
0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 1

The Promise and Challenge of

Stochastic Computing
Armin Alaghi, Member, IEEE, Weikang Qian, Member, IEEE, and John P. Hayes, Life Fellow, IEEE

Abstract—Stochastic computing (SC) is an

unconventional method of computation that treats data as

probabilities. Typically, each bit of an N-bit stochastic

number (SN) X is randomly chosen to be 1 with some

probability pX, and X is generated and processed by

conventional logic circuits. For instance, a single AND gate

performs multiplication. The value X of an SN is measured

by the density of 1s in it, an information-coding scheme

also found in biological neural systems. SC has uses in

massively parallel systems and is very tolerant of soft

errors. Its drawbacks include low accuracy, slow

processing, and complex design needs. Its ability to

efficiently perform tasks like communication decoding and

neural network inference has rekindled interest in the field.

Many challenges remain to be overcome, however, before

SC becomes widespread. In this paper, we discuss the

evolution of SC, mostly focusing on recent developments.

We highlight the main challenges and discuss potential

methods of overcoming them.

Index Terms—Approximate computing, pulse circuits,

stochastic circuits, unconventional computing methods

I. INTRODUCTION

ROM its beginnings in the 1940s, electronic compu-

ting has relied on weighted binary numbers of the

form 𝑋 = 𝑥1𝑥2 𝑥𝑘 to represent numerical data [16].

Typical is the use of X to denote a fixed-point fraction

𝑣 = ∑ 2−𝑖𝑥𝑖
𝑘
𝑖=1 lying in the unit interval [0,1]. Efficient

arithmetic circuits for processing such binary numbers

(BNs) were soon developed. There were, however, con-

cerns about the cost and reliability of these circuits,

which led to the consideration of alternative number

formats. Notable among the latter are stochastic numbers

(SNs), where the 𝑥𝑖 bits are randomly chosen to make

X’s value be the probability 𝑝𝑋 that 𝑥𝑖 = 1. Again the
resulting data values are in the unit interval [0,1]. In the

late 1960s, research groups led by Gaines in the U.K.

[28][29] and Poppelbaum in the U.S. [74] investigated

data processing with SNs, a field that soon came to be

known as stochastic computing (SC). Their pioneering

work identified key features of SC, including its ability

to implement arithmetic operations by means of tiny log-

ic circuits, its redundant and highly error-tolerant data

formats, and its low precision levels comparable to ana-

log computing.

Like some early binary computers, stochastic circuits

process data serially in the form of bit-streams. Figure 1

shows a stochastic number generator (SNG) that converts

a given BN B to stochastic bit-stream form. The SNG

samples a random BN R which it compares with B, and

outputs an SN of probability 𝐵/2𝑘at a rate of one bit per

clock cycle. After N clock cycles, it has produced an N-

bit SN X with 𝑝𝑋 𝐵/2𝑘. The value 𝑝𝑋 is the frequency

or rate at which 1s appear, so an estimate �̂�𝑋
 of 𝑝𝑋 can

be made simply by counting the 1s in X. In general, the

estimate’s accuracy depends on the randomness of X’s

bit-pattern, as well as its length N. Rather than a true

random source, an SNG normally employs a logic circuit

like a linear feedback shift register (LFSR) whose out-

puts are repeatable and have many of the characteristics

of true random numbers [32]. Mathematically speaking,

the SNG approximates a Bernoulli process that generates

random binary sequences of the coin-flipping type,

where each new bit is independent of all earlier bits.

The essence of SC can be seen in how it is used to

perform basic multiplication. Let X and Y be two N-bit

SNs that are applied synchronously to a two-input AND

gate, as in Figure 2. A 1 appears in the AND’s output bit-

stream Z if and only if the corresponding values of X and

Y are both 1, hence

�̂�𝑍 𝑝𝑋 × 𝑝𝑌 (1)

March 2017: manuscript was submitted for review.

This work is supported in part by the National Natural Science Foun-

dation of China (NSFC) under Grants No. 61472243 and 61204042, and
by Grant CCF-1318091 from the U.S. National Science Foundation.

Armin Alaghi is with the Computer Science and Engineering De-

partment of the University of Washington, Seattle, WA 98195. E-mail:
amin@cs.washington.edu.

Weikang Qian is with University of Michigan-Shanghai Jiao Tong

University Joint Institute at Shanghai Jiao Tong University, Shanghai,
China 200240. E-mail: qianwk@sjtu.edu.cn.

John P. Hayes is with the Computer Science and Engineering Divi-

sion, University of Michigan, Ann Arbor, MI 48109. E-mail:
jhayes@umich.edu.

Comparator

Ck

R

B

R < B

k-bit binary

number B

Random number

source RNS

N-bit stochastic

representation of B

x
k

Clock

X = 0101100101110000 ...X = 0101100101110000 ...

Figure 1. Stochastic number generator (SNG).

X = 1011100101010010

Y = 0110101000110000
Z = 0010100000010000x

y
z

Figure 2. AND gate as a stochastic multiplier, with 𝑝𝑋 = 8 16⁄ , 𝑝𝑌 =
6 16⁄ and 𝑝𝑍 = 𝑝𝑋 𝑝𝑌 = 3 16⁄ . Equivalently, 𝑍 = 𝑋 𝑌 = 3/16.

F

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

In other words, the AND gate serves as a multiplier of

probabilities, and can be orders of magnitude smaller

than a comparable BN multiplier. The SC multiplier’s

output bit-pattern Z varies with the randomness of the

SNGs generating X and Y. These variations have little

impact on the multiplier’s output value �̂�𝑍, however, in-

dicating a naturally high degree of error tolerance. On the

other hand, the precision with which �̂�𝑍 reflects 𝑝𝑋 × 𝑝𝑌

tends to be rather low. This situation can be improved by

increasing N, but N must be doubled for every desired

extra bit of precision, a property that leads to very long

bit-streams and slow computations. For example, BNs of

length k = 8 provide 8-bit precision. To obtain similar

precision with SC requires SNs of length N = 2k = 256 or

more. Hence, SC tends to be restricted to low-precision

applications where the bit-streams are not excessively

long. More troublesome is the need for X and Y to have

statistically independent or uncorrelated bit-patterns in

order for �̂�𝑋
and �̂�𝑌

to be treated as independent proba-

bilities, as required by Equation (1). In the extreme case

where exactly the same bit-pattern X is applied to both

inputs of the AND gate, the output bit-stream’s value

becomes pX instead of pX2, implying a potentially large

computation error which cannot be corrected simply by

extending N.

As the cost and reliability of conventional binary

computing (BC) improved in the 1960s and ‘70s with the

development of integrated circuits tracked by Moore’s

Law, interest in SC waned. It was seen as poorly suited to

general-purpose computation, where high speed, accura-

cy, and compact storage were routinely expected. How-

ever, SC continued to find niche applications in areas

such as image processing, control systems, and models of

neural networks, which can take advantage of some of its

unique features.

Neural networks, both natural and artificial, constitute

an interesting case. As Figure 3 suggests, biological neu-

rons process noisy sequences of voltage spikes which

loosely resemble SNs [31][57]. Information is encoded in

both the timing and the frequency of the spikesthe

exact nature of the neural code is one of nature’s myster-

ies. However, significant information, such as the inten-

sity of a muscular action, is embedded SN-like in the

spike rate over some time window; the spike positions

also exhibit SN-style randomness. Moreover, the opera-

tion of a single neuron is commonly modeled by an in-

ner-product function of the form

𝐹 = ∑ 𝑊𝑖
𝑁
𝑖=1 × 𝑋𝑖 (2)

where the Xi’s are signals from other neurons, and the

𝑊𝑖′s are synaptic weights denoting the influence of those
neurons. Since the number of interneural connections

and multiplications N can be in the thousands, SC-based

implementations of Equation (2) are attractive because of

their relatively low hardware cost [14][46].

The state of SC circa 2000 can be characterized as fo-

cused on a handful of old and specialized applications

[3][59]. The situation changed dramatically when Gaudet

and Rapley observed that SC could be applied success-

fully to the difficult task of decoding low-density parity

check (LDPC) codes [30]. Although LDPC codes, like

SC, were discovered in the 1960s, there was little practi-

cal interest in them until the advent of suitable decoding

methods and circuits, as well as the inclusion of LDPC

codes in new wireless communication standards such as

digital video broadcasting (DVB-S2) and WiMAX (IEEE

802.16). LDPC decoding employs a probabilistic algo-

rithm that passes messages around a code representation

called a Tanner graph, while repeatedly performing two

basic operations, parity checking and equality checking.

It turns out that these operations are implemented effi-

ciently by the stochastic circuits in Figure 4. Many cop-

ies of these circuits can be operated in parallel, resulting

in fast, low-cost decoding, and demonstrating the poten-

tial of SC to provide massive parallelism. Recent devel-

opments have shown that SC-based LDPC decoders are

competitive in performance and cost with conventional

binary designs [47].

Other new applications and technology developments

supported this revival of interest in SC. With the emer-

gence of mobile devices such as smart phones and medi-

cal implants, extremely small size and power, as well as

low-cost digital signal processing, have become major

system goals [48]. An illustrative application of SC in the

medical field is the design of retinal implants to aid the

blind. An implant chip can be placed in the eye to receive

Figure 3. Spike trains in a biological neural network and equivalent
SNs.

pX

pY

pX (1 – pY) + pY(1 – pX)

J Q

K

pX

pY

Clock

pX pY

 – pX – pY + 2pX pY

pX pY

 – pX – pY + 2pX pY

(b)

(a)

Figure 4. Stochastic circuits for LDPC decoding [30]: (a) parity

check node; (b) equality node.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 3

and process images and transfer the results via pulse

trains through the optic nerve directly to the brain. The

chip must satisfy extraordinarily severe size and power

constraints, which SC is particularly well-suited to

meet [4].

Significant aspects of SC that had been ignored in the

pastWhy does the apparently simple logic circuit of

Figure 4b implement such a complex arithmetic func-

tion? now began to receive attention. The relation be-

tween logic circuits and the stochastic functions they

implement has been clarified, resulting in general design

procedures for implementing arithmetic operations [75].

Correlation effects in SC have recently been quantified,

leading to the surprising conclusion that correlation can

serve as a valuable computational resource [5]. Bit-

stream length can be reduced by careful management of

correlation and precision (progressive precision [6]). The

high contribution of stochastic-binary number conversion

circuits to overall SC costs [75] is being recognized and

addressed. New technologies, notably memristors, have

appeared that have naturally stochastic properties which

reduce data-conversion needs [43].

Despite these successes, SC still has limitations that

must be considered when used in certain applications.

Most importantly, the run time of SC circuits increases

prohibitively when high precision or highly accurate

computations are needed. Recent investigations have

shown that the long computation time may lead to exces-

sive energy consumption, thus making low-precision BC

a better choice [1][58][62]. Manohar [58] provides a the-

oretical comparison between SC and BC and shows that

even for multiplication, SC ends up having more gate

invocations (i.e., the number of times an AND gate is

called). Aguiar and Khatri [1] perform a similar compari-

son but instead of comparing the number of gate invoca-

tions, they actually implement BC and SC multipliers

with different bit widths. They conclude that SC multi-

plication is more energy efficient for computations that

require 6 bits of precision (or lower). However, if con-

version circuits are needed, SC is almost always worse

than BC [1].

This poses an important challenge to SC designers:

their designs must be competitive in terms of energy effi-

ciency with BC circuits of similar accuracy/precision.

