Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 3

 DINT INSTITUTE

 交大窓面根学院

Date Due: 10:00 AM, Thursday, the 15^{th} of October 2015

Exercise 1. Consider the initial value problem

$$y' = y^2 + x^2,$$
 $y(0) = 0.$ (**)

- i) Use Picard iteration to find a succession of approximate solutions y_1, y_2, y_3, y_4 , starting from $y_0(x) = 0$. You may use Mathematica to help perform the integrations.
- ii) Use Mathematica to obtain a numerical solution to (**). Plot the numerical solution as well as y_1, y_2, y_3, y_4 in a single graph.

$$(2+3 \text{ Marks})$$

Exercise 2. In classical analytical mechanics, the total energy of a system is represented by the *Hamilton* function H = T + V, where T represents the kinetic energy and V is the potential energy. For a harmonic oscillator,

$$H(x,p) = \frac{p^2}{2m} + \frac{k}{2}x^2,$$

where *m* is the mass, *p* the momentum, *x* the position and *k* the spring constant of the oscillator. By nondimensionalizing, we can obtain $H = p^2 + x^2$. In quantum mechanics, the classical Hamilton function is translated to a *Schrödinger operator* (also denoted *H*) on a certain Hilbert space. This operator is obtained by replacing *p* by $i\frac{d}{dx}$ and the potential *V* by a multiplication operator with V(x). For the harmonic oscillator this yields

$$H = -\frac{d^2}{dx^2} + x^2.$$

The eigenvalue problem

is called the *Schrödinger equation* and the eigenvalues λ determine the possible energy levels of the quantummechanical harmonic oscillator.

 $H\psi = \lambda\psi$

The goal of this exercise is to investigate the eigenvalues λ_n and eigenfunctions ψ_n of H in a simplified setting. We assume that the domain of H is

$$V := \big\{ \psi \in C^{\infty}(\mathbb{R}) \colon \psi(x) = e^{-x^2/2} p(x), \ p \in \mathcal{P}(\mathbb{R}) \big\},\$$

where $\mathcal{P}(\mathbb{R})$ is the (infinite-dimensional) vector space of real polynomials over \mathbb{R} . On V we define a scalar product by

$$\langle \psi, \varphi \rangle = \int_{-\infty}^{\infty} \psi(x) \varphi(x) \, dx.$$

The results below essentially agree with calculations in quantum mechanics textbooks. In physics, the quantum mechanical harmonic oscillator can be used to model, for example, two-atom molecules such as HCl (hydrogen chloride) as two masses joined by a spring. The eigenvalues below correspond to the possible quantized oscillation/vibration energy levels (after norming with physical constants) and can be observed through spectroscopy (e.g., Raman spectroscopy).

- i) Prove that H is well-defined, i.e., prove that $H\psi \in V$ if $\psi \in V$.
- ii) Prove that H is symmetric, i.e., $\langle H\psi, \varphi \rangle = \langle \psi, H\varphi \rangle$ for all $f, g \in V$. We will show later that this guarantees that the eigenvalues are real and that the eigenfunctions are orthogonal, i.e., $\langle \psi_n, \psi_m \rangle = 0$ if $n \neq m$. You may use these two facts for now without proof.

iii) We define the creation operator A: $V \to V$, $A = -\frac{d}{dx} + x$. Show the commutation relation

$$[H,A] := HA - AH = 2A.$$

- iv) Let $\psi \in V$ be an eigenfunction of H for the eigenvalue $\lambda \in \mathbb{R}$. Assume that $A\psi \neq 0$. Prove that then $A\psi$ is an eigenfunction of H for the eigenvalue $\lambda + 2$.
- v) For $n \in \mathbb{N}$ the Hermite polynomials are defined by $H_n(x) := (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$. Calculate H_0, H_1 and H_2 and use Mathematica to plot their graphs.
- vi) Verify that

$$H(e^{-x^2/2}) = e^{-x^2/2}$$
 and $Af(x) = e^{x^2/2} \left(-\frac{d}{dx}\right) (e^{-x^2/2}f(x)).$ (***)

Use (***) to show that the eigenfunctions of H to eigenvalues $\lambda_n = 2n + 1$, $n \in \mathbb{N}$, may be written in the form $\psi_n(x) = e^{-x^2/2} H_n(x)$.

- vii) Prove by induction that $H'_n = 2nH_{n-1}$ for $n \in \mathbb{N} \setminus \{0\}$. (*Hint*: prove first that $H_{n+1}(x) = 2xH_n(x) + H'_n(x)$.)
- viii) Show that $\|\psi_n\|^2 = \langle \psi_n, \psi_n \rangle = \sqrt{\pi} 2^n n!$. Recall that $\int_{\mathbb{R}} e^{-x^2/2} dx = \sqrt{2\pi}$.
- (1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 Marks)