Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 3

Date Due：10：00 AM，Thursday，the $15^{\text {th }}$ of October 2015

Exercise 1．Consider the initial value problem

$$
\begin{equation*}
y^{\prime}=y^{2}+x^{2}, \quad y(0)=0 \tag{**}
\end{equation*}
$$

i）Use Picard iteration to find a succession of approximate solutions $y_{1}, y_{2}, y_{3}, y_{4}$ ，starting from $y_{0}(x)=0$ ． You may use Mathematica to help perform the integrations．
ii）Use Mathematica to obtain a numerical solution to $(* *)$ ．Plot the numerical solution as well as $y_{1}, y_{2}, y_{3}, y_{4}$ in a single graph．
（2＋ 3 Marks）
Exercise 2．In classical analytical mechanics，the total energy of a system is represented by the Hamilton function $H=T+V$ ，where T represents the kinetic energy and V is the potential energy．For a harmonic oscillator，

$$
H(x, p)=\frac{p^{2}}{2 m}+\frac{k}{2} x^{2}
$$

where m is the mass，p the momentum，x the position and k the spring constant of the oscillator．By non－ dimensionalizing，we can obtain $H=p^{2}+x^{2}$ ．In quantum mechanics，the classical Hamilton function is translated to a Schrödinger operator（also denoted H ）on a certain Hilbert space．This operator is obtained by replacing p by $i \frac{d}{d x}$ and the potential V by a multiplication operator with $V(x)$ ．For the harmonic oscillator this yields

$$
H=-\frac{d^{2}}{d x^{2}}+x^{2}
$$

The eigenvalue problem

$$
H \psi=\lambda \psi
$$

is called the Schrödinger equation and the eigenvalues λ determine the possible energy levels of the quantum－ mechanical harmonic oscillator．

The goal of this exercise is to investigate the eigenvalues λ_{n} and eigenfunctions ψ_{n} of H in a simplified setting． We assume that the domain of H is

$$
V:=\left\{\psi \in C^{\infty}(\mathbb{R}): \psi(x)=e^{-x^{2} / 2} p(x), p \in \mathcal{P}(\mathbb{R})\right\}
$$

where $\mathcal{P}(\mathbb{R})$ is the（infinite－dimensional）vector space of real polynomials over \mathbb{R} ．On V we define a scalar product by

$$
\langle\psi, \varphi\rangle=\int_{-\infty}^{\infty} \psi(x) \varphi(x) d x
$$

The results below essentially agree with calculations in quantum mechanics textbooks．In physics，the quantum mechanical harmonic oscillator can be used to model，for example，two－atom molecules such as HCl （hydrogen chloride）as two masses joined by a spring．The eigenvalues below correspond to the possible quantized oscilla－ tion／vibration energy levels（after norming with physical constants）and can be observed through spectroscopy （e．g．，Raman spectroscopy）．
i）Prove that H is well－defined，i．e．，prove that $H \psi \in V$ if $\psi \in V$ ．
ii）Prove that H is symmetric，i．e．，$\langle H \psi, \varphi\rangle=\langle\psi, H \varphi\rangle$ for all $f, g \in V$ ．We will show later that this guarantes that the eigenvalues are real and that the eigenfunctions are orthogonal，i．e．，$\left\langle\psi_{n}, \psi_{m}\right\rangle=0$ if $n \neq m$ ．You may use these two facts for now without proof．
iii) We define the creation operator $A: V \rightarrow V, A=-\frac{d}{d x}+x$. Show the commutation relation

$$
[H, A]:=H A-A H=2 A
$$

iv) Let $\psi \in V$ be an eigenfunction of H for the eigenvalue $\lambda \in \mathbb{R}$. Assume that $A \psi \neq 0$. Prove that then $A \psi$ is an eigenfunction of H for the eigenvalue $\lambda+2$.
v) For $n \in \mathbb{N}$ the Hermite polynomials are defined by $H_{n}(x):=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right)$. Calculate H_{0}, H_{1} and H_{2} and use Mathematica to plot their graphs.
vi) Verify that

$$
\begin{equation*}
H\left(e^{-x^{2} / 2}\right)=e^{-x^{2} / 2} \quad \text { and } \quad A f(x)=e^{x^{2} / 2}\left(-\frac{d}{d x}\right)\left(e^{-x^{2} / 2} f(x)\right) \tag{***}
\end{equation*}
$$

Use $(* * *)$ to show that the eigenfunctions of H to eigenvalues $\lambda_{n}=2 n+1, n \in \mathbb{N}$, may be written in the form $\psi_{n}(x)=e^{-x^{2} / 2} H_{n}(x)$.
vii) Prove by induction that $H_{n}^{\prime}=2 n H_{n-1}$ for $n \in \mathbb{N} \backslash\{0\}$. (Hint: prove first that $H_{n+1}(x)=2 x H_{n}(x)+$ $H_{n}^{\prime}(x)$.)
viii) Show that $\left\|\psi_{n}\right\|^{2}=\left\langle\psi_{n}, \psi_{n}\right\rangle=\sqrt{\pi} 2^{n} n$!. Recall that $\int_{\mathbb{R}} e^{-x^{2} / 2} d x=\sqrt{2 \pi}$.
$(1+1+1+2+2+2+2+2$ Marks $)$