Some of the topics that can potentially address this prob-

lem are (i) exploiting progressive precision to reduce

overall run time, (ii) exploiting SC’s error tolerance to

improve energy usage, and (iii) reducing or eliminating

the cost of data conversion. Examples of these tech-

niques appear in the current literature.

This paper focuses on more recent SC work than the

survey [3], and attempts to highlight the big challenges

facing SC and their potential solutions. The remainder of

the paper is organized as follows. Section II provides a

formal introduction to SC and its terminology, including

SC data formats, basic operations, and randomness re-

quirements. Readers familiar with the topic can skip this

section. General synthesis methods for combinational

and sequential SC circuits are discussed in Section III.

Section IV examines the application domains of SC, as

well as some emerging new applications. Concluding

remarks and future challenges of SC are discussed in

Section V.

II. BASIC CONCEPTS

Probabilities are inherently analog quantities that corre-

spond to continuous real numbers. Stochastic circuits can

be therefore interpreted as hybrid analog-digital circuits

because they employ digital components and signals to

process analog data. Theoretically, the AND gate of Fig-

ure 2 can perform multiplication on numbers with arbi-

trary precision. However, to find the probability 𝑝𝑍 =
𝑝𝑋 × 𝑝𝑌 we must obtain a finite number of discrete sam-

ples of the circuit’s output from which to estimate 𝑝𝑍 .

The estimation’s accuracy increases slowly with the

number of samples, and is limited by noise considera-

tions, making it impractical to estimate 𝑝𝑍 with high pre-

cision.

A. Stochastic number formats

Interpreting SNs as probabilities is natural, but it limits

them to the unit interval [0,1]. To implement arithmetic

operations outside this interval, we need to scale the

number range in application-dependent ways. For exam-

ple, integers in the range [0,256] can be mapped to [0,1]

by dividing them by a scaling factor of 256, so that {0, 1,

2, …, 255, 256} is replaced by {0, 1/256, 2/256, …,

255/256, 1}. Such scaling can be considered as a pre-

processing step required by SC.

SC can readily be defined to handle signed numbers.

An SN X whose numerical value is interpreted in the

most obvious fashion as 𝑝𝑋 is said to have the unipolar

format. To accommodate negative numbers, many SC

systems employ the bipolar format where the value of X

is interpreted as 2𝑝𝑋 − 1 , so the SC range effectively
becomes [1, 1]. Thus, an all-0 bit-stream has unipolar

value 0 and bipolar value 1, while a bit-stream with

equal numbers of 0’s and 1’s has unipolar value 0.5, but

bipolar value 0. Note that the function of an SC circuit

usually changes with the data format used. For instance,

the AND gate of Figure 2 does not perform multiplica-

tion in the bipolar domain. Instead, an XNOR gate must

be used, as shown in Example 1 below. On the other

hand, both formats can use the same adder circuit. In

what follows, to reduce confusion, we use X to denote

the numerical value of the SN X. With this convention,

𝑋 = 𝑝𝑋 in the unipolar domain, while 𝑋 = 2𝑝𝑋 − 1 in
the bipolar domain.

Several other SN formats have appeared in the litera-

ture [60]. Inverted bipolar is used in [2] to simplify the

notation for spectral transforms. In [61] the value of a

bit-stream is interpreted as the ratio of 1’s to 0’s, which

creates a very wide, albeit sparse, number range. Table I

shows the various number formats mentioned so far.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

These formats deal with single bit-stream only. Dual-rail

and multi-rail representations have also been proposed.

Gaines [29], for example, presents dual-rail unipolar and

bipolar number formats, along with the basic circuits for

each format. Toral et al. propose another dual-rail encod-

ing that represents a ternary stochastic number 𝑋 =
𝑥1𝑥2 …𝑥𝑁, where each 𝑥𝑖 ∈ {−1,0,1} [94]; it will be dis-
cussed in Section IV-A. The binomial distribution gener-

ator of [75], which is discussed in Section III, produces a

multi-rail SN.

B. Stochastic number generation

We can map an ordinary binary number to an SN in uni-

polar format using the SNG in Figure 1. To convert the

unipolar SN back to the binary, it suffices to count the

number of 1’s in the bit-stream using a plain (up) coun-

ter. Slight changes to these circuits allow for conversion

between bipolar SNs and binary numbers. In SC, num-

ber-conversion circuits tend to cost much more than

number-processing circuits. For example, to multiply two

8-bit binary numbers using the SC multiplier of Figure 2,

we need two SNGs and a counter. A rough gate count

reveals that the conversion circuits have about 250 gates

while the computation part, is just a single AND gate.

Extensive use of conversion circuits can severely affect

the cost of SC circuits. Qian et al. [76] report that the

conversion circuits consume up to 80% of the total area

of several representative designs. For this reason, it is

highly desirable to reduce the cost of conversion circuits.

Methods to reduce the cost of constant number gen-

eration are investigated in [25][79]. For massively paral-

lel applications such as LDPC decoding, a single copy of

random number generator can be shared among multiple

copies of SC circuits to provide random inputs, thus ef-

fectively amortizing the cost of conversion circuits

[21][89]. Furthermore, inherently stochastic nanotech-

nologies like memristors offer the promise of very low-

cost SNGs [43]. The cost of data conversion can also be

lowered if analog inputs are provided to the SC circuit.

In this case, it may be feasible to directly convert the

inputs from analog to stochastic using ramp-compare

analog-to-digital converters [46][64] or delta-sigma con-

verters [83].

C. Accuracy and randomness

The generation of an SN X resembles an ideal Bernoulli

process producing an infinite sequence of random 0’s

and 1’s. In such a process, each 1 is generated inde-

pendently with fixed probability 𝑝𝑋; 0’s thus appear with

probability 1 − 𝑝𝑋 . The difference between the exact

value 𝑝𝑋 and its estimated value �̂�𝑋 (estimated over N

samples) indicates the accuracy of X. This difference is

usually expressed by the mean square error (MSE) 𝐸𝑋

given by

𝐸𝑋 = 𝔼[(�̂�𝑋 − 𝑝𝑋)2] =
𝑝𝑋(1 − 𝑝𝑋)

𝑁

(3)

Equation (3) implies that inaccuracies due to random

fluctuations in the SN bit-patterns can be reduced as

much as desired by increasing the bit-stream length N.

Hence the precision of X can be increased by increasing

N or, loosely speaking, the quality of a stochastic compu-

tation tends to improve over time. This property is

termed progressive precision, and is a feature of SC that

will be discussed further later.

Stochastic circuits are subject to another error source

which is much harder to deal with, namely insufficient

independence or correlation among the input bit-streams

of a stochastic circuit. Correlation is due to signal reuse

caused by reconvergent fanout, shared randomness

sources, and the like. As noted in Section I, if a bit-

stream representing X is fanned out to both inputs of the

AND gate in Figure 2, the gate computes X instead of X

squared. This major error is due to maximal (positive)

correlation between the AND’s input signals. In general,

if correlation changes the output number, the resulting

error does not necessarily go toward zero as N increases.

It is instructive to interpret SN generation as a Monte

Carlo sampling process [6]. Consider again the SNG of

Figure 1 and, for simplicity, assume that both the input B

and the random source 𝑅 have arbitrary precision. As-
sume further that the value 𝑝𝑋 of B is unknown. The
SNG effectively generates a sequence X of 𝑁 samples,
and we can get an estimate �̂�𝑋 of 𝑝𝑋 by counting the

number of 1’s in X. It is known that �̂�𝑋 converges to

the exact value 𝑝𝑋 at the rate of 𝑂(1/√𝑁).
For most stochastic designs, LFSRs are used as the

random number sources to produce stochastic bit-

streams. Although these random sources are, strictly

speaking deterministic, they pass various randomness

tests [32][44] and so are considered pseudo-random.

Such tests measure certain properties of a bit-stream,

e.g., the frequency of 1’s, the frequency of runs of k 1’s,

etc., and check the extent to which these properties

match the behavior of a true random number generator.

Despite what is commonly believed, SNs do not need

to pass many randomness tests. In fact, in order to have

 �̂�𝑋
= 𝑝𝑋 we only need X to have the correct frequency

Table I. Possible interpretations of a bit-stream of length 𝑁 containing 𝑁1 1’s and 𝑁0 0’s.

Format Number value Number range Relation to unipolar value 𝒑𝑿

Unipolar (UP) 𝑁1/𝑁 [0, 1] 𝑝𝑋

Bipolar (BP) (𝑁1 − 𝑁0)/𝑁 [1, 1] 2𝑝𝑋 − 1

Inverted bipolar (IBP) (𝑁0 − 𝑁1)/𝑁 [1, 1] 1 − 2𝑝𝑋

Ratio of 1’s to 0’s 𝑁1/𝑁0 [0, +∞] 𝑝𝑋/(1 − 𝑝𝑋)

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 5

of 1’s. So it is possible to replace random number

sources by so-called deterministic sources, which employ

predictable patterns and lack most of the usual random-

ness attributes [6][38]. An example of a deterministic

format is where all the 1’s of an SN are grouped together

and followed by all the 0’s, as in 111111100000 [13].

To generate a deterministic bit-stream of the above

form, we can use a counter to generate a sequence of

deterministic values 0, 1/𝑁, 2/𝑁,… , (𝑁 − 1)/𝑁 and

feed it to the comparator of Figure 1. It can be proved

that the difference between �̂�𝑋 (the value of the generat-

ed bit-stream) and 𝑝𝑋 (the constant number fed to the

comparator) is no more than 1/𝑁, implying that �̂�𝑋 con-

verges to 𝑝𝑋 at the faster rate of 𝑂(1/𝑁). This motivates
the use of deterministic number sources in SC, and in-

deed some SC circuits use such deterministic numbers

[6]. However, there are several challenges to overcome

when deterministic number formats are used, including

limited scalability, and the cost of number generation to

conserve the deterministic formats.

When many mutually uncorrelated SNs are needed,

we can still extend the foregoing deterministic number

generation approach, but its cost significantly increases

with number of inputs. Gupta and Kumaresan [34] de-

scribed an SN multiplier that produces exact results for

any given input precision. However, to multiply 𝑘 𝑚-bit

numbers using their method requires bit-streams of

length 2𝑘𝑚, which becomes impractical for circuits with

a large number of inputs.

By employing the deterministic approach, one gains

a better control over the progressive precision of the SNs.

Random number sources provide this property naturally

to some degree. To fully exploit it, quasi-random or low-

discrepancy sources may be used [6]. SNs generated via

low-discrepancy sequences converge with the rate of

𝑂(1/𝑁). However, the benefits of using low-discrepancy

sequences also diminish as the number of inputs in-

crease, because the cost of generating them is much

higher than pseudo-random number generation.
In summary, it may be beneficial to use deterministic

number sources for SC circuits that have few inputs

(three or fewer uncorrelated inputs). For circuits with

more number sources, it appears better to use LFSRs and

settle for the slower 𝑂(1/√𝑁) convergence rate.

D. Basic arithmetic operations

SC multiplication was discussed in the previous sections.

