Vv454 Partial Differential Equations and Boundary Value Problems

Assignment 4

JOINT INSTITUTE
交大密西根学院
Date Due：8：00 AM，Friday，the $28^{\text {th }}$ of March 2014

Exercise 1．Solve the problem

$$
u_{t t}-4 u_{x x}=e^{x}+\sin t, \quad u(x, 0)=0, \quad u_{t}(x, 0)=\frac{1}{1+x^{2}}, \quad x \in \mathbb{R}, t>0
$$

（3 Marks）

Exercise 2．Solve the problem

$$
u_{t t}-4 u_{x x}=6 t, \quad u(x, 0)=x, \quad u_{t}(x, 0)=0, \quad x \in \mathbb{R}, t>0
$$

（3 Marks）
Exercise 3．A pressure wave generated as a result of an explosion satisfies

$$
P_{t t}-16 P_{x x}=0, \quad x \in \mathbb{R}, t>0
$$

where $P(x, t)$ is the pressure at the point x and time t ．The initial conditions at the explosion time t are

$$
P(x, 0)=\left\{\begin{array}{ll}
10 & |x|<1, \\
0 & \text { otherwise },
\end{array} \quad P_{t}(x, 0)= \begin{cases}1 & |x|<1 \\
0 & \text { otherwise }\end{cases}\right.
$$

A building is located at the point $x_{0}=10$ ．The engineer who designed the building determined that it will sustain a pressure up to $P=6$ ．Find the time t_{0} when the pressure at the building is maximal．Will the building collapse？
（4 Marks）
Exercise 4．Vibrations of small amplitude of a homogeneous beam of length l can be described by the beam equation

$$
\begin{equation*}
u_{t t}-\gamma^{2} u_{x x x x}=0, \quad(x, t) \in(0, l) \times \mathbb{R}_{+} \tag{1}
\end{equation*}
$$

where $\gamma>0$ is a constant．Suppose that the beam is clamped at both ends，i．e．，

$$
\begin{equation*}
u(0, t)=u_{x}(0, t)=u(l, t)=u_{x}(l, t)=0 \tag{2}
\end{equation*}
$$

Show that the energy

$$
E(t):=\frac{1}{2} \int_{0}^{l}\left(\left|u_{t}(x, t)\right|^{2}+\gamma^{2}\left|u_{x x}(x, t)\right|^{2}\right) d x, \quad t \geq 0
$$

is conserved，i．e．，$E(t)$ is actually constant．Use this to prove that there is at most one solution to（1）with boundary conditions（2）and initial conditions

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad x \in[0, l]
$$

（4 Marks）
Exercise 5．Orthonormalize the monomials $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ in the space $L^{2}\left(\mathbb{R}, e^{-x^{2}} d x\right)$ using the Gram－ Schmidt procedure．The polynomials obtained in this way are called the Hermite polynomials．
（2 Marks）

Exercise 6. Calculate the Fourier series of the function f defined on $[-1,1]$ and given by $f(x)=x^{2}$. Evaluate the series at a suitable point to find the value of the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

By evaluating the series at a different point, find the value of

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}
$$

(4 Marks)

