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Abstract: By considering the line pattern of acoustic-resolution photoacoustic microscopy (AR-
PAM) vessel images, we develop modified algorithms for synthetic aperture focusing technique
(SAFT) and deconvolution based on a directional approach to enhance images. The modified
algorithms consist of Fourier accumulation SAFT (FA-SAFT) and directional model-based
(D-MB) deconvolution. To evaluate the performance of our algorithms, we conduct a series of
imaging experiments and apply our algorithms, and existing SAFT and deconvolution algorithms
are also applied for side-by-side comparison. By imaging tungsten wire phantom, our algorithms
enable full width at half maximum of 26− 31 µm over depth of focus of 1.8 mm and minimum
resolvable distance of 46− 49 µm, besting existing SAFT and deconvolution algorithms. Imaging
of leaf skeleton phantom and in vivo imaging of mouse blood vessels also prove that our algorithm
is capable of providing high-resolution, high-signal-to-noise ratio, and good-fidelity results for
complex structures and for in vivo applications, especially for the images with the line pattern.
The proposed directional approach can not only be used in AR-PAM but also in other imaging
modalities to deal with the line pattern, such as FA-SAFT for ultrasound imaging and D-MB
deconvolution for optical coherence tomography angiography.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photoacoustic (PA) imaging (PAI) has developed rapidly in the past two decades. In PA image
acquisition, an object is excited by a light source, and ultrasound (US) waves emerge because of
the PA effect. Then, one can recover the light absorber distribution by collecting the US waves
with an US transducer and using a reconstruction algorithm. PAI has achieved promising results
in microvascular imaging [1–3] and endoscopic imaging [4], to name a few. PA microscopy
(PAM) is one implementation of PAI and can be classified into optical-resolution PAM (OR-PAM)
and acoustic-resolution PAM (AR-PAM), depending on the focusing approach. Overall, OR-PAM
enjoys high resolution but suffers from low imaging depth (∼1 mm) while AR-PAM can achieve
deep imaging depth by taking advantage of diffused light and good acoustic penetration [5].

In AR-PAM, its lateral resolution depends on the center frequency and numerical aperture
(NA) of a focused US transducer. High lateral resolution requires that the transducer has high
center frequency and high NA, which in turn limit penetration and depth of focus (DOF) of
AR-PAM. The former is because high-frequency US waves attenuate dramatically in biological
tissue, and the latter is because a high-NA transducer has limited DOF. Besides, the ultimate
resolution of AR-PAM is restricted by acoustic diffraction. Fortunately, previous works have
demonstrated image enhancement in lateral resolution, DOF, and signal-to-noise ratio (SNR) by
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using algorithms, which circumvents the issues associated with the high-frequency and high-NA
transducer.

Synthetic aperture focusing technique (SAFT) is often used in AR-PAM reconstruction for
enhancing lateral resolution in the out-of-focus region. SAFT was first developed for US imaging
to realize beamforming [6] and then was applied to PAI based on a point-like acoustic detector [7].
Later, Li et al. proposed the virtual-point-detector (VPD) concept to apply SAFT to AR-PAM
using a focused transducer [8]. Afterward, SAFT was extended to two dimensions by Deng et al.
[9]. Considering the line pattern of blood vessels in AR-PAM images, adaptive SAFT (A-SAFT)
was further investigated [10]. To improve resolution in the focal region, spatial-dependent
contributions were weighted using the spatial impulse response (SIR) in SAFT [11]. More
recently, delay-multiply-and-sum-based SAFT [12], two-dimensional (2D) spherical SAFT
(S-SAFT) [13], and directional SAFT (D-SAFT) [14] have been further studied to improve lateral
resolution and SNR in the out-of-focus region. Lateral resolution in the out-of-focus region can
be effectively improved by SAFT but is still ultimately limited to the in-focus lateral resolution.
Therefore, deconvolution-based algorithms are used to further improve lateral resolution in PAI
[13,15,16] and US imaging [17,18]. Specifically, in AR-PAM, the point spread function (PSF)
is dominated by the finite US detection beam size of a transducer. Deconvolution of acquired
PA images with PSF could recover the raw PA distribution. Previously, Cai et al. [13,16]
used Richardson-Lucy (R-L) deconvolution algorithm to improve the AR-PAM lateral and axial
resolutions in both the focal and out-of-focus regions. However, the nature of the line pattern of
blood vessels was not considered, and thus, the recovered lines suffer the discontinuity issue.
An alternative model-based (MB) deconvolution method assumes the acquired PA image is the
result of convolution of a PA source (an absorber) and a dictionary matrix. Then, the PA source
distribution could be recovered by using an optimization approach. It has been demonstrated
that the MB deconvolution method can improve resolution in both PAI and US imaging [19–21].
Besides, prior knowledge of sparsity was considered as a regularization term in the model to
further enhance the resolution [20,21]. As a matter of fact, the nature of the line pattern of blood
vessels in AR-PAM images has only one-dimensional (1D) sparsity (in contrast to 2D sparsity in
[20,21]). If it is not considered, results will have the discontinuity issue, as also encountered in
the R-L deconvolution algorithm mentioned above.

To overcome the above challenges, we propose a novel two-step algorithm including a Fourier
accumulation SAFT (FA-SAFT) and a directional MB (D-MB) deconvolution method to improve
resolution, SNR, and image fidelity in both the focal and out-of-focus regions for AR-PAM [22].
A preliminary version of this work has been reported [22]. In this work, substantial progress was
made on further refinement of the algorithms and their comprehensive evaluation on phantom
and in vivo images with more complex structures. Our contributions can be summarized in two
aspects. (i) FA-SAFT uses a sharpening filter to improve the high-frequency components of PA
images in Fourier domain (k-space). Such a sharpening filter is adaptive to different patterns of
the acquired PA images, leading to enhanced resolution and SNR. (ii) D-MB deconvolution takes
1D sparsity of the line pattern into account, which further enhances resolution and keeps image
fidelity. The results by our algorithm are promising. By imaging tungsten wires, high resolution
over large DOF and good image fidelity are experimentally achieved using our algorithm. Further,
in vivo imaging is also demonstrated to show the superior capability of our algorithm. Compared
with existing algorithms (D-SAFT, R-L deconvolution, etc.), our algorithm enables great imaging
performance in resolution, SNR, and fidelity for both phantom and in vivo imaging demonstrations.
The effect of SNR on the performance of our algorithm is also investigated and discussed.

2. Related techniques

We first describe some existing techniques related to our algorithm. The conventional SAFT
algorithms are introduced in Sections 2.1. Then, adaptive-based SAFT algorithms including
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A-SAFT and D-SAFT are introduced in Sections 2.2. Finally, R-L deconvolution and MB
deconvolution are introduced in Sections 2.3.