SC addition is usually performed by a multiplexer

(MUX) implementing the Boolean function 𝑧 =
(𝑥 𝑟′) (𝑦 𝑟), where 𝑥 and 𝑦 are the primary (data)
inputs and 𝑟 is the select input. A purely random bit-
stream of probability 𝑝𝑅 = 0.5 is applied to r. The bit-
streams X, Y, and Z can be interpreted either as unipolar

or bipolar. As Figure 5 shows, half the output bit-stream

Z comes from X (blue) and the other half from Y (red), as

decided by R. It follows that 𝑝𝑍 = 0.5(𝑝𝑋) + 0.5(𝑝𝑌) .
Therefore, with either the unipolar or bipolar format, the

output value 𝑍 = 0.5𝑋 + 0.5𝑌. Notice that R provides a
scaling factor of 0.5 and maps the sum to [0, 1] in the

unipolar case, or to [1, 1] in the bipolar case. This type

of scaled addition entails a loss of precision since half of

the information in the input bit-streams is effectively

discarded. Thus, in the case of Figure 5 where the input

precision is log2 N = 4 bits, the precision of the output

also drops to 4 bits (as opposed to the expected 5 bits of

precision). To ensure that Z has precision of 5, the length

of all the bit-streams would have to be doubled to 32. It

should also be noted that the probability 𝑝𝑍 can be ex-

pected to fluctuate around 0.5(𝑝𝑋 + 𝑝𝑌) due to random
fluctuations in R.

Several other adder designs have been proposed in the

literature. A novel, scaling-free stochastic adder is proposed

in [99], which operates on the ternary stochastic encoding

proposed in [94]. Its key idea is to use a counter to remem-

ber carries of 1 and −1 and release them at a later time slot.
Lee et al. [46] describe an adder that eliminates the need for

a separate random source. Since adding is expensive, Ting

and Hayes [91] propose using accumulative parallel coun-

ters (APCs) [71] in computations that end with an adding

reduction e.g., matrix multiplication. An APC performs ad-

dition and stochastic-to-binary conversion simultaneously.

SC subtraction is easily implemented in the bipolar

domain. Because inverting a bit-stream negates its bipo-

lar value, we can use an inverter and a MUX to imple-

ment a bipolar subtractor. However, with unipolar en-

coding, since the value range [0, 1] does not include neg-

ative numbers, implementing subtraction becomes com-

plicated. Various methods of approximating unipolar

subtraction exist in the literature [5][27].

SC division is the most difficult of the basic opera-

tions. First, the result 𝑍 = 𝑋1/𝑋2 falls outside the range

[0, 1] if 𝑋1 > 𝑋2, so we must assume that 𝑋1 ≤ 𝑋2. Sec-

ond, as will be discussed in Section II.E, SC combina-

tional circuits are only capable of implementing multi-

linear functions, but division is naturally a non-linear

function. Nevertheless, SC circuits that implement divi-

sion have been proposed in the literature. These circuits

either include sequential elements, or exploit correlation

among the input SNs.

Gaines [29] implemented division using a feedback

loop (Figure 6). First, an initial guess of the result is

stored in a binary variable 𝑝𝑍, and then 𝑌 = 𝑍 × 𝑋2 is

calculated using an SC multiplier. If 𝑍 were a correct
guess of the division result 𝑋1/𝑋2 , then 𝑋1 = 𝑌 must
hold. So based on the observed value of 𝑌, the guessed

x 0

1

MUX

X = 1011100101010010

Y = 0110101000110000

R = 0010100110011101

Z = 1011100001010010

y

z

r

Figure 5. Multiplexer serving as a stochastic adder, with 𝑝𝑋 =
8 16⁄ , 𝑝𝑌 = 6 16⁄ , 𝑝𝑅 = 8 16⁄ , and 𝑝𝑍 = 1/2(𝑝𝑋 + 𝑝𝑌) = 7 16⁄ .

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

result 𝑝𝑍 is updated. If 𝑌 > 𝑋1, 𝑝𝑍 is reduced, and if 𝑌 <
𝑋1, 𝑝𝑍 is increased. Given sufficient time, 𝑝𝑍 eventually

converges to 𝑋1/𝑋2. Note that this method needs a binary

register to hold the guessed result 𝑝𝑍 , and an SNG to

generate an SN representing 𝑍. Furthermore, the conver-
gence time of the circuit can be long.

An approximate divider can be implemented by a JK

flip-flop. If we connect the J and K inputs to 𝑋1 and 𝑋2,

respectively, then the SN appearing at the output of the

flip-flop implements 𝑍 = 𝑋1/(𝑋1 + 𝑋2). The JK flip-flop

of Figure 4b is used for the purpose of division. Recently,

a new SC divider has been proposed by Chen and Hayes

[20]. This divider exploits correlation among its inputs

and implements an exact division function.

E. Stochastic functions

As shown in the previous sections, SC addition and

multiplication can be implemented by simple combina-

tional circuits. A related question is: Given an arbitrary

combinational circuit, what SC function does it compute?

Consider a combinational circuit C implementing the

Boolean function 𝑓(𝑥1, … , 𝑥𝑘). When supplied with un-

correlated SNs, C implements the (unipolar) stochastic

function 𝐹(𝑋1, … , 𝑋𝑘) defined by

𝐹(𝑋1, … , 𝑋𝑘) =
 (1 − 𝑋1)(1 − 𝑋2)… (1 − 𝑋𝑘)𝑓(0,0, … ,0)

 + (1 − 𝑋1)(1 − 𝑋2)… (𝑋𝑘)𝑓(0,0, … ,1)

 . . .

+ (𝑋1)(𝑋2) … (𝑋𝑘)𝑓(1,1, … ,1) (4)

When expanded out, Equation (4) takes the form of a

multilinear polynomial. Consequently, combinational

circuits with uncorrelated inputs can only approximate

their target function via a suitable multilinear polynomial

(see Section III).

Example 1: Let 𝑓(𝑥1, 𝑥2) be the logic function of an
XOR gate. Then from Equation (4)

𝑍 = 𝐹(𝑥1, 𝑥2) = (1 − 𝑋1)𝑋2 + 𝑋1(1 − 𝑋2)
= 𝑋1 + 𝑋1 − 2𝑋1𝑋2

or, equivalently,

𝑝𝑍 = 𝑝𝑋1
+ 𝑝𝑋2

− 2 𝑝𝑋1
𝑝𝑋2

 (5)

Thus 𝑋1 + 𝑋2 − 2𝑋1𝑋2 is the unipolar stochasic function

of XOR. If we treat the SNs as bipolar numbers, where

𝑋 = 2𝑝𝑋 − 1, Equation (5) can be rewritten as 2𝑝𝑍 −
1 = −(2𝑝𝑋1

− 1)(2𝑝𝑋2
− 1), i.e., 𝑍 = −𝑋1𝑋2 . Hence,

an XOR gate serves as a bipolar multiplier with negation.

Using the inverted bipolar or IBP format (see Table I),

we get 𝐹 = 𝑋1𝑋2 , and the XOR gate becomes an IBP

multiplier without negation. Clearly, an XNOR gate is

the basic bipolar multiplier.
We can extend the functionality of SC circuits by in-

corporating sequential elements, as in the examples of

Figure 4. In particular, sequential elements enable im-

plementation of rational functions. Section III shows how

arbitrary functions can be implemented efficiently using

sequential SC circuits.

F. Correlation in stochastic operations

Although correlation in input SNs is usually detrimental

to the functional correctness of stochastic circuits, careful

use of correlation may be beneficial. Indeed, by feeding

a circuit with inputs that are intentionally correlated, we

obtain a different SC function, which may sometimes be

very useful. For example, an XOR gate with maximally

correlated inputs 𝑋 and 𝑌 implements the absolute differ-
ence function |𝑋 − 𝑌|, as shown in [5].

To measure the correlation between SNs, Alaghi and

Hayes [5] introduced a similarity measure called SC cor-

relation (SCC), which is quite different from the more

usual Pearson correlation measure [22]. It is claimed in

[5] that SCC is more suitable for SC circuit design be-

cause unlike the Pearson correlation, it is independent

from the value of SNs. However, SCC cannot be easily

extended to more than two SNs.

Maintaining a desired level of correlation between

SNs is difficult. Consider the problem of decorrelation,

i.e., systematic elimination of undesired correlation.

There are two main ways to reduce correlation. One is

regeneration, which converts a corrupted SN to binary

form and then back to stochastic using a new SNG. An

example of this is shown in Figure 7a, which computes

𝑍 = 𝑋2. This decorrelation method has very high hard-

ware cost, and may eliminate desirable properties such as

progressive precision. An alternative method called isola-

tion is illustrated in Figure 7b. A D-flip-flop (DFF) is

inserted into line 𝑥 and clocked at the bit-stream fre-
quency, so it delays 𝑋 by one clock cycle. If the bits of 𝑋
are independent, as is normally the case, then 𝑋 and a k-
cycle delayed version of 𝑋 are statistically independent

in any given clock period. In general, isolation-based

decorrelation has far lower cost than regeneration, but

the numbers and positions of the isolators must be care-

fully chosen. Ting and Hayes [92] have developed a the-

SNG z

x2 y

Up/down

counter

x1
pZ

Figure 6. Counter-based stochastic divider.

DFF

(b)(a)

1001(1/2)

1100(1/2)

1000(1/4)
x

z

x

r

1100(1/2)

1001(1/2)
1000(1/4)

z

SNGCounter

Figure 7. (a) Regeneration-based and (b) isolation-based decorrelation
of a squarer circuit. DFF denotes a D flip-flop isolator.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 7

ory for placing isolators and have obtained conditions for

a placement to be valid.

As noted earlier, a stochastic multiplier requires inde-

pendent inputs for correct operation. However, Alaghi

and Hayes noticed that some operations, including

MUX-based addition, do not require their inputs to be

independent [8]; such circuits are called correlation in-

sensitive (CI). Figure 8 shows how correlation insensitiv-

ity can be exploited in an SC adder. The original design

of Figure 8a assumes that inputs X and Y are generated

independently. Because an SC adder is CI, the input ran-

dom number sources (RNSs) can be shared as shown in

Figure 8b. Correlation between X and Y does not lead to

errors, since the output bit z at any time is taken from X

or Y, but not both; cf. Figure 5.

III. DESIGN METHODS

Until recently, stochastic circuits were designed manual-

ly. The circuits of Figure 4 are examples of clever de-

signs that implement complex functions with a handful

of gates. Designing stochastic circuits for arbitrary func-

tions is not easy. This problem has been studied inten-

sively in the last few years, and several general synthesis

methods have been proposed

[2][7][19][49][52][82][101]. These methods can be clas-

sified into two types depending on whether the target

design is reconfigurable or fixed. A reconfigurable design

has some programmable inputs that allow the same de-

sign to be reused for different functions. A fixed design

can only implement one target function. In this section,

unless otherwise specified, we only discuss SC design in

the unipolar domain.

A. Reconfigurable stochastic circuits

The basic form of a reconfigurable stochastic circuit is

shown in Figure 9. Its computing core consists of a dis-

tribution-generating circuit (DGC) and a MUX. The

DGC has 𝑚 inputs 𝑥1, … , 𝑥𝑚. It outputs a binary value 𝑠
in the range {0,1, … , 𝑛} . The inputs 𝑥1, … , 𝑥𝑚 are fed

with independent SNs 𝑋1, 𝑋2, … , 𝑋𝑚 , all encoding the

same variable value 𝑋 . Then the port 𝑠 outputs a se-
quence of random numbers. The probability of 𝑠 to as-
sume the value 𝑖 (0 ≤ 𝑖 ≤ 𝑛) is a function of the variable
𝑋 , denoted by 𝐹𝑖(𝑋) . With different DGCs, different

probability distributions 𝐹0(𝑋), … , 𝐹𝑛(𝑋) of 𝑠 can be
achieved. The signal 𝑠 is used as the select input of the
MUX. The data inputs of the MUX are 𝑛 + 1 SNs
𝐵0, … , 𝐵𝑛, which encode constant probabilities 𝐵0 , … , 𝐵𝑛.

