Vv454 Partial Differential Equations and Boundary Value Problems

Assignment 6

JOINT INSTITUTE
交大密西根学院

Exercise 1.

i）The ends of a copper rod with insulated mantle and 100 cm long are maintained at $0^{\circ} \mathrm{C}$ ．Suppose that the center of the bar is heated to $100^{\circ} \mathrm{C}$ by an external heat source and that this situation is maintained until a steady－state results．Find this steady－state temperature distribution．
ii）At a time $t=0$（after the steady－state of part i）has been reached）the heat source is removed．At the same instant the end $x=0$ is placed in thermal contact with a reservoir at $20^{\circ} \mathrm{C}$ while the other end remains at $0^{\circ} \mathrm{C}$ ．Find the temperature $u(x, t)$ as a function of position and time．Create a three－dimensional plot of the graph of u using Mathematica．
iii）What limiting value does the temperature at the center of the rod approach after a long time？How much time must elapse before the center of the rod cools to within 1 degree of its limiting value？
（3×2 Marks）
Exercise 2．Consider the equation for a vibrating beam of length $l>0$ ，

$$
u_{t t}+c^{2} u_{x x x x}=0, \quad(x, t) \in(0, l) \times \mathbb{R}_{+}
$$

Find the solution to the initial－boundary value problem

$$
\begin{aligned}
u(0, t)=u(l, t) & =0, & u_{x x}(0, t)=u_{x x}(l, t) & =0, \\
u(x, 0) & =x(l-x), & u_{t}(x, 0) & =0,
\end{aligned}
$$

（4 Marks）
Exercise 3．Use a separation－of－variables approach to solve the damped wave equation

$$
c^{2} u_{x x}-u_{t t}-\mu u_{t}=0, \quad(x, t) \in(0, L) \times \mathbb{R}_{+}, L>0
$$

with Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(L, t)=0, \quad t>0
$$

and initial conditions

$$
u(x, 0)=\sin \left(\frac{\pi x}{L}\right), \quad u_{t}(x, 0)=0, \quad x \in[0, L]
$$

（4 Marks）
Exercise 4．Solve the equation

$$
u_{x x}+u_{y y}=u, \quad(x, y) \in(0, \pi) \times(0, a), \quad a>0
$$

with boundary conditions

$$
u(0, y)=u(\pi, y)=u(x, 0)=0, \quad u(x, a)=1, \quad(x, y) \in[0, \pi] \times[0, a]
$$

（4 Marks）

Exercise 5. Solve the heat equation

$$
u_{x x}-u_{t}=0, \quad(x, t) \in(0,1 / 2) \times \mathbb{R}_{+}
$$

with Neumann boundary conditions

$$
u_{x}(0, t)=0, \quad u_{x}(1 / 2, t)=1, \quad t>0
$$

and initial temperature distribution

$$
u(x, 0)=0, \quad x \in[0,1 / 2]
$$

(4 Marks)
Exercise 6. Solve the heat equation

$$
\alpha^{2} u_{x x}-u_{t}=0, \quad(x, t) \in(0,1) \times \mathbb{R}_{+}
$$

with Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(1, t)=1, \quad t>0
$$

and initial temperature distribution

$$
u(x, 0)=0, \quad x \in[0,1]
$$

(4 Marks)
Exercise 7. Solve the inhomogeneous heat equation

$$
u_{x x}-u_{t}=-2 x, \quad(x, t) \in(0,1) \times \mathbb{R}_{+}
$$

with Dirichlet boundary conditions

$$
u(0, t)=0, \quad u(1, t)=0, \quad t>0
$$

and initial temperature distribution

$$
u(x, 0)=x-x^{2}, \quad x \in[0,1]
$$

(4 Marks)
Exercise 8. Show that the telegraph equation with $\alpha, \beta>0$,

$$
u_{t t}+(\alpha+\beta) u_{t}+\alpha \beta u=c^{2} u_{x x}, \quad(x, t) \in \mathbb{R}_{+} \times \mathbb{R}_{+}
$$

with the condition

$$
\sup _{x \in \mathbb{R}_{+}}|u(x, t)|<\infty, \quad t \in \mathbb{R}_{+}
$$

and initial signal

$$
u(0, t)=U_{0} \cos (\omega t), \quad \omega, U_{0}>0
$$

does not have a solution of the form $u(x, t)=X(x) \cdot T(t)$. Next, show that there exists a solution of the from

$$
u(x, t)=U_{0} e^{-A x} \cos (\omega t+B x)
$$

for certain constants A and B. How are A and B determined from α, β, ω ? (Thus, not every problem has a solution that can be found from a separation-of-variables approach.)
(2 + 3 Marks)

Exercise 9. Use the identity

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i x \xi} e^{-x^{2} / 2} d x=e^{-\xi^{2} / 2}
$$

to prove that

$$
\int_{0}^{\infty} \cos (\omega(x-y)) e^{-c^{2} \omega^{2} t} d \omega=\frac{\sqrt{\pi}}{2} \frac{1}{c \sqrt{t}} e^{-\frac{(x-y)^{2}}{4 c^{2} t}}
$$

where $x, y \in \mathbb{R}$ and $c, t>0$.
(2 Marks)
Exercise 10. Use the function

$$
b(x)= \begin{cases}e^{-\frac{1}{x^{2}-1}} & -1 \leq x \leq 1 \\ 0 & |x|>1\end{cases}
$$

to construct a function $\chi \in C^{\infty}(\mathbb{R})$ such that

$$
\chi(x)= \begin{cases}0 & x<-\varepsilon \\ 1 & x>\varepsilon\end{cases}
$$

and χ takes on suitable values in the interval $[-\varepsilon, \varepsilon]$. Use this function and Mathematica (or Matlab or similar software) to plot a smooth function $f \in C^{\infty}(\mathbb{R})$ such that

$$
f(x)= \begin{cases}e^{x} & |x|<1 \\ 0 & |x|>101 / 100\end{cases}
$$

(Submit the plot as well as the source code for this exercise.)
(3 Marks)