2.1. Conventional SAFT

In AR-PAM, linear scanning is conducted in one dimension or two dimensions. We first illustrate
SAFT for the 1D case, as shown in Fig. 1. In SAFT, signal synthesis is performed based on a
delay-and-sum algorithm along the scanning line, which forms a synthetic aperture, and can be
expressed as:

RFSAFT(t) =
∑︂N−1

i=0
RFi(t − ∆ti), (1)

where RFSAFT(t) is the synthesized PA A-line signal after SAFT at a certain scanning position,
RFi(t) is the signal acquired at the ith scanning position, and ∆ti is the corresponding time
delay between the target RFSAFT(t) at that certain scanning position and RFi(t). That is, when
∆ti = 0, the target RFSAFT(t) signal and the RFi(t) signal are at the same scanning position. Since
AR-PAM is usually implemented with a focused transducer (Fig. 1(b)), a VPD concept was
proposed, and the time delay is computed using the following equation [6,11,14]:

∆ti = sgn(z − zf )∗
r − r′

c
, (2)

where sgn is the sign function, and z and zf are the axial distance of RFi(t) and the focal length of
AR-PAM system, respectively. z − zf is the out-of-focus distance (OFD). r and r′ are the distance
to the focal point from the target RFSAFT(t) and from RFi(t), respectively. c is the speed of sound
in a propagation medium.

Fig. 1. Schematic of SAFT for (a) a point detector and (b) a focused transducer (VPD) in
one dimension. Scanning is conducted along the X direction.

Due to the spatial response of the focused transducer, the previous study further proposed
improved SAFT algorithm by incorporating SIR to weigh the spatial-dependent contributions of
RFi(t) [11]. Equation (1) is thus modified as:

RFSAFT(t) =
∑︂N−1

i=0
RFi(t − ∆ti)∗SIRi(t − ∆ti). (3)

According to [11], by incorporating the SIR, SAFT is expected to work well for the AR-PAM
system with either small or large DOF.

Furthermore, to suppress the out-of-phase summation in Eq. (1), coherence factor (CF) [7] is
applied in SAFT and is defined as:

CF(t) =
|︁|︁∑︁N−1

i=0 RFi(t − ∆ti)∗SIRi(t − ∆ti)
|︁|︁2

N
∑︁N−1

i=0 (RFi(t − ∆ti)∗SIRi(t − ∆ti))2
(4)

RFSAFT−CF(t) = RFSAFT(t)∗ CF(t). (5)



Research Article Vol. 13, No. 2 / 1 Feb 2022 / Biomedical Optics Express 1029

1D SAFT can be extended to 2D SAFT by conducting the scanning in two dimensions. 2D cross
SAFT (C-SAFT) [9] and 2D S-SAFT [13] were proposed to extend the effective aperture size,
which is discussed in detail in previous literature [9,13].

2.2. A-SAFT and D-SAFT

AR-PAM is mostly used for vascular imaging. Considering the directional characteristic of the
line pattern of blood vessels, A-SAFT and D-SAFT were proposed by Deng et al. [10] and
Jeon et al. [14], respectively, aiming at SAFT for vascular images. A-SAFT is based on 1D
SAFT with the signal synthesis directions adaptively changed with the directions of vessel line
branches. However, the performance of A-SAFT depends on the successful recognition of the
vessel branches’ directions before applying A-SAFT. In other words, if one branch is not observed
or recovered properly before A-SAFT is applied, it will not be recovered properly after A-SAFT.

To deal with this problem, D-SAFT was designed to recover vessel line branches in a directional
way [14]. In D-SAFT, 1D SAFT along a series of directions is first applied, as described in the
following equation:

CF(t) =
|︁|︁∑︁N−1

i=0 RFi,θ (t − ∆ti)∗SIRi,θ (t − ∆ti)
|︁|︁2

N
∑︁N−1

i=0 (RFi,θ (t − ∆ti)∗SIRi,θ (t − ∆ti))2
(6)

RFSAFT−CF,θ (t) =
∑︂N−1

i=0
RFi,θ (t − ∆ti)∗SIRi(t − ∆ti)∗CF(t), (7)

where θ indicates the synthesis directions, which lies in the lateral plane and means the direction
along which the 1D SAFT is conducted. For a specific θ, vessel branches perpendicular to the θ
direction can be well recovered. Therefore, different branches with diverse orientations can be
recovered with different θ. Then, D-SAFT uses the hamming window in k-space to compose the
results from all directions. Three-dimensional (3D) D-SAFT procedure can be described using
the equations:

Kθ (u, v,ω) = F{RFSAFT−CF,θ (x, y, t)} (8)

Kmerged(u, v,ω) =
∑︂N′−1

n=0
Kθn (u, v,ω)∗Wθn (u, v,ω), (9)

where F represents the Fourier transform, Kθ represents the spectrum of RFSAFT−CF,θ , and u, v
represents wavenumbers, corresponding to the coordinates x, y in the lateral plane, respectively.
ω represents PA signal frequency. N′ represents the number of directions for 1D SAFTs. Wθn is
the weight for a specific direction θn, and Kmerged is the combined results in k-space. As discussed
above, for a certain branch direction, only the synthesis direction nearly perpendicular to the
branch direction can properly recover the branch. Wθn (u, v,ω) is used to weight the contribution
of signal synthesis in different directions over the lateral plane in k-space (Kθ (u, v,ω)) and
thus has no change over different ω. Therefore, Wθn (u, v,ω) degenerates to Wθn (u, v), which is
expressed as follows [14]:

Wθn (u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

N′ , if u = X−1
2 and v = Y−1

2

cos2
(︂
θn(u,v)∗N′

2

)︂
, if|θn(u, v)| ≤ π

N′

0, otherwise

(10)

θn(u, v) = ((θ + ∆θ) mod π) −
π

2
(11)

∆θ = atan

(︄
u − X−1

2

v − Y−1
2

)︄
, (12)

where ⌈∼⌉ is the ceiling function, and X, Y are the size of RFSAFT−CF,θ (x, y) in two dimensions,
respectively. Besides, the normalization condition has to be satisfied, as discussed by Jeon et al.
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[14]. Finally, using the inverse Fourier transform, we can transform Kmerged back to the spatial
domain, which is the final result after applying D-SAFT and is denoted as RFD−SAFT(x, y).

