# Vv454 Partial Differential Equations and Boundary Value Problems 

## Assignment 1

Exercise 1．Classify the following equations as linear，semi－linear，quasi－linear but not semi－linear，or fully non－linear：
i）$u_{x y}+u \cdot u_{x}=0$ ，
ii）$u_{x y}+u^{2} \cdot u_{x}=0$ ，
iii）$u_{x y}+u \cdot u_{x}^{2}=0$ ，
iv）$u_{x y}^{2}+u \cdot u_{x}=0$ ．
（4 Marks）
Exercise 2．The traffic equation can be written as

$$
\rho_{t}+\frac{\partial}{\partial x} Q(\rho)=0, \quad(x, t) \in(a, b) \times(0, \infty)
$$

where $Q(\varrho(x, t))=\varrho(x, t) v(x, t)$ ．In this exercise，we will use the model

$$
v(x, t)=\frac{v_{\max }}{\rho_{\max }}\left(\rho_{\max }-\rho(x, t)\right)
$$

i）Suppose that $\rho(x, t)=\widetilde{\rho}(x / t)$ ．What ODE does $\widetilde{\rho}$ satisfy？Solve the ODE to obtain a particular solution

$$
\rho(x, t)=\frac{\rho_{\max }}{2 v_{\max }}\left(v_{\max }-\frac{x}{t}\right) .
$$

（This is known as a similarity solution．）
ii）Perform a change of variables to obtain an equation of the form

$$
u_{t}+u \cdot u_{x}=0, \quad(x, t) \in(a, b) \times \mathbb{R}
$$

（3＋3 Marks）
Exercise 3．An insect＇s digestive tract ${ }^{1}$ is modelled as a tube of length $l$ and constant cross－sectional area $A$ ．Nutrients of concentration $u(x, t)$ flow through the tract with constant speed $c$ and are absorbed at a rate proportional to $\sqrt{u}$ ．The tract is empty at $t=0$ and nutrients are introduced at the mouth（at $x=0$ ）with a constant concentration $u_{0}$ for $t>0$ ．Derive the PDE for $u$ with suitable boundary and initial conditions，and find the solution．
（2 +2 Marks）
Exercise 4．Suppose that a motionless liquid is contained in a thin，infinitely long tube or pipe and that a chemical substance，e．g．，a dye，is diffusing through the liquid．The concentration of the dye can be described by a function $u: \mathbb{R} \rightarrow \mathbb{R}$ ，where $u(x)$ is the concentration at position $x$ ．In any section $[a, b]$ of the pipe，the change in amount of dye is given by the difference in dye diffusing out of and diffusing into the section．Assume that the dye diffuses according to Fick＇s law：the flow speed $v$ of the dye is proportional to the gradient of the the concentration of the dye，$v=-k u_{x}$ ．
i）Suppose that $k$ is constant everywhere．Derive the PDE

$$
u_{t}=k u_{x x}, \quad(x, t) \in \mathbb{R}^{2}
$$

for the concentration $u(x, t)$ ．
ii）Suppose the liquid is flowing in positive $x$－direction at a constant velocity $V>0$ ．Derive the PDE describing $u(x, t)$ ．
（This equation also describes heat conduction，brownian motion and many other phenomena．） （4＋ 3 Marks）

[^0]Exercise 5. Use the divergence theorem (Gauß's theorem) to prove Green's first identity:
Let $\Omega \subset \mathbb{R}^{3}$ be a sufficiently nice open set, $\varphi \in C^{2}(\Omega), \psi \in C^{1}(\Omega)$. Then

$$
\int_{\Omega}(\psi \Delta \varphi+\langle\nabla \varphi, \nabla \psi\rangle) d x=\int_{\partial \Omega} \psi \cdot \frac{\partial \varphi}{\partial n} d A
$$

where the surface $\partial \Omega$ has positive orientation.
Next, prove Green's second identity:
Let $\Omega \subset \mathbb{R}^{3}$ be a sufficiently nice open set, $\varphi, \psi \in C^{2}(\Omega)$. Then

$$
\int_{\Omega}(\psi \Delta \varphi-\varphi \Delta \psi) d x=\int_{\partial \Omega}\left(\psi \cdot \frac{\partial \varphi}{\partial n}-\varphi \cdot \frac{\partial \psi}{\partial n}\right) d A
$$

where the surface $\partial \Omega$ has positive orientation.
(3 + 3 Marks)
Exercise 6. Find the general solution for the following PDEs (explicitly if possible, otherwise as an implicit equation), where $(x, y) \in \mathbb{R}^{2}$ :
i) $(x+2 y) u_{x}-y u_{y}=0$,
ii) $(y+u) u_{x}-(x+u) u_{y}+x-y=0$.

## (2 + 2 Marks)

Exercise 7. Solve the following Cauchy problems in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$, respectively:
i) $u_{x}+x u_{y}=u^{2}, \quad u(x, 0)=e^{x}$,
ii) $y^{-1} u_{x}+u_{y}=0, \quad u(x, 1)=x^{2}$,
iii) $u_{x}+x u_{y}-u_{z}=u, \quad u(x, y, 1)=x+y$.

## (3×2 Marks)

Exercise 8. Consider the following Cauchy problem

$$
u_{t}-t^{2} u_{x}=-u, \quad u(x, 0)=x^{2}, \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+}
$$

i) Sketch (or plot using a computer) the characteristics for the Cauchy problem in the $x-t$ plane.
ii) Transform the PDE into an ODE, solve the ODE and transform back to find the general solution of the PDE. Then find the solution of the Cauchy problem.

## (1 + 2 Marks)


[^0]:    ${ }^{1}$ Exercise adapted from R．Piché，Exercises 1 of the course＂Partial Differential Equations＂，Spring 2011，Tampere University of Tech－ nology．

