
Vv286 Honors Mathematics IV
Ordinary Differential Equations

Assignment 3
Date Due: 10:00 AM, Thursday, the 15th of October 2015

Exercise 1. Consider the initial value problem

y′ = y2 + x2, y(0) = 0. (∗∗)

i) Use Picard iteration to find a succession of approximate solutions y1, y2, y3, y4, starting from y0(x) = 0.
You may use Mathematica to help perform the integrations.

ii) Use Mathematica to obtain a numerical solution to (∗∗). Plot the numerical solution as well as y1, y2, y3, y4
in a single graph.

(2 + 3 Marks)

Exercise 2. In classical analytical mechanics, the total energy of a system is represented by the Hamilton
function H = T + V , where T represents the kinetic energy and V is the potential energy. For a harmonic
oscillator,

H(x, p) =
p2

2m
+
k

2
x2,

where m is the mass, p the momentum, x the position and k the spring constant of the oscillator. By non-
dimensionalizing, we can obtain H = p2 + x2. In quantum mechanics, the classical Hamilton function is
translated to a Schrödinger operator (also denoted H) on a certain Hilbert space. This operator is obtained by
replacing p by i d

dx and the potential V by a multiplication operator with V (x). For the harmonic oscillator this
yields

H = − d2

dx2
+ x2.

The eigenvalue problem
Hψ = λψ

is called the Schrödinger equation and the eigenvalues λ determine the possible energy levels of the quantum-
mechanical harmonic oscillator.
The goal of this exercise is to investigate the eigenvalues λn and eigenfunctions ψn of H in a simplified setting.
We assume that the domain of H is

V :=
{
ψ ∈ C∞(R) : ψ(x) = e−x2/2p(x), p ∈ P(R)

}
,

where P(R) is the (infinite-dimensional) vector space of real polynomials over R. On V we define a scalar
product by

⟨ψ,φ⟩ =
∫ ∞

−∞
ψ(x)φ(x) dx.

The results below essentially agree with calculations in quantum mechanics textbooks. In physics, the quantum
mechanical harmonic oscillator can be used to model, for example, two-atom molecules such as HCl (hydrogen
chloride) as two masses joined by a spring. The eigenvalues below correspond to the possible quantized oscilla-
tion/vibration energy levels (after norming with physical constants) and can be observed through spectroscopy
(e.g., Raman spectroscopy).

i) Prove that H is well-defined, i.e., prove that Hψ ∈ V if ψ ∈ V .

ii) Prove that H is symmetric, i.e., ⟨Hψ,φ⟩ = ⟨ψ,Hφ⟩ for all f, g ∈ V . We will show later that this guarantes
that the eigenvalues are real and that the eigenfunctions are orthogonal, i.e., ⟨ψn, ψm⟩ = 0 if n ̸= m. You
may use these two facts for now without proof.



iii) We define the creation operator A : V → V , A = − d
dx + x. Show the commutation relation

[H,A] := HA−AH = 2A.

iv) Let ψ ∈ V be an eigenfunction of H for the eigenvalue λ ∈ R. Assume that Aψ ̸= 0. Prove that then Aψ
is an eigenfunction of H for the eigenvalue λ+ 2.

v) For n ∈ N the Hermite polynomials are defined by Hn(x) := (−1)nex
2 dn

dxn
(e−x2

). Calculate H0,H1 and
H2 and use Mathematica to plot their graphs.

vi) Verify that

H(e−x2/2) = e−x2/2 and Af(x) = ex
2/2

(
− d

dx

)
(e−x2/2f(x)). (∗ ∗ ∗)

Use (∗ ∗ ∗) to show that the eigenfunctions of H to eigenvalues λn = 2n+1, n ∈ N, may be written in the
form ψn(x) = e−x2/2Hn(x).

vii) Prove by induction that H ′
n = 2nHn−1 for n ∈ N \ {0}. (Hint: prove first that Hn+1(x) = 2xHn(x) +

H ′
n(x).)

viii) Show that ∥ψn∥2 = ⟨ψn, ψn⟩ =
√
π2nn!. Recall that

∫
R e

−x2/2 dx =
√
2π.

(1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 Marks)


