Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 6

Exercise 6．1．Let $\Omega \subset \mathbb{R}^{2}$ be a connected，open set．A function $u \in C^{2}(\Omega)$ such that $\Delta u=0$（where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is the Laplace operator）is called harmonic．
i）Show that if f is a holomorphic function given by $f(x+i y)=u(x, y)+v(x, y) i$ ，where $u, v: \Omega \rightarrow \mathbb{R}$ are real functions，then u and v are harmonic．
ii）If u is harmonic，the Cauchy－Riemann differential equations define a harmonic function v such that $f(x+i y):=u(x, y)+v(x, y) i$ is holomorphic．This function v is called the harmonic conjugate of u ．Find a harmonic conjugate to the function $u(x, y)=x^{3}-3 x y^{2}$ ．

（2 +2 Marks）

Exercise 6．2．Show by direct integration that if $|a|<r<|b|$ ，then

$$
\oint_{\gamma} \frac{1}{(z-a)(z-b)}=\frac{2 \pi i}{a-b}
$$

where γ denotes the circle centered at the origin，of radius r ，with the positive orientation．
（1 Mark）
Exercise 6．3．Prove that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4}
$$

by integrating along the toy contour Γ_{R}（a sector）shown at right．These integrals are called the Fresnel integrals．They play an important role in optical scattering．
（2 Marks）

Exercise 6．4．Show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

by integrating the function $f(z)=\left(e^{i z}-1\right) /(2 i z)$ along the indented semi－circle shown at right．
（2 Marks）

Exercise 6．5．Let f be a holomorphic function on the disc D_{0} centered at the origin and of radius R_{0} ．
i）Prove that whenever $0<R<R_{0}$ and $|z|<R$ ，then

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R e^{i \varphi}\right) \operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right) d \varphi
$$

［Hint：Note that if $w=R^{2} / \bar{z}$ ，then the integral of $f(\zeta) /(\zeta-w)$ around the circle of radius R centered at the origin is zero．Use this，together with the usual Cauchy integral formula，to deduce the desired identity．］
ii）Show that

$$
\operatorname{Re}\left(\frac{R e^{i \varphi}+z}{R e^{i \varphi}-z}\right)=\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\varphi)+r^{2}} \quad \text { for } z=r e^{i \theta}
$$

（3＋ 2 Marks）

Exercise 6.6. Let u be a real-valued function defined on the unit disc $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Suppose that u is twice continuously differentiable and harmonic, that is,

$$
\triangle u(x, y)=0 \quad \text { for all }(x, y) \in D
$$

i) Deduce the Poisson integral representation formula from the Cauchy integral formula: If u is harmonic in the unit disc and continuous on its closure, then if $z=r e^{i \theta}$ one has

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-\varphi) u\left(e^{i \varphi}\right) d \varphi
$$

where $P_{r}(\gamma)$ is the Poison kernel for the unit disc given by

$$
P_{r}(\gamma)=\frac{1-r^{2}}{1-2 r \cos \varphi+r^{2}}
$$

ii) The Dirichlet problem for the unit disc is a boundary value problem for the Laplace equation, viz.

$$
\begin{aligned}
\Delta u(x, y) & =0, & & (x, y) \in D \\
u(x, y) & =f(x, y), & & (x, y) \in \partial D=S^{1}
\end{aligned}
$$

where $f: S^{1} \rightarrow \mathbb{R}$ is a continuous function. Prove that a solution to the Dirichlet problem for the unit disc is given by

$$
u(x, y)= \begin{cases}\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{r}(\theta-\varphi) f(\cos \varphi, \sin \varphi) d \varphi & r<1 \tag{*}\\ f(\cos \theta, \sin \theta) & r=1\end{cases}
$$

whenever $x=r \cos \theta, y=r \sin \theta$. (You need to show the converse of your previous arguments, i.e., that u defined by $(*)$ is harmonic in D. It is clear from the definition that this u satisfies the boundary condition $\left.u\right|_{\partial D}=f$ and is then the unique solution to the Dirichlet problem.)

(2 +2 Marks)

Exercise 6.7. Use the Poisson formula for the Dirichlet problem in the unit disk to find the solution of the Dirichlet problem

$$
\Delta_{r, \theta} u(r, \theta)=0, \quad(r, \theta) \in(0,1) \times[-\pi, \pi), \quad u(1, \varphi)= \begin{cases}-1 & -\pi \leq \theta<0 \\ 1 & 0 \leq \theta<\pi\end{cases}
$$

in terms of elementary functions. Plot the graph of the solution using Mathematica. You may use that

$$
\frac{1}{2 \pi} \int \frac{1-r^{2}}{1+r^{2}-2 r \cos (t-\varphi)} d t=\frac{1}{\pi} \arctan \left(\frac{1+r}{1-r} \tan \frac{t-\varphi}{2}\right)
$$

(Pay careful attention the branches of the arctangent. The solution will be a continuous function of φ.)

Exercise 6.8. Suppose that $f: \Omega \rightarrow \mathbb{C}$ be holomorphic on a domain $\Omega \subset \mathbb{C}$. Let $z_{0} \in \Omega$ be such that $B_{r}\left(z_{0}\right) \subset \Omega$ and suppose that for some $M>0$,

$$
|f(z)| \leq M \quad \text { for all } z \in B_{r}\left(z_{0}\right)
$$

If $f(z)=\sum_{k=0}^{\infty} c_{k}\left(z-z_{0}\right)^{k}$ is the power series representation of f, show that

$$
\left|c_{n}\right| \leq \frac{M}{r^{n}}
$$

(2 Marks)

Exercise 6.9.

i) Use Exercise 6.8 to prove Liouville's Theorem: Any bounded, entire function must be constant.
ii) Deduce the Fundamental Theorem of Algebra: Every polynomial of degree $n \geq 1$ has at least one zero. (Instructions: If f is a polynomial of degree $n \geq 1$, show that f is unbounded. Consider then $g=1 / f$ and show that g must be entire and bounded if f has no zero, contradicting Liouville's Theorem)

(2 +2 Marks)

Exercise 6.10. Let $\Omega \subset \mathbb{C}$ be open and $g, h: \Omega \rightarrow \mathbb{C}$ be holomorphic at a point $z_{0} \in \Omega$. Assume that h has a simple zero at z_{0}. Prove that

$$
\operatorname{res}_{z_{0}} \frac{g(z)}{h(z)}=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

(2 Marks)

