, \quad x \in[0, L]
$$

（4 Marks）

Exercise 11.6. Solve the equation

$$
u_{x x}+u_{y y}=u, \quad(x, y) \in(0, \pi) \times(0, a), \quad a>0
$$

with boundary conditions

$$
u(0, y)=u(\pi, y)=u(x, 0)=0, \quad u(x, a)=1, \quad(x, y) \in[0, \pi] \times[0, a]
$$

(4 Marks)
Exercise 11.7. Show that the telegraph equation with $\alpha, \beta>0$,

$$
u_{t t}+(\alpha+\beta) u_{t}+\alpha \beta u=c^{2} u_{x x}, \quad(x, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+}
$$

with the condition

$$
\sup _{x \in \mathbb{R}_{+}}|u(x, t)|<\infty, \quad t \in \mathbb{R}_{+}
$$

and initial signal

$$
u(0, t)=U_{0} \cos (\omega t), \quad \omega, U_{0}>0
$$

does not have a solution of the form $u(x, t)=X(x) \cdot T(t)$. Next, show that there exists a solution of the from

$$
u(x, t)=U_{0} e^{-A x} \cos (\omega t+B x)
$$

for certain constants A and B. How are A and B determined from α, β, ω ? (Thus, not every problem has a solution that can be found from a separation-of-variables approach.)
(2 + 3 Marks)
Exercise 11.8. From the recurrence relations obtained in Exercise 10.3 of Assignment 11, deduce ${ }^{1}$

$$
J_{\nu}^{\prime}(x)=-J_{\nu+1}(x)+\frac{\nu J_{\nu}(x)}{x}, \quad J_{\nu}^{\prime}(x)=J_{\nu-1}(x)-\frac{\nu J_{\nu}(x)}{x}
$$

for $\nu \in \mathbb{R}$. Use the first of these relations and l'Hôpital's rule to evaluate

$$
\lim _{\beta \rightarrow \alpha} \frac{\alpha J_{\nu}(\beta) J_{\nu}^{\prime}(\alpha)-\beta J_{\nu}^{\prime}(\beta) J_{\nu}(\alpha)}{\alpha^{2}-\beta^{2}}=\frac{1}{2} J_{\nu}^{\prime}(\alpha)^{2}
$$

where $\alpha \in \mathbb{R}$ is arbitrary. This proves that

$$
\left\|J_{\nu}(\alpha \sqrt{\cdot})\right\|_{L^{2}([0,1])}^{2}=J_{\nu}^{\prime}(\alpha)^{2}
$$

(3 Marks)
Exercise 11.9. The functions

$$
I_{\nu}(x):=e^{-\nu \pi i / 2} J_{\nu}(i x), \quad \nu \in \mathbb{R}
$$

are called the modified Bessel functions of the first kind.
i) Show that

$$
I_{\nu}(x)=\sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)}\left(\frac{x}{2}\right)^{2 m+\nu}
$$

Deduce that $I_{\nu}(x) \in \mathbb{R}$ for all $x \in \mathbb{R}, I_{\nu}(x) \neq 0$ for $x \neq 0$ and $I_{-n}(x)=I_{n}(x)$ for $n \in \mathbb{N}$.
ii) For $\nu \in \mathbb{R}$ we define the modified Bessel functions of the second kind ${ }^{2}$ by

$$
K_{\nu}(x):=\frac{\pi}{2} e^{\nu \pi i / 2}\left(i J_{\nu}(i x)-Y_{\nu}(i x)\right)
$$

where Y_{ν} is the Bessel function of the second kind introduced in Exercise 10.8 of Assignment 11. Use the results of this exercise to find the series expansion of $K_{0}(x)$ and verify that K_{0} diverges at $x=0$.
iii) Show that I_{ν} and K_{ν} both satisfy the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+\nu^{2}\right) y=0
$$

($4+3+3$ Marks)

[^0]
[^0]: ${ }^{1}$ This exercise follows Korenev's book, pages 96-7.
 ${ }^{2}$ Sometimes also called Macdonald functions (e.g., in Korenev) or modified Bessel functions of the third kind.