The value of the output SN 𝑌 of the MUX can be ex-

pressed as

𝑌 = 𝑃(𝑦 = 1) = ∑𝑃(𝑦 = 1|𝑠 = 𝑖)𝑃(𝑠 = 𝑖)

𝑛

𝑖=0

= ∑𝐵𝑖𝐹𝑖(𝑋)

𝑛

𝑖=0

(6)

As Equation (6) shows, the final output is a linear

combination of the distribution functions

𝐹0(𝑋), … , 𝐹𝑛(𝑋). This type of circuit is reconfigurable
because with different sets of constant values 𝐵𝑖 , differ-

ent functions can be realized using the same design. Of

course, not every function can be realized exactly by

Equation (6). Given a target function 𝐺(𝑋), an optimal
set of constant values are determined by minimizing the

approximation error between the linear combination and

𝐺(𝑋) [76].
Prior research on synthesizing reconfigurable stochas-

tic circuits can be distinguished by the form of the DGC

proposed. The first work in this category employed an

adder as the DGC [77]. The adder takes 𝑛 Boolean inputs
and computes their sum as the output signal 𝑠. Given that
the 𝑛 Boolean inputs are independent and have the same
probability 𝑋 of being 1, the output 𝑠 follows the well-
known binomial distribution

𝑃(𝑠 = 𝑖) = (
𝑛
𝑖
) (1 − 𝑋)𝑛−𝑖𝑋𝑖

for 𝑖 = 0,1, … , 𝑛. Therefore, the computation realized has
the following form:

𝑌 = ∑𝐵𝑖 (
𝑛
𝑖
) (1 − 𝑋)𝑛−𝑖𝑋𝑖

𝑛

𝑖=0

(7)
x

r1

z

y

r2

0

1

k

k

k

k

x

r1

z

v

0

1

k

k

k

k

r2 = r1

(a)

(b)

C

C

C

C

r

r

MUX

MUX

Clock

RNS 2

Clock

RNS 1

Clock

RNS 1

Figure 8. Exploiting correlation insensitivity in an SC adder: (a) origi-
nal design and (b) design sharing an RNS.

MUX...

0

1

n

Distribution

generating

circuit DGC

P(s = i) = Fi (X)

X

Y
SNG

SNG

SNG

SNG

...

SNG

...

...

SN X2

SN Xm

B0

B1

Bn

Counter

SN B0

SN B1

SN Bn

SN Y

x1

x2

xm

s

y

SN X1

SNG

Figure 9. Reconfigurable stochastic circuit; examples of the distribu-

tion generating circuit include an adder [77] and an up/down counter

[52].

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

which is known as a Bernstein polynomial [55][78]. The

approach of [76] finds a Bernstein polynomial that is

closest to the target function and realizes it using the re-

configurable stochastic circuit. The drawback of this

method is that 𝑛 SNGs are required to generate 𝑛 SNs
𝑋1, … , 𝑋𝑛. To address this issue, later work explored the

use of sequential circuits as the DGC. The key is to find a

simple circuit which produces a distribution that approx-

imates arbitrary functions closely.

Li et al. [52] first studied the use of an up/down coun-

ter as the DGC. The counter has a Boolean input 𝑥 and
outputs the current count value. If 𝑥 = 1, the count in-
creases by one, otherwise it decreases by one. The count

value remains unchanged for 𝑥 = 1 if it has reached its
maximal value. Also, it remains unchanged for 𝑥 = 0 if it
has reached its minimal value.

If the input 𝑥 carries an SN X, the state behavior of the
counter can be modeled as a time-homogeneous Markov

chain [82]. A Markov chain has an equilibrium distribu-

tion (𝜋0(𝑋), … , 𝜋𝑛(𝑋)), where 𝜋𝑖(𝑋) is the probability
of the state 𝑖 at equilibrium, which is a function of the
input value 𝑋 . The equilibrium probability distribution
can be used as the DGC of Figure 9, yielding 𝐹𝑖(𝑋) =
𝜋𝑖(𝑋) and

𝑌 = ∑𝐵𝑖𝜋𝑖(𝑋)

𝑛

𝑖=0

However, the reconfigurable stochastic circuit using the

counter as the DGC is not able to approximate a wide

range of functions. To enhance the representation capa-

bility, extensions were proposed in [49][84]. These ex-

tensions use FSMs with extra degrees of freedom, thus

allowing a wider range of functions to be implemented.

B. Fixed stochastic circuits

In many applications, the computation does not change,

so a fixed stochastic circuit is enough. The design of

fixed stochastic circuits based on combinational logic has

been studied in several recent papers [2][7][101].

The work in [7] proposes a synthesis method

STRAUSS based on the Fourier transform of a Boolean

function. The Fourier transform maps a vector �⃗� repre-

senting a Boolean function into a spectrum vector 𝑆 as
follows

𝑆 =
1

2𝑛
𝐻𝑛 × �⃗�

 (8)

Here �⃗� is obtained by replacing 0 and 1 in the output
column of the truth table by +1 and −1, respectively,
and 𝐻𝑛 is the Walsh matrix recursively defined as

𝐻1 = [
+1 +1
+1 −1

] , 𝐻𝑛 = [
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
]

The authors of [7] first demonstrate a fundamental re-

lation between the computation of a stochastic circuit and

its spectrum vector. They use the IBP format for SNs

defined in Table I. The Boolean function 𝑓(𝑥1, … , 𝑥𝑛)
then corresponds to the stochastic function

𝐹(𝑋1, … , 𝑋𝑛) = ∑ 𝑐(𝑎1, … , 𝑎𝑛)∏𝑋
𝑗

𝑎𝑗

𝑛

𝑗=1(𝑎1,…,𝑎𝑛)∈{0,1}𝑛

where the 𝑐(𝑎1, … , 𝑎𝑛)’s are constant coefficients. This is
a multilinear polynomial on 𝑋1, … , 𝑋𝑛 , cf. Equation (4).

An important finding in [7] is that the coefficient vector

𝑐 = [𝑐(0, … ,0), … , 𝑐(1, … ,1)]𝑇 is the spectrum vector 𝑆
specified by Equation (8).

Example 2. Consider an XOR gate, which serves as a

multiplier in IBP format (see Example 1). Its original

truth table vector is [0 1 1 0]T. Replacing 0s and 1s by

+1s and −1s, we get the vector �⃗� = [+1 − 1 − 1 +
1]T. Applying Equation (8) to perform the Fourier trans-
form yields the spectrum vector

𝑆 =
1

22
[

+1 +1
+1 −1

+1 +1
+1 −1

+1 +1
+1 −1

−1 −1
−1 +1

] [

+1
−1
−1
+1

] = [

0
0
0
1

]

This again shows that the stochastic function of XOR is

IBP multiplication.

Based on the relation between spectral transforms and

stochastic circuits, a method to synthesize a stochastic

circuit for a target function 𝑆 is proposed in [7]. The

basic idea is to apply the inverse Fourier transform �⃗� =

𝐻𝑛𝑆 to obtain the vector �⃗� . However, this vector may
contain entries that are neither +1 nor −1, implying that

𝑆 does not correspond to a Boolean function. For exam-
ple, consider the scaled addition function 1/2(𝑋1 + 𝑋2).

Its 𝑆 (coefficient) vector is [0 1/2 1/2 0]T , and the

inverse Fourier transform �⃗� = 𝐻2𝑆 yields �⃗� =
[1 0 0 − 1]T , which contains the non-Boolean ele-

ment zero. This problem is implicitly resolved in the

standard MUX-based scaled adder (Figure 5) which has a

third input r that introduces the constant probability 0.5.

In general, an entry −1 < 𝑞 < 1 in the �⃗� vector corre-
sponds to an SN of constant probability (1 − 𝑞)/2 .
STRAUSS employs extra SNs of probability 0.5 to gen-

erate these SNs, since a probability of 0.5 can be easily

obtained from an LFSR. A heuristic method is introduced

to synthesize a low-cost circuit to produce multiple con-

stant probabilities simultaneously.

A synthesis problem similar to that of [7] is addressed

in [101]. The authors first analyze the stochastic behavior

of a general combinational circuit whose inputs comprise

n variable SNs 𝑋1, … , 𝑋𝑛 and m constant input SNs

𝑅1, … , 𝑅𝑚 of value 0.5, as shown in Figure 10. If the

Boolean function of the combinational circuit is

𝑓(𝑥1, … 𝑥𝑛 , 𝑟1, … , 𝑟𝑚), then the stochastic circuit in Fig-
ure 10 realizes a polynomial of the form

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 9

𝐹(𝑋1, … , 𝑋𝑛) = ∑
𝑔(𝑎1,… , 𝑎𝑛)

2𝑚
∏𝑋

𝑗

𝑎𝑗
(1 − 𝑋𝑗)

1−𝑎𝑗

𝑛

𝑗=1(𝑎1,…,𝑎𝑛)

∈{0,1}𝑛

(9)

In this equation, for any (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛 ,

𝑔(𝑎1, … , 𝑎𝑛) denotes the weight of the Boolean function
𝑓(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚) on 𝑟, … 𝑟𝑚 , i.e., the number of

input vectors (𝑏1, … , 𝑏𝑚) ∈ {0,1}𝑚 such that 𝑓(𝑎1, … , 𝑎𝑛,
𝑏1, … , 𝑏𝑚) = 1.

Example 3. Consider the case where the combinational

circuit in Figure 10 is a MUX, with 𝑥1 and 𝑥2 as its data

inputs and 𝑟1 as its select input. Then, the circuit’s
Boolean function is 𝑓(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1̅) ∨ (𝑥2 ∧ 𝑟1).
We have 𝑓(0,0, 𝑟1) = 0, 𝑓(0,1, 𝑟1) = 𝑟1, 𝑓(1,0, 𝑟1) = 𝑟1̅,
and 𝑓(1,1, 𝑟1) = 1. Correspondingly, we have 𝑔(0,0) =
0 , 𝑔(0,1) = 𝑔(1,0) = 1 and 𝑔(1,1) = 2. According to
Equation (9), the circuit’s stochastic function is

𝐹(𝑋1, 𝑋2) =
1

2
(1 − 𝑋1)𝑋2 +

1

2
𝑋1(1 − 𝑋2) +

2

2
𝑋1𝑋2

= 1/2(𝑋1 + 𝑋2)

This again shows that the stochastic function of MUX is

a scaled addition.

A synthesis method is further proposed in [101] to re-

alize a general polynomial. It first converts the target to a

multilinear polynomial. Then, it transforms the multilin-

ear polynomial to a polynomial of the form shown in

Equation (9). This transformation is unique and can be

easily obtained. After that, the problem reduces to find-

ing an optimal Boolean function 𝑓∗(𝑥1, … , 𝑥𝑛 , 𝑟1, … , 𝑟𝑚)
such that for each (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛 , the weight of
𝑓∗(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚) is equal to the value 𝑔(𝑎1, … , 𝑎𝑛)
specified by the multilinear polynomial. A greedy meth-

od is applied to find a good Boolean function. The au-

thors also find that in synthesizing polynomials of degree

more than 1, all (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛 can be partitioned
into a number of equivalent classes and the weight con-

straint can be relaxed so that the sum of the weights

𝑓(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚) over all (𝑎1, … , 𝑎𝑛) ’s in each
equivalence class is equal to a fixed value derived from

the target polynomial. The authors of [101] exploit this

freedom to further reduce the circuit cost.