2.3. R-L deconvolution and MB deconvolution

As mentioned previously, acoustic diffraction still limits lateral resolution to no better than
in-focus lateral resolution. To further enhance resolution, one can use deconvolution algorithm.
Overall, R-L deconvolution and MB deconvolution are two typical methods. The underlying
assumption is that an AR-PAM imaging system is a linear and spatial shift-invariant system.
Therefore, the acquired PA image, RF(x, y), by AR-PAM can be expressed as:

RF(x, y) = p(x, y) ⊗ O(x, y) + n(x, y), (13)

where p(x, y) is the PSF of the imaging system, O(x, y) is the original PA source distribution,
and n(x, y) is the potential background noise. ⊗ is the convolution operator. p(x, y) is the prior
knowledge that will be used in the algorithm to achieve resolution enhancement, and p(x, y) is
usually obtained from either simulation or experimental measurement. When the PSF is known,
R-L deconvolution can be applied iteratively to estimate the original PA source distribution,
which is expressed as [23,24]:

O′
i+1(x, y) =

[︃
RF(x, y)

p(x, y) ⊗ O′
i (x, y)

⊗ p(−x,−y)
]︃

O′
i (x, y) (14)

where O′

i(x, y) is the estimation of O(x, y) in the ith iteration. Different from R-L deconvolution,
MB deconvolution expresses the imaging procedure using the following equation:

RF(x, y) = H(x, y)∗O(x, y) + n(x, y). (15)

where H(x, y) is the dictionary matrix [20,21], and ∗ is the matrix multiplication operator.
Therefore, the original PA source distribution could be estimated by the following optimization
process:

Ô (x, y) = argmin
O(x,y)

∥RF (x, y) − H (x, y) *O (x, y)∥2
2 , (16)

where Ô(x, y) is the estimation of O(x, y) by minimizing the above residual term. Besides, a
regularization term can be used to guarantee sparsity for resolution enhancement [20,21,25,26],
and Eq. (16) can be modified as:

ˆ︁O(x, y) = argminO(x,y)

(︃
1
2
∥RF(x, y) − H(x, y) ∗ O(x, y)∥2

2 + λ∥O(x, y)∥1

)︃
, (17)

where λ is a parameter to control the degree of sparsity and is usually chosen heuristically. This
minimization process can be solved with a fast iterative shrinkage-thresholding algorithm (FISTA
implementation in Matlab, https://github.com/tiepvupsu/FISTA) [27]. As optimization of Ô(x, y)
in Eq. (17) aims at giving point-like results, Gaussian smoothing always follows [20,21].

3. Methods

Overall, our algorithm has two parts, FA-SAFT and D-MB deconvolution, as shown in the green
and blue parts in Fig. 2, respectively. They are introduced in Sections 3.1 and 3.2 in the following.

3.1. FA-SAFT

Inspired from the work done by Delbracio et al. [28], we propose to improve resolution and
SNR with FA-SAFT. FA-SAFT is modified from D-SAFT. Compared with D-SAFT, FA-SAFT

https://github.com/tiepvupsu/FISTA
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Fig. 2. Procedures of the proposed algorithm.

exploits the Fourier bursts among 1D SAFTs along different directions to adaptively enhance the
spectrum (k-space), and thus, FA-SAFT can produce improved results.

Note that using CF in SAFT (same for D-SAFT and FA-SAFT) can already increase SNR along
with its spatial resolution. The key to optimizing image enhancement is to identify the optimal
synthesis direction among 1D SAFTs along different directions. Although 1D SAFTs along
different directions are utilized in both D-SAFT and FA-SAFT, FA-SAFT adopts an improved
approach to combine the 1D SAFTs from all directions, leading to further improved resolution
and SNR. Detailed comparison is elaborated in Section 5. FA-SAFT includes the following steps.
First, 1D SAFT is applied to a series of directions using Eqs. (6) and (7). Secondly, the signal
is transformed into k-space using Eq. (8). Thirdly, Kθ (u, v,ω) is accumulated according to the
following equations:

Kmerged−FA(u, v,ω) =
∑︂N′−1

n=0
Kθn (u, v,ω)∗Wθn (u, v,ω)∗D(u, v,ω) (18)

D(u, v,ω) =
1∑︁N′−1

n=0 abs(Kθn (u, v,ω))γ
, (19)

where D(u, v,ω) is a factor used for signal sharpening, abs is the absolute function, and γ is
a variable to control the degree of sharpening. When γ is set to 0, FA-SAFT will be reduced
to D-SAFT. Since the spectrum of Kθn (u, v,ω) has higher values in the low-frequency range,
its reciprocal, D(u, v,ω), has lower values in the low-frequency range but higher values in the
high-frequency range. That is, D(u, v,ω) can increase the high-frequency components in k-space
and thus can enhance resolution (details described in Section 5). Similarly, using the inverse
Fourier transform, we can transform Kmerged−FA back to spatial domain to get the results after
applying FA-SAFT and is denoted as RFFA−SAFT(x, y, t).

Note that the proposed FA-SAFT approach can be further divided into 2 types, depending on
whether the directional term Wθn (u, v,ω) is applied in Eq. (18) or not. The 2 types are termed
FA-SAFT-dir0 and FA-SAFT-dir1, which are the cases of without applying the directional term
and with applying it in Eq. (18), respectively. Then, the results after FA-SAFT will be used for
deconvolution.

3.2. D-MB deconvolution

As the line pattern only has 1D sparsity, it stands to reason to apply the 1D deconvolution.
Therefore, it is crucial to recognize the branches in different directions so that the 1D deconvolution
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along different directions can be applied accordingly. We use the hamming window methods
as before (Eq. (10)) to decompose the branches into two directions that are perpendicular to
each other and apply the 1D MB deconvolution with sparsity (Eq. (17)) for the branches. The
algorithm is thus termed D-MB deconvolution. The detailed procedure is described in the
following equation:

RFθn,ϕm (x, y) = F−1{F{RFFA−SAFT(x, y)}∗Wθn,ϕm (u, v)}, (20)

where Wθn,ϕm (u, v) has the same definition as in Eq. (10), except the phase shift φm, which is
associated with image rotation. φm is added to Eq. (20) to better extract the signals from the line
pattern along different directions over the lateral plane. The modified Wθn,ϕm (u, v) from Eq. (10)
is defined in the following:

θn(u, v) = ((θ + ∆θ) mod π) −
π

2
+ φm (21)

φm =
mπ
2M

, 0 ≤ m ≤ M − 1, (22)

where ∆θ is the same as Eq. (12), and M is the number of times to apply deconvolution for
different φm. Accordingly, the 1D MB deconvolution with sparsity applied to RFθn,ϕm (x, y) along
a certain direction θn and a certain φm can be easily modified from (17) and is expressed as:

ˆ︁Oθn,ϕm (x, y) = argmin
O(x,y)

(︃
1
2

∥︁∥︁RFθn,ϕm (x, y) − P(x, y) ∗ O(x, y)
∥︁∥︁2

2 + λ∥O(x, y)∥1

)︃
. (23)

Note that θn indicates the deconvolution direction, which lies in the lateral plane and means
the direction along which the 1D deconvolution is conducted. The final processed result after
D-MB deconvolution is obtained by:

RFFinal(x, y) =
1
M

∑︂M−1

m=0

∑︂N′′−1

n=0
G(Ôθn,ϕm (x, y)), (24)

where N′′ is set to two. As mentioned above, the hamming window methods are used to decompose
the branches into two perpendicular directions (i.e., N′′ = 2), and 1D MB deconvolution is then
applied for the branches. G represents the Gaussian smoothing operator following previous
practice [20,21] and was applied during composition. Note that since D-MB deconvolution is
applied to 2D images, it can be applied to a lateral maximum amplitude projection (MAP) image
or 2D lateral slices at each axial position.

