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Exercise 1. Consider the initial value problem
y =y +a?, y(0) =0. (s¢)

i) Use Picard iteration to find a succession of approximate solutions y1, Yo, ys3, ¥4, starting from yo(x) = 0.
You may use Mathematica to help perform the integrations.

ii) Use Mathematica to obtain a numerical solution to (*x). Plot the numerical solution as well as y1, Y2, Y3, Y4
in a single graph.

(2 + 3 Marks)

Exercise 2. In classical analytical mechanics, the total energy of a system is represented by the Hamilton
function H = T + V| where T represents the kinetic energy and V is the potential energy. For a harmonic
oscillator,
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where m is the mass, p the momentum, x the position and k the spring constant of the oscillator. By non-
dimensionalizing, we can obtain H = p? + z2. In quantum mechanics, the classical Hamilton function is
translated to a Schrédinger operator (also denoted H) on a certain Hilbert space. This operator is obtained by
replacing p by i% and the potential V' by a multiplication operator with V(z). For the harmonic oscillator this
yields

H(xvp) =
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The eigenvalue problem

Hop =\

is called the Schridinger equation and the eigenvalues \ determine the possible energy levels of the quantum-
mechanical harmonic oscillator.

The goal of this exercise is to investigate the eigenvalues A, and eigenfunctions 1, of H in a simplified setting.
We assume that the domain of H is

Vi= {4 € C®(R): () = e p(a), p € PR)},

where P(R) is the (infinite-dimensional) vector space of real polynomials over R. On V we define a scalar
product by

(¥, ) = /_OO P(x)p(z) de.

The results below essentially agree with calculations in quantum mechanics textbooks. In physics, the quantum
mechanical harmonic oscillator can be used to model, for example, two-atom molecules such as HCI (hydrogen
chloride) as two masses joined by a spring. The eigenvalues below correspond to the possible quantized oscilla-
tion/vibration energy levels (after norming with physical constants) and can be observed through spectroscopy
(e.g., Raman spectroscopy).

i) Prove that H is well-defined, i.e., prove that Hy € V if ¢ € V.

ii) Prove that H is symmetric, i.e., (Hv, @) = (¢, Hp) for all f,g € V. We will show later that this guarantes
that the eigenvalues are real and that the eigenfunctions are orthogonal, i.e., (¢, ¥,,) = 0 if n # m. You
may use these two facts for now without proof.



iii)

iv)

vi)

vii)

viii)

We define the creation operator A:' V —V, A= —% + 2. Show the commutation relation

[H,A]:= HA — AH = 2A.

Let v € V be an eigenfunction of H for the eigenvalue A € R. Assume that Ay # 0. Prove that then Ay
is an eigenfunction of H for the eigenvalue A + 2.
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T (e_zz). Calculate Hy, H; and

For n € N the Hermite polynomials are defined by H,(z) := (—1)"e
H, and use Mathematica to plot their graphs.

Verify that

d

H(6712/2) = e /2 and Af(x) = e’/ <d
x

el (r0%)
Use (* * x) to show that the eigenfunctions of H to eigenvalues A\, = 2n+ 1, n € N, may be written in the
form 1, (z) = e’xg/an(w).

Prove by induction that H) = 2nH,_; for n € N\ {0}. (Hint: prove first that H,1(z) = 22H,(z) +
H;,().)

Show that ||t [|* = (¥n, ¢hn) = /72"n!. Recall that [, e~ /2 dy = \/27.

(14+1+1+2+2+ 2+ 2+ 2 Marks)