IV. APPLICATIONS

Stochastic computing has been applied to a variety of appli-

cation domains, including artificial neural networks (ANNs)

[12][14][15][17][24][39][46][93][95], control systems [59],

[100], reliability estimation [35], data mining [21], digital

signal processing (DSP) [4][18][40][48][50][54][83], and

decoding of modern error-correcting codes

[26][30][47][63][85][86][89][90][96][97]. Most of these

applications are characterized by the need of a large amount

of arithmetic computation, which can leverage the simple

circuitry provided by SC. They also have low precision re-

quirements for the final results, which can avoid the use of

the excessively long SNs to represent data values. In this

section, we review four important applications for which SC

has had some success: filter design, image processing,

LDPC decoding, and artificial neural networks.

A. Filter design

The design of finite impulse response (FIR) filters is consid-

ered in [18][36]. A general 𝑀-tap FIR filter computes an

output based on the M most recent inputs as follows:

𝑌[𝑛] = 𝐻0𝑋[𝑛] + 𝐻1𝑋[𝑛 − 1] + ⋯
+ 𝐻𝑀−1𝑋[𝑛 − 𝑀 + 1]

(10)

where 𝑋[𝑛] is the input signal, 𝑌[𝑛] is the output signal,
and 𝐻𝑖 is the filter coefficient. The FIR filter thus computes

the inner product of two vectors, cf. Equation (2). A conven-

tional binary implementation of Equation (10) requires 𝑀

multipliers and 𝑀 − 1 adders, which has high hardware
complexity. SC-based designs can potentially mitigate this

problem.

Since the values of 𝐻, 𝑋, and 𝑌 may be negative, bipolar
SNs are used to encode them. A straightforward way to

implement Equation (10) uses 𝑀 XNOR gates for multi-

plications and an 𝑀-to-1 MUX for additions. However,

this implementation has the problem that the output of

the MUX is 1/𝑀 times the desired output. Such down-

scaling causes severe accuracy loss when 𝑀 is large.

...
...

SNG

SNG

...

LFSR

Pr = 0.5

Pr = 0.5

X1

Xn

...

Counter Y

x1

xn

r1

r2

rm

Combinational

Circuit y

Figure 10. The general form of a fixed stochastic circuit based on a

combinational circuit.

X[n]

X[n 1]

X[n 2]

Sign(H0)

Sign(H1)

Sign(H2)

X[n 3]
Sign(H3)

X[n 4]

Sign(H4)

0

1

0

1

|𝐻0|

|𝐻0| + |𝐻1|

0

1

0

1

|𝐻3|

|𝐻3| + |𝐻4|

0

1

0

1

|𝐻0| + |𝐻1|

|𝐻0| + |𝐻1| + |𝐻2|

0

1

0

1

|𝐻0| + |𝐻1| + |𝐻2|

|𝐻0| + |𝐻1| + |𝐻2| + |𝐻3| + |𝐻4|

𝑌[𝑛]

∑ |𝐻𝑖|
4
𝑖=0

m0

m2

m1

m3

XOR0

XOR1

XOR2

XOR3

XOR4

Figure 11. Stochastic implementation of a 5-tap FIR filter with an

uneven-weighted MUX tree.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

To address the foregoing problem, a stochastic design

based on an uneven-weighted MUX tree has been pro-

posed [18][36]. Figure 11 shows such a design for a 5-

tap FIR filter. The input Sign(𝐻𝑖) is a stream of bits, each
equal to the sign bit of 𝐻𝑖 in its 2’s complement binary

representation. The probability for the select input of

each MUX is shown in the figure. The output probability

of the design is 𝑌[𝑛] ∑ |𝐻𝑖|
4
𝑖=0⁄ . In the general case, the

output probability of an uneven-weighted MUX tree is

𝑌[𝑛] ∑ |𝐻𝑖|
𝑀−1
𝑖=0⁄ . Note that the scaling factor is reduced

to ∑ |𝐻𝑖|
𝑀−1
𝑖=0 ≤ 𝑀. In the case where ∑ |𝐻𝑖|

𝑀−1
𝑖=0 < 1, the

proposed design will even scale up the result.

Although the datapath of the stochastic FIR filter con-

sists of just a few logic gates as shown in Figure 11, the

interface SNGs (not shown) may occupy a large area,

offsetting the potential area benefit brought by the simple

datapath. To further reduce the area of SNGs, techniques

of sharing the RNSs used in the SNGs and circularly

shifting the outputs of the RNS to generate multiple ran-

dom numbers with low correlation are proposed in [36].
Area-efficient stochastic designs for the discrete Fourier

transform (DFT) and the fast Fourier transform (FFT),

which are important transformation techniques between the

time and frequency domains, are described in [99]. An 𝑀-

point DFT for discrete signals 𝑋[𝑛] (𝑛 = 0,1, … ,𝑀 − 1)
computes the frequency domain values 𝑌[𝑘] (𝑘 =
0,1, … ,𝑀 − 1) as follows:

𝑌[𝑘] = ∑ 𝑋[𝑛]𝑊𝑀
𝑘𝑁

𝑀−1

𝑛=0

where 𝑊𝑀 = 𝑒−𝑗(2𝜋/𝑀). The FFT is an efficient way to re-

alize the DFT by using a butterfly architecture [70].

The basic DFT computation resembles that of an FIR fil-

ter. Although the technique of the uneven-weighted MUX

tree can be applied [98], the accuracy of the result degrades

as the number of points becomes larger due to the growing

scaling factor. To address this problem, the work in [99]

proposes a scaling-free stochastic adder based on a two-line

stochastic encoding scheme [94]. This encoding represents a

value in the interval [−1,1] by a magnitude stream 𝑀(𝑋)
and a sign stream 𝑆(𝑋). Figure 12a shows an example of
encoding the value −0.5 . Indeed, this encoding can be
viewed as employing a ternary stochastic stream 𝑋 =
𝑥1𝑥2 …𝑥𝑁 with each 𝑥𝑖 ∈ {−1,0,1}. The magnitude and the
sign of 𝑥𝑖 are represented by the 𝑖-th bit in the magnitude
stream and the sign stream, respectively. If the sign bit is 0

(1), the value is positive (negative). Figure 12b shows the

multiplier for this encoding. Experimental results indicate

that using the stochastic multiplier and the special stochastic

adder to implement DFT/FFT can achieve much higher

accuracy than an implementation based on the uneven-

weighted MUX tree when the number of points 𝑀 is large.

The design of infinite impulse response (IIR) filters is

considered in [53][54][72]. Compared to FIR filters, the

implementation of IIR filters using SC is more challenging.

The main difficulty is the feedback loop in the IIR filter,

which causes correlation in the stochastic bit-streams. How-

ever, the correct computation of SC usually requires the

independence of the stochastic bit-streams. To address this

problem, Liu and Parhi [54] propose transforming the IIR

filter into a lattice structure via the Schur algorithm [88].

The benefit of such a lattice structure is that its states are

orthogonal and hence, are uncorrelated, which makes the

design suitable for stochastic implementation. To reduce

error due to the state overflow (where the state value may be

outside of the range [−1, 1] of the bipolar stochastic repre-
sentation), the authors further propose a scaling method that

derives a normalized lattice structure as the implementation

target.

B. Image processing

A DSP application that is well-suited to SC is image pro-

cessing [4][50][67]. It can exploit the massive parallelism

provided by simple stochastic circuits, because many im-

age-processing operations are applied pixel-wise or block-

wise across an entire image [33]. Also, long SNs are not

required for image-processing applications, because the

precision demands are low; in many cases, 8-bit precision is

enough.

Li et al. [50] propose stochastic implementations for five

image processing tasks: edge detection, median filter-based

noise reduction, image contrast stretching, frame difference-

based image segmentation, and kernel density estimation

(KDE)-based image segmentation. Their designs introduce

some novel SC elements based on sequential logic. All the

designs show smaller area than their conventional counter-

parts. The reduction in area is greatest for KDE-based image

segmentation, due to its high computational complexity.

This work demonstrates that stochastic designs are advanta-

geous for relatively complicated computations.

Najafi and Salehi [67] apply SC to a local image thresh-

olding algorithm called the Sauvola method [87]. Image

thresholding is an important step in optical character recog-

nition. It selects a threshold and uses that threshold to de-

termine whether a pixel should be set to 1 (background) or 0

(foreground). The Sauvola method determines the threshold

for each pixel in an image and involves calculating product,

sum, mean, square, absolute difference, and square root. All

these operations can be realized efficiently by SC units.

Improved stochastic designs for several image-

processing applications were also proposed in [4]. An ex-

ample is real-time edge detection. The authors consider the

Robert cross operator, which takes an input image and pro-

duces an output image with edges highlighted. Let 𝑋𝑖,𝑗 and

𝑍𝑖,𝑗 denote the pixel values at row 𝑖 and column 𝑗 in the

X = 0.5: 0, 1,+1, 1,0, 1, 1, 1

M(X): 01110111

S(X): 11010111

M(A)
S(A)

M(B)
S(B)

M(C)

S(C)

(a) (b)

Figure 12. Two-line stochastic encoding: (a) An example of encoding

the value −0.5; (b) Multiplier for the encoding.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 11

input and the output images, respectively. The operator cal-

culates 𝑍𝑖,𝑗 in the following way:

𝑍𝑖,𝑗 = 0.5(|𝑋𝑖,𝑗 − 𝑋𝑖+1,𝑗+1| + |𝑋𝑖,𝑗+1 − 𝑋𝑖+1,𝑗|)

(11)

A stochastic implementation of Equation (11) is shown

in Figure 13a. It consists of only two XOR gates and one

MUX. By deliberately correlating the two input SNs of an

XOR gate so they have the maximum overlap of 0s and 1s,

the XOR computes the absolute difference between the two

input SNs [5]. The MUX further performs a scaled addition

on two absolute differences. In contrast, a conventional im-

plementation of Equation (11) on BNs is much more com-

plicated, as suggested by Figure 13b; it has two subtractors,

two absolute value calculators, and an adder.

Although a stochastic implementation often needs a large

number of clock cycles to obtain the final result, the critical

path delay of the stochastic implementation is much smaller

than a conventional implementation’s due to the simplicity

of the stochastic circuit. For instance, the overall delay of

the circuit of Figure 13a is only 3× higher than the delay of

its binary counterpart (Figure 13b).

Another benefit of a stochastic implementation is its er-

ror tolerance. Figure 14 visually demonstrates this ad-

vantage by comparing the stochastic implementation of

edge detection with conventional binary implementations

for different levels of noise injected into the input sensor [4].

As shown in the first row of Figure 14, when the noise level

is 10% to 20%, the conventional design generates useless

outputs. In contrast, the SC implementation in the second

row is almost unaffected by noise and is able to detect the

edges even at a noise level of 20%.

C. Decoding Error-Correcting Codes

One successful application of SC is the decoding of certain

modern error-correcting codes (ECCs). Researchers have

proposed stochastic decoder designs for several ECCs, such

as turbo code [26], polar code [96][97], binary low-density

parity-check (LDPC) codes [30][47][89][90], and non-

binary LDPC codes [85][86].

The earliest stochastic decoder was proposed for binary

LDPC codes (for simplicity, hereafter referred to as LDPC

codes), which have very efficient decoding performance that

approaches the Shannon capacity limit [81]. They have been

adopted in several recent digital communication standards,

such as the DVB-S2, the IEEE 802.16e (WiMAX), and the

IEEE 802.11n (WiFi) standards.

A binary LDPC code is characterized by a bipartite factor

graph consisting of two groups of nodes: variable nodes

(VNs) and parity-check nodes (PNs). A widely-used method

to decode an LDPC code applies the sum-product algorithm

(SPA) to the factor graph. The SPA iteratively passes a

probability value, which represents the belief that a bit in the

code block is 1, from a VN to a connected PN, or vice versa.