FA-SAFT can be considered to be independent of D-MB deconvolution. That is, FA-SAFT
and D-MB deconvolution (with well-estimated PSF) can be applied alone. Therefore, N′ in (18)
is independent of N′′ in (24), and N′ can be different from N′′. Note that N′′ = 2 is used because
we found that too large N′′ leads to too straight branches and thus loses fidelity.

4. Results

We demonstrated the feasibility and advantages of our algorithm through imaging experiments
of tungsten wire phantom, leaf skeleton phantom, and mouse dorsal and ear blood vessels in
vivo. These experiments were conducted using a focused US transducer with center frequency
of 50 MHz, NA of 0.44, focal length of 6.7 mm, and DOF of ∼300 µm [13]. The results are
described in the following subsections. The number of iterations for R-L deconvolution (used for
comparison) is 15 for tungsten wire experiments and 10 for leaf skeleton experiment and in vivo
mouse experiments.
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4.1. Tungsten wire phantom imaging

We designed two tungsten wire phantom imaging experiments to elaborate the effect of our
algorithm. First, we imaged two crossed tungsten wires with an angle of ∼90° to quantify full
width at half maximum (FWHM) and DOF. Secondly, we imaged two closely-located tungsten
wires to calibrate the minimum resolvable distance.

4.1.1. Crossed tungsten wires

Two tungsten wires with diameter of 20 µm were evenly placed at four different OFDs of 0 mm,
0.3 mm, 0.6 mm and 0.9 mm (i.e., the axial distance of 6.7 mm, 7.0 mm, 7.3 mm and 7.6 mm,
respectively, from the surface of the transducer), with one wire overlapping on the other. The four
OFDs are denoted as D1−D4, respectively. The lateral MAP images of raw data (i.e., RF(x, y)
without further processing) are shown in Supplementary Fig. S1. Supplementary materials are
available online. In the images in Supplementary Fig. S1, lateral resolution deteriorates as the
abs (OFD) of the wires increases. For convenient comparison of several algorithms, we selected
the same regions with the same size of the images for display (indicated by the white boxes in
Supplementary Fig. S1).

The workflow of our algorithm is shown in Fig. 3. PAM images of D2 are used for illustration.
The γ used in FA-SAFT is set to 0.2 (Eq. (19)). We also compared FA-SAFT using different
γ (see Supplementary Fig. S2). Larger γ generates smaller features size (or FWHM), but too
large γ leads to artifacts. As a result, the optimal γ is set to 0.2. For Fig. 3, N′ = 2 and M = 1
are used for illustration. Note that N′ = 16 (as recommended previously [14]) and M = 4 are
used for other figures unless otherwise specified. M = 4 is chosen to balance the processed
effects and the computation time (see Supplementary Fig. S3). Supplementary Fig. S3 shows

Fig. 3. Illustration of the workflow of our algorithm. The numbers inside circles here
correspond to the 6 steps in Fig. 2. N′ = 2 and M = 1 are used here for illustration. (a) MAP
image of raw data at D2 (OFD of 0.3 mm). (b,c) By 1D SAFT along the horizontal and
vertical directions, respectively. (d− f) (e) and (f) are the Fourier transform of (b) and (c),
respectively. (d) is the merged result from (e) and (f). That is, (d) is Kmerged−FA(u, v). (g)
By FA-SAFT (i.e., RFFA−SAFT(x, y)). (h,i) The images in spatial domain after directional
decomposition of (g). (j− l) (k) and (l) are 1D MB deconvolution results of (h) and (i),
respectively. (j) is the final result (i.e., RFFinal(x, y)). IFT, inverse Fourier transform.
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that the initial phase shift φ0 does not affect the D-MB results for the cases of M = 4 and M = 8.
Experimentally measured PSF of 65 µm is used when applying the deconvolution algorithm
[13]. Note that since FA-SAFT is to restore the lateral resolution in the out-of-focus region to the
in-focus lateral resolution, the same lateral PSF can be assumed for AR-PAM images at different
OFDs when applying deconvolution [13].

We then studied the effects of the directional term (Eq. (18) with and without Wθn (u, v,ω))
and sharpening term (Eq. (18) with and without D(u, v,ω)) in FA-SAFT. PAM images of D2
are used for illustration. The results are shown in Fig. 4. Figures 4(a)−4(d) show the results
as follows: without Wθn (u, v,ω) and without D(u, v,ω) for Fig. 4(a) (termed pure SAFT); with
Wθn (u, v,ω) and without D(u, v,ω) for Fig. 4(b) (i.e., D-SAFT); without Wθn (u, v,ω) and with
D(u, v,ω) for Fig. 4(c) (i.e., FA-SAFT-dir0); with Wθn (u, v,ω) and with D(u, v,ω) for Fig. 4(d)
(i.e., FA-SAFT-dir1). We found that Fig. 4(d) achieves better resolution than Fig. 4(b). We also
compared the performance of R-L deconvolution and D-MB deconvolution based on Figs. 4(b)
and 4(d). Figures 4(e) and 4(f) are the results by R-L deconvolution from Figs. 4(b) and 4(d),
respectively, and Figs. 4(g) and 4(h) are the results by D-MB deconvolution from Fig. 4(b)
and 4(d), respectively. The results show that Fig. 4(f) (finer feature size and fewer artifacts) is
better than Fig. 4(e), showing the advantage of the proposed FA-SAFT over D-SAFT for the
following deconvolution. Similarly, Fig. 4(h) shows slightly smaller feature size than Fig. 4(g).
Further, Fig. 4(h) shows smaller feature size, higher SNR, and fewer artifacts than Fig. 4(f),
indicating the benefit of D-MB deconvolution over R-L deconvolution. Moreover, we compared
the deconvolution results based on Figs. 4(c) and 4(d) (see Supplementary Fig. S4). The
results show that Supplementary Fig. S4f has comparable resolution to Supplementary Fig.
S4c (similarly, Supplementary Fig. S4e comparable to Supplementary Fig. S4b), meaning that
both FA-SAFT-dir0 and FA-SAFT-dir1 suit for the following deconvolution. Overall, for SAFT,
FA-SAFT outperforms D-SAFT. As for deconvolution, D-MB deconvolution presents better
results than R-L deconvolution.

Fig. 4. Comparison of different SAFT and the following deconvolution methods. (a)
By pure SAFT. (b) By D-SAFT. (c) By FA-SAFT-dir0. (d) By FA-SAFT-dir1. (e,f) R-L
deconvolution from (b) and (d), respectively. (g,h) D-MB deconvolution from (b) and (d),
respectively.

