Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 4

Exercise 4．1．Determine the eigenvalues，eigenvectors and eigenspaces for the following matrices：

$$
A=\left(\begin{array}{cc}
-2 & -2 \\
-5 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

（2 +2 Marks）
Exercise 4．2．Let $A \in \operatorname{Mat}(n \times n ; R)$ be symmetric $\left(A=A^{T}\right)$ and $Q_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}, Q_{A}(x)=\langle x, A x\rangle$ the associated quadratic form．Show that the maximum（resp．minimum）value of Q_{A} when restricted to the unit sphere is given by the largest（resp．smallest）eigenvalue of A ．

Hint：Use Lagrange multipliers for finding the extremum under the constraint $|x|^{2}=\langle x, x\rangle=1$ ．
（2 Marks）
Exercise 4．3．A cylindrical flywheel（ $r=h=30 \mathrm{~cm}$ ，mass $M=1 \mathrm{~kg}$ ） has a point－mass of $m=0.1 \mathrm{~kg}$ attached at its edge．In the sketched coordinate system（fixed to the cylinder）the inertial tensor has the form

$$
I=\left(\begin{array}{ccc}
\frac{M}{12}\left(3 r^{2}+4 h^{2}\right)+m h^{2} & 0 & -m r h \\
0 & \frac{M}{12}\left(3 r^{2}+4 h^{2}\right)+m\left(h^{2}+r^{2}\right) & 0 \\
-m r h & 0 & \frac{M}{2} r^{2}+m r^{2}
\end{array}\right)
$$

If the rotational velocity of the flywheel is $\vec{\omega}$ ，then the rotational energy is the quadratic form

$$
T=\frac{1}{2}\langle\vec{\omega}, I \vec{\omega}\rangle
$$

and the angular momentum is $\vec{L}=I \vec{\omega}$ ．If the flywheel can rotate freely in space，\vec{L} remains fixed and $\vec{\omega}$ rotates about \vec{L}（nutation）．
i）Calculate the numerical value of I as well as of \vec{L} and T when $\vec{\omega}=\vec{e}_{3}$ ．
ii）Using the above numerical values，find the principal moments of inertia（eigenvalues of I ）and the principal axes of inertia（eigenvectors of I ）．For which axes $\vec{\omega}$ with $|\vec{\omega}|=1$ is T maximal and minimal（see Exercise 4.2 above）？Comment on the nutation for these axes．
（2＋ 3 Marks）
Exercise 4．4．The matrix

$$
A=\left(\begin{array}{ccc}
-1 & -18 & -7 \\
1 & -13 & -4 \\
-1 & 25 & 8
\end{array}\right)
$$

has the single eigenalue $\lambda=-2$ ．Find a basis of generalized eigenvectors and derive the Jordan normal form of A without explicitly multiplying $U^{-1} A U$ ．
（3 Marks）
Exercise 4．5．The matrix

$$
A=\left(\begin{array}{cccc}
4 & -4 & -11 & 11 \\
3 & -12 & -42 & 42 \\
-2 & 12 & 37 & -34 \\
-1 & 7 & 20 & -17
\end{array}\right)
$$

has the single eigenalue $\lambda=3$ ．Find a basis of generalized eigenvectors and derive the Jordan normal form of A without explicitly multiplying $U^{-1} A U$ ．
（3 Marks）

Exercise 4.6. Let $A \in \operatorname{Mat}(n \times n, \mathbb{C})$ be any matrix and $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of A, counted with multiplicities. Show that

$$
\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}, \quad \operatorname{tr} A=\sum_{i=1}^{n} \lambda_{i}
$$

Furthermore, show that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr} A}
$$

(Hint: transform A to Jordan normal form and use the properties of the trace and determinant.)
($1+1+2$ Marks)
Exercise 4.7. A particle of mass $m=1$ travels in \mathbb{R}^{2} under the influence of a constant linear force field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Using Newton's second law to derive a differential equation for the position x and velocity v, verify that

$$
\binom{x^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
0 & \mathbb{1} \\
F & 0
\end{array}\right)\binom{x}{v}, \quad\binom{x}{v}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
v_{1} \\
v_{2}
\end{array}\right)
$$

where $F \in \operatorname{Mat}(2, \mathbb{R})$. Find the general solution for the system of equations when $F=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

(4 Marks)

Exercise 4.8. We consider a linear chain of springs consisting of three mass points $m>0$ that are linked by springs with spring constants $k>0$. We denote the equilibirum positions of the mass points by r_{1}, r_{2}, r_{3} and the positions at time by $x_{1}(t), x_{2}(t), x_{3}(t)$, respectively. Hence $d_{j}(t):=x_{j}(t)-r_{j}$ describes the displacement of the j th mass point at time t.
i) Use the laws of Newton and Hooke to derive the differential equation

$$
\ddot{d}=A d, \quad d=\left(\begin{array}{c}
d_{1} \tag{**}\\
d_{2} \\
d_{3}
\end{array}\right), \quad A=\frac{k}{m}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

ii) Transform (**) into an equivalent first-order system $\binom{\dot{v}}{d}=B\binom{v}{d}$ as in Exercise 4.7.
iii) For simplicity, set $k=m=1$. Use Mathematica to find the eigenvalues, eigenvectors and the Jordan normal form J of B. Also obtain from Mathematica the matrix S such that $B=S J S^{-1}$.
iv) Obtain $\Phi(t)=e^{B t}=S e^{J t} S^{-1}$ from Mathematica. Verify that $\Phi(0)=1$.
v) Extract the 6 linearly independent fundamental solutions $(d(t), v(t))$ und plot 6 pairs of graphs as follows: Plot the three curves $d_{1}(t), d_{2}(t), d_{3}(t)$ using different colors in the same graph. Then plot $v_{1}(t), v_{2}(t), v_{3}(t)$ together in a second graph. Do this for all six fundamental solutions.
vi) Let $r_{1}=4, r_{2}=8$ and $r_{3}=12$. Find the solution $(d(t), v(t))$ corresponding to the initial conditions $v(0)=(1,0,-1)$ and $d(0)=(2,0,0)$ and plot the solution curves $x_{1}(t), x_{2}(t), x_{3}(t)$ together in a single graph, using different colors for each graph.
Solution: The graphs should look like this:

Note the irregular behaviour of the oscillations!
$(2+1+3+2+4+3$ Marks $)$