The codeword is determined by comparing the final proba-

bilities against a threshold.

 The major computation in the decoder involves the fol-

lowing two operations on probabilities:

𝑝𝐶 = 𝑝𝐴(1 − 𝑝𝐵) + 𝑝𝐵(1 − 𝑝𝐴) (12)

𝑝𝑍 =
𝑝𝑋𝑝𝑌

𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌)
 (13)

Binary implementation of Equations (12) and (13) requires

complicated arithmetic circuits, such as adders, multipliers,

and dividers. To alleviate this problem, Gaudet and Rapley

proposed a stochastic implementation of LDPC decoding in

which Equations (12) and (13) are realized efficiently by

the circuits in Figure 4a and 4b, respectively [30].

Besides reducing the area of the processing units, SC al-

so reduces routing area. In a conventional binary implemen-

tation, the communication of probability values of precision

𝑘 between two nodes requires 𝑘 wires connecting the two
nodes, which leads to a large routing area. However, with

SC, due to its bit-serial nature, communication between two

nodes only requires a single wire. Another benefit of SC is

its support of an asynchronous pipeline. In SN representa-

tion, bit order does not matter, so we do not require the input

of the PNs and VNs to be the output bits of the immediately

previous cycle. This allows different edges to use different

numbers of pipeline stages, thus increasing the clock fre-

quency and throughput [89].

To improve the SPA convergence rate, the authors of [89]

add a module called edge memory (EM) to each edge in the

factor graph. Since one EM is assigned to each edge, the

hardware usage of EMs can be large. To further reduce this

hardware cost, Tehrani et al. [90] introduce a module called

a majority-based tracking forecast memory (MTFM), which

is assigned to each VN. This method has been integrated

into a fully parallel stochastic decoder ASIC that decodes

the (2048, 1723) LDPC code from the IEEE 802.3an

(10GBASE-T) standard [90]. This decoder turns out to be

one of the most area-efficient fully parallel LDPC decoders.

xi,jxi+1,j+1
xi+1,j
xi,j+1

zi,j

Random
input r = 0.5

0

1

(a) (b)

8

8

8

Abs. value
circuit 8

88

8

Adder
xi+1,j+1

xi,j

xi,j+1

xi+1,j

Subtracter

zi,j

Abs. value
circuit

Figure 13. Two implementations of Roberts cross operator: (a) sto-

chastic, and (b) conventional.

Figure 14. Edge-detection performance for two implementation

methods with noise levels of (a) 5%, (b) 10% and (c) 20%.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Stochastic LDPC decoders essentially implement the be-

lief propagation algorithm [73]. This fundamental approach

can also be used to decode other ECCs, such as polar codes

and non-binary LDPC codes. Given their algorithm-level

similarity, researchers have proposed SC-based decoders for

these codes [85][86][96][97]. For example, to resolve the

slow convergence problem of a pure stochastic decoder for

non-binary LDPC codes, a way of mixing the binary com-

putation and stochastic computation units has been proposed

[86]. A technique of splitting and shuffling stochastic bit-

streams is described in [97] to simultaneously mitigate the

costs of long stochastic bit-streams and re-randomization of

a stochastic decoder for polar codes.

D. Artificial neural networks

Artificial neural networks (ANNs), mimicking aspects of

biological neural networks, are an early application of

SC [14][15][24][68][93]. Only recently, with advances in

machine learning algorithms and computer hardware

technology, have they found commercial success in ap-

plications such as computer vision and speech recogni-

tion [45]. ANNs are usually implemented in software on

warehouse-scale computing platforms, which are ex-

tremely costly in size and energy needs. These shortcom-

ings have stimulated renewed interest in using SC in

ANNs [10][11][41][46][80]. Furthermore, many classifi-

cation tasks such as ANNs do not require high accuracy;

it suffices that their classification decisions be correct

most of the time [51]. Hence, SC’s drawbacks of low

precision and stochastic variability are well-tolerated in

ANN applications.

A widely used type of ANN is the feed-forward net-

work shown in Figure 15 [37]. It is composed of an input

layer, several hidden layers, and an output layer. A node

in the network is referred to as a neuron. Each neuron in

a hidden or an output layer is connected to a number of

neurons in the previous layer via weighted edges. The

output 0 (inactive) or 1 (active) of a neuron is determined

by applying an activation function to the weighted sum

of its inputs. For example, the output of the neuron 𝑌1 in
Figure 15 is given by

𝑌1 = 𝐹 (∑ 𝑊𝑖𝑋𝑖

𝑛

𝑖=1
) (14)

where 𝑋𝑖 is the signal produced by the 𝑖-th input neuron
of 𝑌1 , 𝑊𝑖 is the weight of the edge from 𝑋𝑖 to 𝑌1 , and
𝐹(𝑍) is the activation function. A frequent choice for F is
the sigmoid function defined by

𝐹(𝑍) =
1

1 + 𝑒−𝛽𝑍

where 𝛽 is the slope parameter.
A key problem in ANN design is the addition of a

large number of items supplied to a neuron; a similar

problem occurs in FIR filters with a large number of taps.

The straightforward use of MUX-based adders to per-

form the scaled addition is not a good solution, because

the scaling factor is proportional to the number of a neu-

ron’s connections. When rescaling the final MUX output,

even a very small error due to stochastic variation may

be enlarged significantly. To address this problem, Li et

al. [51] revive the old idea of using an OR gate as an

adder [29]. OR combines two unipolar SNs 𝑋 and 𝑌 as
follows:

𝑍 = 𝑋 + 𝑌 − 𝑋𝑌

This is not strictly addition, but when either 𝑋 ≪ 1 or
𝑌 ≪ 1, the output Z is approximately the sum of the two
inputs. To make the inputs close to zero, the authors of

[51] apply a moderate scaling factor to scale down the

inputs.

Some other studies have addressed the addition prob-

lem with new stochastic data representations [11][17]. In

[17], an encoding scheme called extended stochastic log-

ic (ESL) is proposed which uses two bipolar SNs 𝑋 and
𝑌 to represent the number 𝑋/𝑌 . ESL addition has the
advantage of being exact, with no scaling factor. More-

over ESL encoding allows easy implementation of multi-

plication, division, and the sigmoid function. Together,

these operations lead to an efficient neuron design.

Ardakani et al. have proposed the concept of integer

stochastic number (ISN) in which a sequence of random

integers represents a value equal to the mean of these

integers [11]. For example, the sequence 2,0,4,1 repre-

sents 7/4. With this encoding, any real number can be

represented without prior scaling. The weights in an

ANN, which can lie outside the range [−1,1], do not
need to be scaled. The addition of two ISNs uses a con-

ventional binary adder, which makes the sum exact. Mul-

tiplication of two ISNs requires a conventional binary

multiplier, which is expensive. Fortunately, in the ANN

implementation proposed in [11], one input to the multi-

plier, which corresponds to the neuron signal, is always a

binary SN. Then, the conventional multiplier is reduced

to several AND gates. The sigmoid activation function is

implemented by a counter similar to that in [14]. Al-

though the hardware cost of the ISN implementation is

larger than that of a binary stochastic implementation, the

former has much lower latency and energy consumption.

Compared to the conventional binary design, the ISN

design produces fewer misclassification errors, while

reducing energy and area cost substantially.

Figure 15. A typical feed-forward network structure

...

...

...

...

Input layer
Hidden layers

Output layer

X1

X2

Xn

Y1
 1

 2

 n

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 13

Another recent work [41] proposes two new ways to

design ANNs with SC. The first considers training in the

design phase to make the network friendly to a stochastic

implementation. The authors observe that weights close

to zero, which correspond to (bipolar) SNs of probability

0.5, contribute the most to random fluctuation errors.

Therefore, they propose to iteratively drop near-zero

weights and then re-train the network to derive a network

with high classification accuracy but no near-zero

weights. The second technique is to exploit the progres-

sive precision property of SC. The authors observe that

most of the input data can be classified easily because

they are far from the decision boundary. For these input

data, computation with low-precision SNs is enough to

obtain the correct results. Based on this, the authors de-

vise an early decision termination (EDT) strategy which

adaptively selects the number of bits to use in the compu-

tation depending on the difficulty of the classification

tasks. The resulting design has a misclassification error

rate very close to the conventional implementation. Fur-

thermore, EDT reduces energy consumption with a slight

increase in misclassification errors.

Efficient stochastic implementation of convolutional

neural networks (CNNs), a special type of feed-forward

ANN, is the focus of [10]. In a CNN, the signals of all

the neurons in a layer are obtained by first convolving a

kernel with the signals in the input layera special kind

of filtering operationand then applying an activation

function. The size of the kernel is much less than that of

the input layer, which means a neuron signal only de-

pends on a subset of the neurons in its input layer. CNNs

have been successfully applied to machine learning tasks

such as face and speech recognition. A major contribu-

tion of [10] is an efficient stochastic implementation of

the convolution operation. Unlike SC that uses SNs to

encode real values, the proposed method uses the proba-

bility mass function of a random variable to represent an

array of real values. An efficient implementation of con-

volution is developed based on this representation. Fur-

thermore, a few other techniques are introduced in [10]

to implement other components of a CNN, such as the

pooling and nonlinear activation components. Compared

to a conventional binary CNN, the proposed SC imple-

mentation achieves large improvements in performance

and power efficiency.

Efficient stochastic implementation of CNNs has also

been studied by Ren et al. [80]. They perform a compre-

hensive study of SC operators and how they should be

optimized to obtain energy-efficient CNNs. Ren at al.

adopt the approximate accumulative parallel counter

(APC) of [42] to add a large number of input stochastic

bit-streams. Kim et al. report that the approximate APC

has negligible accuracy loss and is about 40% smaller

than the exact APC [42].

V. DISCUSSION

Since the turn of the present century, significant progress

has been made in developing the theory and application

of stochastic computing. New questions and challenges

have emerged, many of which still need to be addressed.

With the notable exception of LDPC decoder chips, few

large-scale SC-based systems have actually been built

and evaluated. As a result, real-world experience with SC

is limited, making it likely that many practical aspects of

SC such as its true design costs, run-time performance,

and energy consumption are not yet fully appreciated.

Small-scale theoretical and simulation-based studies are

fairly plentiful, but they often consider only a narrow

range of issues under restrictive assumptions.

A. Conclusions

Based on what is now known, we can draw some general

conclusions about what SC is, and is not, good for.

Precision and errors: SC is inherently approximate

and inexact. Its probability-based and redundant data

encoding makes it a relatively low-precision technology,

but one that is very tolerant of errors. It has been success-

fully applied to image-processing using 256-bit stochas-

tic numbers (SNs), which correspond roughly to 8-bit

(fixed-point) BNs. SC is unsuited to the very high 32- or

64-bit precision error-sensitive calculations that are the

domain of BNs and binary computing (BC). This is seen

in the random noise-like fluctuations that are normal to

SNs, in the way SNs are squeezed into the unit interval

producing errors near the boundaries, and in the fact that

SNs grow in length exponentially faster than BNs as the

desired level of precision increases. Also the stochastic

encoding of numbers does not provide a dynamic range,

similar to the one provided by floating point numbers.

On the other hand, low precision and error tolerance

have definite advantages. They have evolved in the natu-

ral world for use by the human brain and nervous system.

Similar features are increasingly seen in artificial con-

structs like deep learning networks that aim to mimic

brain operations [23]. Thus it seems pointless to compare

SC and BC purely on the basis of precision or precision-

related costs alone [1][58].