Then, we compared the results by FA-SAFT-dir1 and D-SAFT in the out-of-focus region
(D2−D4). Besides, R-L deconvolution and D-MB deconvolution were applied and compared
for the four OFDs (D1−D4). The results are shown in Fig. 5, which are displayed in MAP
images. Figure 5(a) shows the MAP images of raw data at D1−D4. Figures 5(b) and 5(c) are
the results by D-SAFT and FA-SAFT-dir1, respectively. Figures 5(d)−5(f) show the results by
R-L deconvolution, 2D MB deconvolution (Eq. (17)), and D-MB deconvolution from Fig. 5(c),
respectively. The FWHM and SNR of the images in Fig. 5 are summarized in Table 1. Note
that “R-L”, “MB”, and “D-MB” in Table 1 represent the deconvolution results from Fig. 5(c)
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(FA-SAFT-dir1). Overall, the results in Fig. 5 and Table 1 for the results at D1−D4 are consistent
with Fig. 4. First, FA-SAFT-dir1 performs better than D-SAFT. The former has smaller FWHM
and higher SNR. Secondly, compared with R-L deconvolution, D-MB deconvolution achieves
better results with smaller FWHM, higher SNR, better pattern continuity, and fewer artifacts.
Compared with MB deconvolution, D-MB deconvolution keeps the previous advantages except
for larger FWHM at D2 and D3. Finally, we obtained FWHMs of 26− 31 µm within DOF of 1.8
mm [= 0.9 mm×2], when considering below and above the focal plane, by D-MB deconvolution
from FA-SAFT images.

Fig. 5. Results of the first tungsten wire experiment. (a) MAP images of raw data at
D1−D4. (b) By D-SAFT. (c) By FA-SAFT-dir1. (d) R-L deconvolution from (c). (e) 2D
MB deconvolution from (c). (f) D-MB deconvolution from (c).

4.1.2. Closely-located tungsten wires

Two wires with diameter of 20 µm were closely placed with a narrow angle between them.
The phantom was imaged at OFDs of 0 mm (i.e., in-focus) and −0.45 mm (i.e., out-of-focus),
respectively. The results are shown in Fig. 6. PAM images of raw data at the focal and
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Table 1. FWHM (µm) and SNR (dB)

OFD (mm) 0 0.3 0.6 0.9

FWHM SNR FWHM SNR FWHM SNR FWHM SNR

Raw 64.0 21.0 152.0 23.4 311.0 17.2 426.0 14.9

D-SAFT / / 69.0 31.6 85.0 28.4 92.0 39.5

FA-SAFT / / 61.0 33.9 68.0 33.4 77.0 43.9

R-L 36.0 35.3 39.0 35.9 33.0 37.4 39.0 46.6

MB 32.0 29.0 24.0 34.9 25.0 37.3 37.0 42.7

D-MB 28.0 47.1 26.0 42.2 27.0 51.1 31.0 57.9

out-of-focus regions are shown in Figs. 6(a) and 6(d), respectively. For the in-focus image, we
directly applied R-L deconvolution (Fig. 6(b)) and D-MB deconvolution (Fig. 6(c)), respectively.

Fig. 6. Results of the second tungsten wire experiment. (a) PAM image of raw data at
OFD of 0 mm. (b,c) R-L deconvolution and D-MB deconvolution from (a), respectively. (d)
PAM image of raw data at OFD of −0.45 mm. (e) By FA-SAFT-dir1 from (d). (f,g) R-L
deconvolution and D-MB deconvolution from (e), respectively. (h,i) 1D profiles of (a− c)
along the two lines indicated by #1 and #2 in (a), respectively. (j,k) 1D profiles of (d− g)
along the two lines indicated by #3 and #4 in (d), respectively. #1-#4: The position below
which the two tungsten wires start to be distinguishable in (c), (a), (g), and (e), respectively.
That is, (h− k) show the resolution of (c), (a), (g), and (e), respectively.
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For the out-of-focus image, we first applied FA-SAFT-dir1 (Fig. 6(e)). Then, Fig. 6(e) was further
processed by R-L deconvolution (Fig. 6(f)) and D-MB deconvolution (Fig. 6(g)), respectively.

The resolution is determined by checking the minimum distinguishable separation (i.e.,
minimum resolvable distance) of the two tungsten wires (≥6 dB for the contrast between the
minimum of the two peaks and the valley). Figures 6(h)−6(k) show 1D profiles along the lines
#1−#4 in Fig. 6, respectively (#1 and #2 at the same positions for Figs. 6(a)−6(c); #3 and #4
at the same positions for Figs. 6(d)−6(g)). Note that lines #1−#4 in Fig. 6 are chosen based on
the above criterion to determine the resolution of Figs. 6(c), 6(a), 6(g), and 6(e), respectively.
Similarly, the resolution of Figs. 6(b), 6(d), and 6(f) can be determined using the same criterion
(related 1D profiles not shown). As a result, the measured resolutions of Figs. 6(a)−6(g) are
129 µm, 76 µm, 49 µm, 406 µm, 108 µm, 65 µm, and 46 µm, respectively. For OFD of 0 mm,
the resolution is enhanced from 129 µm to 49 µm (∼2.6 times) before and after applying D-MB
deconvolution (Fig. 6(a) vs. Fig. 6(c)). For OFD of −0.45 mm, the resolution is enhanced from
108 µm to 46 µm (∼2.3 times) before and after applying D-MB deconvolution (Fig. 6(e) vs.
Fig. 6(g)). Besides, the resolution achieved by D-MB deconvolution is also better than that by
R-L deconvolution (∼1.4− 1.6 times improvement).

4.2. Leaf skeleton phantom imaging

To investigate the ability of our algorithm for more complex structures, we imaged a Banyan leaf
skeleton phantom and applied our algorithm. Before imaging, the leaf was immersed in carbon
ink to increase light absorption of the phantom. The results are shown in Fig. 7. PAM images were
acquired at both the focal (Fig. 7(a)) and out-of-focus (Fig. 7(d)) regions. For the in-focus image,
we applied the deconvolution algorithms directly (Figs. 7(b) and 7(c)). For the out-of-focus
image, different SAFT and the following deconvolution were applied (Figs. 7(e)−7(i)).

First, Fig. 7(c) presents much better image fidelity and smaller feature size than Fig. 7(b),
demonstrating the great performance of D-MB deconvolution over R-L deconvolution. Secondly,
Figs. 7(e)−7(g) are the results by D-SAFT, FA-SAFT-dir1, and FA-SAFT-dir0, respectively.
The latter two images show less noise than the former. Similar to Supplementary Fig. S4,
FA-SAFT-dir0 (Fig. 7(g)) is comparable to FA-SAFT-dir1 (Fig. 7(f)). Therefore, we chose to
apply the deconvolution algorithms to the image by FA-SAFT-dir0 (Fig. 7(g)). The results are
shown in Figs. 7(h) (R-L deconvolution) and 7(i) (D-MB deconvolution). Similar to Figs. 7(b)
and 7(c), Fig. 7(i) shows better image fidelity and smaller feature size than Fig. 7(h). We also
applied the deconvolution algorithms to the image by FA-SAFT-dir1 (see Supplementary Fig. S5).
The comparable deconvolution results from FA-SAFT-dir1 and FA-SAFT-dir0 in Supplementary
Fig. S5 are similar to those in Supplementary Fig. S4.

