Vv286 Honors Mathematics IV Ordinary Differential Equations

Assignment 9

Exercise 9．1．The equation

$$
x^{\prime \prime}-2 t x^{\prime}+\lambda x=0, \quad \lambda \in \mathbb{R},
$$

is known as the Hermite differential equation，and it appears in many areas of mathematics and physics．
i）Find two linearly independent solutions of the Hermite equation．
ii）Show that the Hermite equation has a polynomial solution of degree n if $\lambda=2 n$ ．（When normalized，this polynomial is the Hermite polynomial H_{n} encountered in Exercise 1 of Assignment 4．You do not need to prove this fact here．）
（3＋2 Marks）
Exercise 9．2．Find two independent solutions for each of the following equations

$$
\begin{aligned}
2 t y^{\prime \prime}+(1-2 t) y^{\prime}-y & =0 \\
t^{2} y^{\prime \prime}+\left(t-t^{2}\right) y^{\prime}-y & =0 \\
t^{2} y^{\prime \prime}-t(1+t) y^{\prime}+y & =0
\end{aligned}
$$

（3＋3＋4 Marks）
Exercise 9．3．The Bessel equation of order $\nu \geq 0$ is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

i）Use the Frobenius method to derive a solution of the Bessel equation．Show that one obtains a multiple of the Bessel function of the first kind of order $\nu \geq 0$ ，

$$
\begin{equation*}
J_{\nu}(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+n+\nu)}\left(\frac{x}{2}\right)^{2 n+\nu} . \tag{1}
\end{equation*}
$$

Here Γ is the Euler gamma function．
ii）If 2ν is not an integer，find an independent second solution using the Frobenius method．Show that for $0<\nu<1$ it is a multiple of

$$
\begin{equation*}
J_{-\nu}(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+n-\nu)}\left(\frac{x}{2}\right)^{2 n-\nu} . \tag{2}
\end{equation*}
$$

What is the form of the second independent solution if $\nu>1,2 \nu \notin \mathbb{N}$ ？
iii）Show that $J_{-n}=(-1)^{n} J_{n}$ for $n \in \mathbb{N}$ ，so it is clear that $J_{-\nu}$ does not yield a second independent solution if $\nu \in \mathbb{N}$ ．
iv）Use the method of reduction of order to show that a second solution can be formally represented as

$$
y_{2}(x)=J_{\nu}(x) \int \frac{d x}{x \cdot J_{\nu}^{2}(x)}
$$

for any $\nu \geq 0$ ．
（3＋3＋1＋3 Marks）
Exercise 9．4．The equation

$$
y^{\prime \prime}+x y=0
$$

is called Airy＇s equation．It was first discovered and analyzed by Airy in his study of optics．
i) Show that the substitution $u(t)=x^{-1 / 2} y(x)$ and $t=\frac{2}{3} x^{3 / 2}$ transforms Airy's equation into Bessel's equation of order $\nu=1 / 3$.
ii) Use the above results to write down the general solution of Airy's equation first in terms of $J_{1 / 3}$ and $J_{-1 / 3}$ and then as series.

(3 + 2 Marks)