Finally, we observe that while BC circuits have fixed

precision, SC circuits have the advantage of inherently

variable precision in their bit-streams. Moreover, the bit-

streams can be endowed with progressive precision

where accuracy improves monotonically as computation

proceeds, as has been demonstrated for some image-

processing tasks [4]. If a variable precision cannot be

exploited, a simple bit-reduction technique in BC often

provides better energy efficiency over SC. As reported in

recent work, with fixed precision, SC becomes worse for

designs above 6 bits of precision [1][46].

Area-related costs: The use of tiny circuits for opera-

tions like multiplication and addition remains SC’s

strongest selling point. A stochastic multiplier contains

orders-of-magnitude fewer gates than a typical BC mul-

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

tiplier. However, many arithmetic operations including

multiplication require uncorrelated inputs to function

correctly. This implies a need for randomization or

decorrelation circuits incorporating many independent

random sources or phase-shifting delay elements (isola-

tors), whose combined area can easily exceed that of the

arithmetic logic [92]. The low-power benefit of stochas-

tic components must be weighed against the additional

power consumed by their randomization circuitry.

Speed-related costs: Perhaps the clearest drawback of

SC is its need for long, multicycle SNs to generate satis-

factory results. This leads to long run-times, which are

compensated for, in part, by the fact that the clock cycles

tend to be very short. Parallel processing, where long bit-

streams are partitioned into segments that are processed

in parallel is a speed-up possibility that has often been

proposed, but not be studied much [21]. The same can be

said of progressive precision.

Small stochastic circuits have relatively low power

consumption. However, since energy = power × time, the

longer run-times of stochastic circuits can lead to higher

energy use than their BC counterparts [62]. Reducing

energy usage is therefore emerging as a significant chal-

lenge for SC.

Design issues: Until recently, SC design was an ad

hoc process with little theory to guide it. However,

thanks to a deeper understanding of the properties of

stochastic functions and circuits, several general synthe-

sis techniques have been developed, which can variously

be classified as reconfigurable or fixed, and combina-

tional or sequential [7][49][76]. The new understanding

has revealed unexpected and novel solutions to some of

SC’s basic problems.

For example, it has come to be recognized that differ-

ent circuits realizing different logic functions can have

the same stochastic behavior [19]. Far from just being the

enemy, correlation can sometimes be harnessed as a de-

sign resource to reduce circuit size and cost, as the edge

detectors of Figure 13a vividly illustrate. Common cir-

cuits like the MUX-based scaled adder turn out to have

correlation insensitivity that enables RNSs to be removed

or shared; see Figure 8. A fundamental redesign of the

SC scaled adder itself is shown in Figure 16, which con-

verts it from a three-input to a two-input element, while

improving both its accuracy and correlation properties

[46]. Despite such progress, many questions concerning

the properties of stochastic circuits that influence design

requirements, remain unanswered.

Circuit level aspects: Since SC employs digital com-

ponents, conventional digital design process (synthesis,

automatic placement and routing, timing closure, etc.)

have been used to implement SC ASIC and FPGA-based

designs. However, as discussed in this paper, SC shares

similarities with analog circuits, so the digital design

aspects of it may differ from conventional digital circuits.

Various circuit-level aspects of SC designs have been

investigated very recently as a means of improving SC’s

energy efficiency [9][65]. They suggest that SC circuits

are probably not optimal if they are designed using

standard digital design tools. Najafi et al. [65] demon-

strate that SC circuits do not need clock trees. Eliminat-

ing the clock tree significantly reduces the energy con-

sumption of the circuit. In fact, employing analog com-

ponents, rather than digital, can lead to significant energy

savings [66]. One example is the use of analog integra-

tors, instead of counters, to collect the computation re-

sults.

Alaghi et al. [9] have investigated a different circuit-

level aspect of SC. They show that SC’s inherent error-

tolerance makes it robust against errors caused by volt-

age overscaling. Voltage overscaling, i.e., the process of

reducing the power consumption of the circuit without

reducing the frequency, usually leads to critical path tim-

ing failures and catastrophic errors in regular digital cir-

cuits. However, timing violations in SC manifest as extra

or missing pulses on the output SN. The extra and miss-

ing pulses tend to cancel each other out, leading to negli-

gible error. An optimization method is described in [9]

that balances the circuit paths to guarantee maximum

error cancellation. It is worth noting that the observations

of [9] have been confirmed through a fabricated chip.

The new results suggest that circuit-level aspects of

SC must be considered at design time, as they provide

valuable sources of energy saving. As a result, SC cir-

cuits should be either manually designed [64] or new

CAD tools must be provided [9].

Applications: As discussed in detail in Section IV, SC

has been successfully applied to a relatively small range

of applications, notably filter design, image processing,

LDPC decoding, and ANN design. A common aspect of

these applications is a need for very large numbers of

low-precision arithmetic operations, which can take ad-

vantage of the small size of stochastic circuits. They also

typically have a high degree of error tolerance. It is

worth noting that current trends in embedded and cloud

computing, e.g., the increasing use of fast on-line image

recognition and machine learning techniques by smart-

phones and automobiles, call for algorithms for which

SC is well suited. The so-called Internet of Things is

likely to create a big demand for tiny, ultra-low-cost pro-

cessing circuits with many of the characteristics of SC.

B. Future Challenges

The issues covered in the preceding sections are by no

means completely understood, and many of them deserve

further study. There are however, other important topics

that have received little recognition or attention; we

briefly discuss four of them next.

Accuracy management: In conventional BC, the ac-

curacy goals of a new design, such as its precision level

and error bounds, are determined a priori during the

specification phase. As the design progresses and proto-

types are produced, fine tuning may be needed to ensure

that these goals and related performance requirements

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 15

are actually met. This approach is much harder to apply

to stochastic circuit design. Interacting factors including

bit-stream length, RNS placement, and correlation can

drastically affect accuracy in complex ways. For exam-

ple, it is pointed out in [92] that cascading two well-

designed squarer circuits, each computing X 2, does not

implement X 4, as might be expected; instead the cascad-

ed circuit implements X 3.

Because of hard-to-predict behavior like this, exten-

sive simulation is almost always used to determine the

basic accuracy limits and error sensitivities of a new SC

design. SC projects often have a cut-and-try flavor which

involves multiple design-and-simulate iterations that

resemble design-space exploration rather than the fine

tuning of well-founded designs. It would be very useful

to be able to incorporate into an SC design flow an “ac-

curacy manager” that can comprehend and automatically

adjust the relations among the design parameters affect-

ing accuracy. A first step in this direction can be found in

[69], while automatic decorrelation methods to enhance

accuracy are addressed in [92].

Design optimization. Despite recent advances in SC

synthesis, a number of open problems remain. It is now

recognized that many different Boolean functions can

realize the same computation [7][19][101]. For instance,

the Boolean functions 𝑓1(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1̅) ∨ (𝑥2 ∧
𝑟1) and 𝑓2(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1) ∨ (𝑥2 ∧ 𝑟1) ∨ (𝑥1 ∧
𝑥2)both realize the same stochastic addition function
𝐹(𝑋1, 𝑋2) = 1/2(𝑋1 + 𝑋2). An open question is: Among
numerous Boolean functions that have the same stochatic

behavior, how can we find an optimal one? All the

previous work on synthesis assumes that the input SNs

are independent. However, as shown in [5][20],

sometimes taking the advantage of correlated input SNs

helps reduce circuit area. Another open problem is how

to develop a synthesis approach that takes correlation

into consideration and exploits it when necessary.

Finally, most work on synthesis has been restricted to

combinational logic. This has led to a deeper

understanding of combinational synthesis, for example,

the existence of stochastic equivalence classes [19]. In

contrast, far fewer theoretical advances have been made

in understanding sequential stochastic design. How to

synthesize optimal stochastic circuits based on sequential

logic therefore remains an unsolved problem.

Energy harvesting: With the development of the Inter-

net-of-Things, many future computing systems are expected

to be powered by energy harvested from the environment.

The potential energy sources include solar energy, as well as

ambient RF, motion, and temperature energy [56]. A diffi-

culty with such energy sources is that they tend to be highly

variable and unstable. This can significantly degrade the

performance of BC systems. SC, on the other hand, has

strong tolerance of errors caused by the random fluctuation

of the supply voltage [9]. A problem for SC is the potential-

ly large energy needs of its many randomness sources for

number conversion and decorrelation. This may be solved

by emerging technologies that have naturally stochastic

behaviors. For example, very compact random sources

can be constructed from memristors. Moreover, a single

memristor source can supply independent random bit-

streams to multiple destinations simultaneously [43].

Biomedical devices: It was remarked in Sec. 1 that

stochastic bit-streams can mimic the low-power spike

trains used for communication in natural neural net-

works; see Figure 3. This has suggested the use of SC in

implantable devices such as retinal implants to treat the

visually impaired [4]. Retinal implants are ICs that are

placed directly on the retina, sense visual images in the

form of pixel arrays, and convert the pixel information

into bit-streams that are sent directly to the brain via the

optic nerve where they produce flashes of light that the

brain can be trained to interpret. With better understand-

ing of the information coding and data processing in-

volved, SC may be found applicable to other applications

that involve interfacing stochastic circuits with natural

neural networks. A particular advantage of SC in this

domain is its very low power consumption which is nec-

essary to avoid heat damage to human tissue. So far,

however, we know of no current work to incorporate SC

into implantable medical devices.

REFERENCES

[1] J. M. de Aguiar and S. P. Khatri, “Exploring the Viability of Sto-

chastic Computing,” Proc. Intl. Conf. Computer Design (ICCD),

pp. 391-394, 2015.

[2] A. Alaghi and J.P. Hayes, “A Spectral Transform Approach to

Stochastic Circuits,” Proc. Intl. Conf. Computer Design (ICCD),

pp. 315–312, 2012.

[3] A. Alaghi and J.P. Hayes, “Survey of Stochastic Computing,” ACM Trans.

Embed. Comp. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May 2013.

[4] A. Alaghi, C. Li and J.P. Hayes, “Stochastic Circuits for Real-time

Image-processing Applications,” Proc. Design Autom. Conf.

(DAC), article 136, 6p, 2013.

[5] A. Alaghi and J.P. Hayes, “Exploiting Correlation in Stochastic Circuit

Design,” Proc. Intl Conf. on Computer Design (ICCD), pp. 39–46, Oct.

2013.

[6] A. Alaghi and J. P. Hayes, “Fast and Accurate Computation Using

Stochastic Circuits,” Proc. Design, Automation, and Test in Eu-

rope Conf. (DATE), pp. 1-4, 2014.

[7] A. Alaghi and J.P. Hayes, “STRAUSS: Spectral Transform Use in

Stochastic Circuit Synthesis,” IEEE Trans. CAD of Integrated

Circuits and Systems, vol. 34, pp. 1770-1783, 2015.

[8] A. Alaghi and John P. Hayes, “Dimension Reduction in Statistical

Simulation of Digital Circuits,” Proc. Symp. on Theory of Model-

ing & Simulation (TMS-DEVS), pp. 1-8, 2015.

T Q

0

1

x
y

z

Figure 16. An SC adder built around a toggle flip-flop [46].

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

16 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[9] A. Alaghi, W. T. J. Chan, J. P. Hayes, A. B. Kahng and J. Li, “Op-

timizing Stochastic Circuits for Accuracy-Energy Tradeoffs,”

Proc. ICCAD, pp. 178-185, 2015.

[10] M. Alawad and M. Lin, “Stochastic-Based Deep Convolutional

Networks with Reconfigurable Logic Fabric,” IEEE. Trans. Mul-

ti-Scale Comp. Syst. (to appear).