For FWHM comparison, we plot 1D profiles along the three lines with different directions
in Figs. 7(d)−7(i). Note that the three lines are at the same positions in Figs. 7(d)−7(i). For
convenience, the three lines are only indicated in Fig. 7(d) and denoted as #1, #2, and #3. The
1D profiles are shown in Fig. 7(j)−7(l) for lines #1, #2, and #3, respectively. FA-SAFT-dir0 and
FA-SAFT-dir1 achieve better FWHM than D-SAFT. Besides, as expected, D-MB deconvolution
produced smaller FWHM compared with R-L deconvolution. In addition, we rotated Fig. 7(a) by
45° to test the robustness of D-MB deconvolution to different orientations of the line pattern (see
Supplementary Fig. S6).

4.3. In vivo mouse imaging

We further demonstrated our algorithm applied to in vivo mouse imaging. This animal experiment
was conducted in conformity with the laboratory animal protocol approved by Laboratory Animal
Care Committee of Shanghai Jiao Tong University. Mouse dorsal subcutaneous vessels of a
BALB/c mouse (∼20 g, Slac Laboratory Animals) with hair removed were first imaged by our
AR-PAM system.
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Fig. 7. Results of leaf skeleton experiment. (a) PAM image of raw data at OFD of 0 mm
(in-focus). (b,c) R-L deconvolution and D-MB deconvolution from (a), respectively. (d) PAM
image of raw data at OFD of 0.25 mm (out-of-focus). (e− g) By D-SAFT, FA-SAFT-dir1,
and FA-SAFT-dir0, respectively. (h,i) R-L deconvolution and D-MB deconvolution from (g),
respectively. (j− l) 1D profiles of the images (d− i) along the three lines indicated by #1, #2,
and #3 in (d), respectively.

Similar to Figs. 7(d)−7(i), the images of raw data (at OFD of ∼0.4 mm), by D-SAFT, by FA-
SAFT-dir1, by FA-SAFT-dir0, R-L deconvolution after FA-SFAT-dir0, and D-MB deconvolution
after FA-SAFT-dir0 are shown in Figs. 8(a)−8(f), respectively. Besides, for resolution comparison,
we also plot 1D profiles in Figs. 8(g)−8(i) along the three lines in Figs. 8(a)−8(f). The results
are overall similar to Fig. 7. First, FA-SAFT-dir0 (Fig. 8(d)) and FA-SAFT-dir1 (Fig. 8(c))
present lower noise than D-SAFT (Fig. 8(b)). Interestingly, FA-SAFT-dir0 (Fig. 8(d)) shows
slightly higher SNR than FA-SAFT-dir1 (Fig. 8(c)). Therefore, the deconvolution based on
Fig. 8(d) was conducted, and the results are shown in Figs. 8(e) and 8(f) by R-L deconvolution
and D-MB deconvolution, respectively. Secondly, as expected, D-MB deconvolution (Fig. 8(f))
achieves better results than R-L deconvolution in terms of image fidelity and SNR. Similarly,
the deconvolution applied to Fig. 8(c) was also conducted for comparison (see Supplementary
Fig. S7). Overall, Supplementary Fig. S7f shows slightly higher SNR than the corresponding
Supplementary Fig. S7c (similarly for Supplementary Figs. S7e vs. S7b), which is consistent
with the results before applying deconvolution (Supplementary Figs. S7d vs. S7a). Besides,
by checking Figs. 8(g)−8(i), FA-SAFT-dir1 and FA-SAFT-dir0 present higher resolution than
D-SAFT, and D-MB deconvolution enables the smallest FWHM. Figures 8(j)−8(o) show zoom-in
images of the dashed box regions (indicated in Fig. 8(a)) in Figs. 8(a)−8(f), respectively. Note
that the relatively weak PA amplitude of some small vessels in the dashed box region in Fig. 8(f)
does not mean that these small vessels disappear after applying deconvolution, but is due to the
adopted color map for display. As can be seen in Fig. 8(o), these small vessels can be clearly
visualized with good SNR.
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Fig. 8. Results of in vivo mouse experiment (mouse dorsal blood vessels). (a) PAM image
of raw data at OFD of ∼0.4 mm (out-of-focus). (b− d) By D-SAFT, FA-SAFT-dir1, and
FA-SAFT-dir0, respectively. (e,f) R-L deconvolution and D-MB deconvolution from (d),
respectively. (g− i) 1D profiles of the images (a− f) along the three lines indicated by #1,
#2, and #3 in (a), respectively. (j− o) Zoom-in images of the dashed box region (indicated in
(a)) in (a− f), respectively. Note that the box indicates the same regions for (a− f).

For further validation, we tested our algorithm on two other in vivo AR-PAM data: (i) Another
image of mouse dorsal blood vessels in vivo [13] (see Supplementary Fig. S8); (ii) mouse ear
blood vessels in vivo imaged at the focal and out-of-focus regions (see Supplementary Figs. S9
and S10). Supplementary Fig. S9 shows the images of raw data and processed by SAFT and
deconvolution, and Supplementary Fig. S10 shows 1D profiles and zoom-in images indicated
in Supplementary Fig. S9 for better comparison and display. The results are promising. For
Supplementary Fig. S8, overall, FA-SAFT performs better than D-SAFT (notably high resolution
in Supplementary Fig. S8d over Fig. S8b), and D-MB deconvolution produces better results
than R-L deconvolution (especially pattern continuity in Supplementary Fig. S8f over Fig.
S8e). Similarly, for Supplementary Fig. S9, FA-SAFT enables higher resolution than D-SAFT
(FA-SAFT vs. D-SAFT: Supplementary Figs. S9f vs. S9e). Besides, compared with R-L
deconvolution, D-MB deconvolution renders finer feature size (D-MB vs. R-L: Supplementary
Figs. S9c vs. S9b; Supplementary Figs. S9i vs. S9h) and better pattern continuity (D-MB vs.
R-L: Supplementary Figs. S10f vs. S10e; Supplementary Figs. S10h vs. S10g). Notably, the high
resolution by D-MB deconvolution is clearly evidenced by Supplementary Figs. S10a−S10d,
where D-MB can better resolve two closely-located vessels. Similar to Fig. 8, the relatively weak
PA amplitude of some small vessels in the dashed boxes in Supplementary Fig. S9 is due to the
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adopted color map for display. These small vessels can be clearly visualized with good SNR in
Supplementary Figs. S10e−S10h.

5. Discussion

We proved that our algorithm can improve the lateral resolution, SNR, and pattern fidelity in
both phantom and in vivo imaging experiments. The great performance can be attributed to two
parts, FA-SAFT and D-MB deconvolution. More details are discussed in the following.

5.1. FA-SAFT

Note that besides SAFT, a compressed sensing-based approach can also be used to enhance
images in the out-of-focus region in AR-PAM [29].

FA-SAFT produced higher resolution and sharper edges than D-SAFT. The resolution im-
provement in FA-SAFT can be explained from the sharpening term, which is newly introduced
in FA-SAFT and acts as an adaptive high-pass filter. For better illustration, we compared
the processed results and their spectra (k-space) by high-pass filtering (HPF), D-SAFT (i.e.,
γ = 0), and FA-SAFT-dir1 of the crossed tungsten wire images over D2−D4 (Section 4.1.1)
(see Supplementary Figs. S2 and S11). In Supplementary Fig. S2, we compared the results by
HPF using different cut-off frequencies and by FA-SAFT-dir1 using different γ. We found that
HPF with higher cut-off frequency produces smaller feature size, but HPF with too high cut-off
frequency of ≥3 units (larger units correspond to higher cut-off frequency) results in evident
artifacts. Thus, the optimal cut-off frequency is set to 2 units. As mentioned previously, the
optimal γ is set to 0.2. Therefore, we then compared the optimized results by HPF with cut-off
frequency of 2 units and by FA-SAFT-dir1 with γ = 0.2. As can be seen, FA-SAFT-dir1 with γ =
0.2 shows well-suppressed background (or high SNR).

In Supplementary Fig. S11, we first checked the case of D2. Compared with HPF, FA-SAFT-
dir1 did not filter out all the low-frequency components but adjusted their weights adaptively, as
indicated by the red arrows in Supplementary Fig. S11. Besides, compared with [HPF]− [D-
SAFT] (“−” means difference), [FA-SAFT-dir1]− [D-SAFT] can more selectively enhance the
images along the directions of the tungsten wires (i.e., increased weights in the spectra of
FA-SAFT-dir1 along the two diagonal directions corresponding to the main signals of tungsten
wires), showing that the sharpening term in FA-SAFT-dir1 can better reflect directional features
of the data compared with HPF. In other words, the sharpening term in FA-SAFT-dir1 can
increase the weights of high-frequency components adaptively. Here the “adaptive” means
that the sharpening term changes accordingly with the 1D SAFT results as in Eq. (19) and
enhances the spectrum directionally. Specifically, for example, as indicated by the green arrows
in Supplementary Fig. S11, the spectrum not along the directions of the tungsten wires are
more suppressed in [FA-SAFT-dir1]− [D-SAFT] than in [HPF]− [D-SAFT]. As can be seen in
Supplementary Fig. S11, the same characteristics are observed in D3 and D4.

Therefore, Supplementary Fig. S11 would explain that compared with HPF, FA-SAFT-dir1
can enhance resolution (having similar high-frequency components) and without sacrificing
SNR (enhancing the spectrum directionally, as detailed in the previous paragraph). Similarly,
Supplementary Fig. S11 would also explain compared with D-SAFT, FA-SAFT-dir1 enables
higher resolution (keeping more high-frequency components, as shown in the columns of
“FA-SAFT-dir1” vs. “D-SAFT”) and higher SNR (enhancing the spectrum directionally, as
shown in the column of [FA-SAFT-dir1]− [D-SAFT]).

Another variable in FA-SAFT is the number of directions for 1D SAFT (N′ in Eq. (18)). As
discussed in D-SAFT [14], using more directions (larger N′) is useful to improve the resolution
of branches in different orientations. However, when N′ is large enough (≥ 16), the image quality
may not improve anymore. Therefore, N′ is also set to 16 in our demonstrations.
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Overall, FA-SAFT-dir0 produces comparable or slightly better results than FA-SAFT-dir1
(e.g., slightly better for Fig. 8 and Supplementary Fig. S8). Besides, either FA-SAFT-dir0 or
FA-SAFT-dir1 performs better than D-SAFT for the demonstrations in this work (Figs. 4− 8).
This may imply that the sharpening term plays a more important role than the directional term
in Eq. (18). On the other hand, the following deconvolution (either R-L or D-MB) exhibits
similar trends (e.g., similar results after deconvolution are obtained given similar image quality
of FA-SAFT-dir0 and FA-SAFT-dir1).

SAFT in AR-PAM has been continuously improved to deal with more complicated patterns,
especially for microvascular patterns, to meet the requirements of in vivo imaging applications.
By considering 1D sparsity of the line pattern, A-SAFT and D-SAFT were proposed [10,14].
However, the former requires successful recognition of diverse orientations of vessel branches
prior to applying A-SAFT, while the latter can better recover the vessel branches by utilizing the
weighted 1D SAFTs. Based on D-SAFT, we proposed FA-SAFT to further improve resolution
and SNR by introducing the sharpening term, as detailed previously. Deconvolution can perform
better given the original input images with better image quality. Taking advantage of the
high-quality image by FA-SAFT, D-MB deconvolution using FA-SAFT images outperforms that
using D-SAFT images.

5.2. D-MB deconvolution

After FA-SAFT, deconvolution algorithms further improve the resolution and SNR. R-L deconvo-
lution algorithm was initially designed for astronomy applications, where the targets are usually
point-like objects. Compared to R-L deconvolution and MB deconvolution, the proposed D-MB
deconvolution is more suitable for the line pattern because 1D sparsity of the line pattern is
considered in D-MB deconvolution. To our knowledge, the directional deconvolution method
for handling the line pattern is proposed for the first time. Besides the line pattern, D-MB
deconvolution with M≥4 can well preserve the point features (see Supplementary Fig. S12).
Another parameter in D-MB deconvolution is the sparsity regularization term, which contributes
to the pattern centralization (i.e., resolution enhancement) and noise reduction to an extent
(see Supplementary Fig. S13). The sparsity regularization in D-MB deconvolution may also
contribute to the artifacts reduction. As can be seen, noise and artifacts are much reduced in
Supplementary Fig. S13f (λ= 1.0) compared with Supplementary Fig. S13a (λ= 0; i.e., without
the sparsity regularization). Finally, our algorithm (FA-SAFT and D-MB deconvolution) achieved
lateral FWHMs of 26− 31 µm when imaging 20 µm tungsten wires (Fig. 5), which is better than
measured PSF of 65 µm. Besides, lateral resolution of 46− 49 µm was obtained when resolving
two closely-located tungsten wires (Fig. 6), which is better than original resolution of 129− 406
µm. Note that the “sparsity” here does not mean that the pattern of the input PA image has to
be sparse in order to apply the D-MB deconvolution. It works well in Figs. 7, 8, and S8, which
proves that it is applicable to the AR-PAM images with a certain degree of pattern density.

To improve 3D resolution for the line pattern of blood vessels in AR-PAM images, the proposed
D-MB deconvolution can be applied to 2D lateral slices at each axial position, and then 1D R-L
or 1D MB deconvolution can be applied along the axial direction [13]. Considering that the line
pattern of blood vessels mainly appears over the 2D lateral slices, it would be reasonable to apply
1D deconvolution along the axial direction without dealing with the directional characteristic.
Besides, such a method for 3D deconvolution can save computation time and reduce memory
usage [13].

5.3. Other Discussion

As AR-PAM is a 3D imaging modality, we evaluated the axial resolution changes when using
our algorithm (see Supplementary Fig. S14 and Supplementary Table S1). We found that
axial resolution after FA-SAFT and D-MB deconvolution is comparable or slightly improved.
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SAFT is typically not expected to improve the axial resolution [13]. On the other hand, in
Supplementary Fig. S14, D-MB deconvolution is applied to 2D lateral slices at each axial
position (multiple-times deconvolution for many slices). Because deconvolution is not applied
along the axial direction, the resolution enhancement along the axial direction is not obvious.
Note that except Supplementary Fig. S14, D-MB deconvolution is performed over the MAP
images (e.g., Figs. 7(i) and 8(f)).

The robustness of the algorithm to different SNR is also an important factor worthy to discuss.
Indeed, sufficient SNR is essential for deconvolution. Fortunately, in our algorithm, the first step,
FA-SAFT, helps improve SNR for out-of-focus images prior to applying the second step, D-MB
deconvolution. In Supplementary Fig. S15 and Supplementary Table S2, the effect of SNR on
the resolution enhancement by FA-SAFT and D-MB deconvolution is evaluated. Note that the
resolution in Supplementary Table S2 is determined using a criterion similar to Fig. 6. When
artifacts become too evident to determine resolution, the resolution is regarded as “not applicable
(N/A).” As can be seen, when the PAM image of raw data has peak SNR (PSNR) down to 20 dB
(Fig. 6(d) with noise added), FA-SAFT and D-MB deconvolution can still enhance resolution
from N/A to 54 µm. On the other hand, in Supplementary Fig. S16 and Supplementary Table S3,
the effect of SNR on the resolution enhancement by D-MB deconvolution alone is investigated.
The determination of resolution in Supplementary Table S3 is the same as Supplementary Table
S2 mentioned above. As can be seen, when the PAM image by FA-SAFT (prior to applying
deconvolution) has PSNR down to 21 dB (Fig. 6(e) with noise added), D-MB deconvolution can
still enhance resolution from N/A to 54 µm, while R-L deconvolution suffers artifacts and the
resolution is still N/A. Overall, in Supplementary Fig. S16, D-MB deconvolution produces better
image quality (i.e., fewer artifacts) than R-L deconvolution.

Another important factor is the performance of the proposed algorithm when applied to
images with penetration depth in tissue. We conducted additional in vivo AR-PAM imaging of
subcutaneous blood vessels around the lower abdomen region of a mouse. As can be seen in
Supplementary Fig. S17, the proposed algorithm demonstrates good performance for the in vivo
AR-PAM images with penetration depth of ∼0.32 mm. Besides, although the skin surface is not
flat and the blood vessels distribute over a large axial range, our algorithm applied for a large
axial range of 1.35 mm (OFD from −0.525 mm to 0.825 mm) shows satisfactory results. We
further and intentionally sought deeper blood vessels in AR-PAM imaging experiments. As can
be seen in Supplementary Fig. S18 (notably the blood vessel V3), the proposed algorithm still
demonstrates the effectiveness of resolution enhancement for the in vivo AR-PAM image of deep
vessels up to ∼1.3 mm below the skin surface.

In the experiments described above, the penetration depth of ∼1.3 mm was demonstrated.
AR-PAM is able for deeper penetration in tissue. In this case, however, SNR degrades, and
low SNR adversely affects the performance of the proposed algorithm, as described previously
(Supplementary Fig. S15, Table S2, Fig. S16, and Table S3). To advance the penetration of in
vivo AR-PAM when applying our algorithm, one could consider signal averaging and/or contrast
agents to secure sufficient SNR, which would ensure in vivo applicability of our algorithm.

In Section 4.1, the tungsten wires were immersed in non-scattering water media and placed at
different OFDs (e.g., 0− 0.9 mm), and the performance of the algorithms at different OFDs can
be conveniently compared (Table 1 and Figs. 5 and 6) by excluding the scattering effect. Similar
experiments were conducted also in non-scattering water media in a previous study of resolution
enhancement in AR-PAM [30]. Similar to the above discussion, strong scattering leads to low
SNR, which degrades the performance of the proposed algorithm. Therefore, for scattering
media, approaches to boost SNR are needed to ensure the performance of our algorithm.

The computation time of our algorithm is another important aspect. For FA-SAFT, the
computation time is mainly determined by the number of directions for 1D SAFT (N′) and is
proportional to N′, which is similar to the case of D-SAFT (Supplementary Table S4). That is, the



Research Article Vol. 13, No. 2 / 1 Feb 2022 / Biomedical Optics Express 1043

inclusion of the sharpening term (specifically, for FA-SAFT-dir1) in the calculation will increase
the computation time little (the time increase of ∼0.2 seconds in Supplementary Table S4 for
N′ = 16). Therefore, once the same N′ is chosen for D-SAFT and FA-SAFT, they will have similar
computation time (Supplementary Table S4). For D-MB deconvolution, more computation
time is required compared with R-L deconvolution (Supplementary Table S5). Fortunately, the
computation time of D-MB deconvolution is less than that of FA-SAFT, and thus, the overall
computation time of our algorithm is still at the same time scale as FA-SAFT (FA-SAFT of ∼72 s
(N′ = 16) and D-MB deconvolution of ∼8 s (M= 4) in Supplementary Table S4 and Table S5,
respectively).

6. Conclusions

Tailored for AR-PAM imaging applications of microvasculature, we proposed a novel algorithm
consisting of FA-SAFT and D-MB deconvolution for AR-PAM to achieve evident image
enhancement in both the focal and out-of-focus regions. Specifically, FA-SAFT improved
resolution and SNR, and D-MB deconvolution further enhanced resolution and SNR while
keeping image fidelity. As a result, compared with other SAFT and/or deconvolution algorithms,
our algorithm achieved great performance in terms of resolution, SNR, and image fidelity.
Notably, we demonstrated promising results for in vivo images of mouse blood vessels by our
algorithm given the images of raw data with sufficient SNR. Our work opens up new opportunities
for microvascular AR-PAM imaging applications. The proposed algorithms may benefit other
imaging modalities to handle the line pattern, e.g., FA-SAFT for ultrasound imaging and D-MB
deconvolution for optical coherence tomography angiography.
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