[11] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu and W.J.

Gross, “VLSI Implementation of Deep Neural Network Using In-

tegral Stochastic Computing,” IEEE. Trans. VLSI, 2017 (IEEE

Early Access Article).

[12] S.L. Bade and B.L. Hutchings, “FPGA-Based Stochastic Neural

Networks-Implementation,” Proc. IEEE orkshop on FPGAs for

Custom Computing Machines, pp. 189-198, 1994.

[13] D. Braendler, T. Hendtlass and P. O’Donoghue, “Deterministic

Bit-Stream Digital Neurons,” IEEE Trans. Neural Nets., vol. 13,

pp. 1514-1525, Nov. 2002.

[14] B.D. Brown and H.C. Card, “Stochastic Neural Computation I:

Computational Elements,” IEEE Trans. Comp., vol. 50, pp. 891-

905, 2001.

[15] B.D. Brown and H.C. Card, “Stochastic Neural Computation II:

Soft Competitive Learning,” IEEE Trans. Comp., vol. 50, pp.

906-920, 2001.

[16] A.W. Burks, H.H. Goldstine and J. Von Neumann, “Preliminary Discus-

sion of the Logical Design of an Electronic Computer Instrument,” Institute

for Advanced Study, Princeton, Jan. 1946.

[17] V. Canals, A. Morro, A. Oliver, M.L. Alomar and J.L. Rossello,

“A New Stochastic Computing Methodology for Efficient Neural

Network Implementation,” IEEE Trans. Neural Networks and

Learning Systems, vol. 27, pp. 551-564, 2016.

[18] Y-N. Chang and K.K. Parhi, “Architectures for Digital Filters

Using Stochastic Computing,” Proc. Intl. Conf. Acoustics, Speech

and Signal Processing (ICASSP), pp. 2697-2701, 2013.

[19] T-H. Chen and J.P. Hayes, “Equivalence among Stochastic Logic

Circuits and its Application,” Proc. Design Autom. Conf. (DAC),

pp. 131-136, 2015.

[20] T-H. Chen and J.P. Hayes, “Design of Division Circuits for Sto-

chastic Computing,” Proc. IEEE Symp. on VLSI (ISVLSI), pp.

116-121, 2016.

[21] V.K. Chippa, S. Venkataramani, K. Roy and A. Raghunathan,

“StoRM: a Stochastic Recognition and Mining Processor,” Proc.

Intl. Symp. Low Power Electronics and Design (ISLPED), pp. 39-

44, 2014.

[22] S.S. Choi, S.H. Cha and C. Tappert, “A Survey of Binary Simi-

larity and Distance Measures,” Jour. Systemics, Cybernetics and

Informatics, vol. 8, pp. 43-48, 2010.

[23] M. Courbariaux, Y. Bengio and J. P. David, “BinaryConnect:

Training Deep Neural Networks with binary weights during

propagations,” Proc. Intl. Conf. Neural Information Processing

Systems (NIPS), pp. 3123-3131, 2015.

[24] J.A. Dickson, R.D. McLeod and H.C. Card, “Stochastic Arithme-

tic Implementations of Neural Networks with In Situ Learning,”

Proc. Intl. Conf. Neural Networks, pp. 711–716, 1993.

[25] Y. Ding, Y. Wu and W. Qian, “Generating Multiple Correlated

Probabilities for MUX-based Stochastic Computing Architec-

ture,” Proc. ICCAD, pp. 519-526, 2014.

[26] Q. Dong, M. Arzel, C. Jego, and W. Gross, “Stochastic Decoding

of Turbo Codes,” IEEE Trans. Signal Processing, vol. 58, pp.

6421–6425, 2010.

[27] D. Fick, G. Kim, A. Wang, D. Blaauw and D. Sylvester, “Mixed-

Signal Stochastic Computation Demonstrated in an Image Sensor

with Integrated 2D Edge Detection and Noise Filtering”, Proc.

IEEE Custom Integrated Circuits Conf. (CICC), 2014, pp. 1–4.

[28] B.R. Gaines, “Stochastic Computing,” Proc. AFIPS Spring Joint

Computer Conf., pp. 149-156, 1967.

[29] B.R. Gaines, “Stochastic Computing Systems,” Advances in In-

formation Systems Science, vol. 2, J.T. Tou (ed.), Springer-Verlag,

pp. 37-172, 1969.

[30] V.C. Gaudet and A.C. Rapley, “Iterative Decoding Using Stochas-

tic Computation,” Electron. Lett., vol. 39, pp. 299-301, 2003.

[31] W. Gerstner and W.M. Kistler, Spiking Neuron Models, Cam-

bridge University Press, 2002.

[32] S.W. Golomb, Shift Register Sequences. Revised ed., Aegean Park

Press, Laguna Hills, CA, 1982.

[33] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd

ed., Prentice Hall, 2002.

[34] P. K. Gupta and R. Kumaresan, “Binary Multiplication with PN

Sequences,” IEEE Trans. Acoustics, Speech, and Signal Pro-

cessing, vol. 36, no. 4, pp. 603-606, 1988.

[35] J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, and F. Lombardi, “A

Stochastic Computational Approach for Accurate and Efficient

Reliability Evaluation,” IEEE Trans. Comp., vol. 63, pp. 1336-

1350, 2014.

[36] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, T. Inoue, “Compact

and Accurate Digital Filters Based on Stochastic Computing,”

IEEE Trans. Emerging Topics in Comp., vol. 99, pp. 1-1, 2016.

[37] A.K. Jain, J. Mao and K.M. Mohiuddin, “Artificial Neural Net-

works: a Tutorial,” Computer, vol. 29, no. 3, pp. 31-44, 1996.

[38] D. Jenson and M. Riedel, “A Deterministic Approach to Stochas-

tic Computation,” Proc. Intl. Conf. Computer-Aided Design (IC-

CAD), pp. 1-8, 2016.

[39] Y. Ji, F. Ran, C. Ma and D.J. Lilja, “A Hardware Implementation

of a Radial Basis Function Neural Network Using Stochastic Log-

ic,” Proc. Design, Automation, and Test in Europe Conf. (DATE),

pp. 880–883, 2015.

[40] H. Jiang et al., “Adaptive Filter Design Using Stochastic Cir-

cuits,” Proc. IEEE Symp. on VLSI (ISVLSI), pp. 122-127, 2016.

[41] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee and K. Choi, “Dynamic

Energy-Accuracy Trade-off Using Stochastic Computing in Deep

Neural Networks,” Proc. Design Autom. Conf. (DAC), article

124, 2016.

[42] K. Kim, J. Lee, and K. Choi, “Approximate De-randomizer for

Stochastic Circuits,” Proc. Intl. SoC Design Conf., pp. 123-124,

2015.

[43] P. Knag, W. Lu and Z. Zhang, “A Native Stochastic Computing

Architecture Enabled by Memristors,” IEEE Trans. Nanotech.,

vol. 13, pp. 283-293, 2014.

[44] D.E. Knuth, The Art of Computer Programming, Vol. 2: (2nd Ed.)

Seminumerical Algorithms. Addison Wesley Longman Publishing

Co., Redwood City, CA, 1998.

[45] Y. LeCun, Y. Bengio, G. Hinton, “Deep Learning,” Nature, vol.

521, pp. 436-444, 2015.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 17

[46] V.T. Lee, A. Alaghi, J.P. Hayes, V. Sathe and L. Ceze, “Energy-

efficient hybrid stochastic-binary neural networks for near-sensor

computing,” Proc. Design, Automation and Test in Europe Conf.

(DATE), pp. 13-18, 2017.

[47] X-R. Lee, C-L. Chen, H-C. Chang and C-Y. Lee, “A 7.92 Gb/s

437.2 mW Stochastic LDPC Decoder Chip for IEEE 802.15.3c

Applications,” IEEE Trans. Ccts. and Syst. I: Reg.Papers, vol. 62.

pp. 507-516, 2015.

[48] P. Li and D.J. Lilja, “Using Stochastic Computing to Implement

Digital Image Processing Algorithms,” Proc. Intl. Conf. Computer

Design (ICCD), pp. 154-161, 2011.

[49] P. Li, D.J. Lilja, W. Qian, K. Bazargan and M. Riedel, “The Syn-

thesis of Complex Arithmetic Computation on Stochastic Bit

Streams Using Sequential Logic,” Proc. Intl. Conf. Computer-

Aided Design (ICCAD), pp. 480-487, 2012.

[50] P. Li, D.J. Lilja, W. Qian, K. Bazargan and M. Riedel, “Computa-

tion on Stochastic Bit Streams: Digital Image Processing Case

Studies,” IEEE Trans. VLSI, vol. 22, pp. 449-462, 2014.

[51] B. Li, M. H. Najafi, and D. J. Lilja, “Using Stochastic Computing

to Reduce the Hardware Requirements for a Restricted Boltzmann

Machine Classifier,” Proc. Intl. Symp. on FPGA, pp. 36-41, 2016.

[52] P. Li, W. Qian, M. Riedel, K. Bazargan and D.J. Lilja, “The Syn-

thesis of Linear Finite State Machine-based Stochastic Computa-

tional Elements,” Proc. Asia and South Pacific Design Automa-

tion Conf. (ASP-DAC), pp. 757-762, 2012.

[53] Y. Liu and K. Parhi, “Architectures for Stochastic Normalized and

Modified Lattice IIR Filters,” Proc. Asilomar Conf. on Signals,

Systems & Computers, pp. 1351-1381, 2015.

[54] Y. Liu and K. Parhi, “Architectures for Recursive Digital Filters

Using Stochastic Computing,” IEEE Trans. Signal Processing,

vol. 64, pp. 3705–3718, 2016.

[55] G.G. Lorentz, Bernstein Polynomials, 2nd Ed. New York: AMS

Chelsea, 1986.

[56] K. Ma, et al. “Architecture Exploration for Ambient Energy Har-

vesting Nonvolatile Processors,” Proc. Intl. Symp. High Perfor-

mance Computer Architecture (HPCA), pp. 526-537, 2015.

[57] W. Maass and C.M. Bishop (eds.), Pulsed Neural Networks, MIT

Press, 1999.

[58] R. Manohar, “Comparing Stochastic and Deterministic Compu-

ting,” IEEE Computer Architecture Letters, vol. 14, no. 2, pp.

119-122, 2015.

[59] S. L. T. Marin, J. M. Q. Reboul and L. G. Franquelo, “Digital

Stochastic Realization of Complex Analog Controllers,” IEEE

Trans. Industrial Electronics, vol. 49, pp. 1101–1109, 2002.

[60] P. Mars and W.J. Poppelbaum, Stochastic and Deterministic Aver-

aging Processors, London: Peter Peregrinus, 1981.

[61] S.-J. Min, E.-W. Lee and S.-I. Chae, “A Study on the Stochastic

Computation Using the Ratio of One Pulses and Zero Pulses,”

Proc. Intl. Symp. Circuits and Systems (ISCAS), pp. 471–474,

1994.

[62] B. Moons and M. Verhelst, “Energy-Efficiency and Accuracy of

Stochastic Computing Circuits in Emerging Technologies,” IEEE

Jour. Emerging and Selected Topics in Circuits and Systems, vol.

4, no. 4, pp. 475-486, 2014.

[63] A. Naderi, S. Mannor, M. Sawan and W.J. Gross, “Delayed Sto-

chastic Decoding of LDPC Codes,” IEEE Trans. Signal Pro-

cessing, vol. 59, pp. 5617–5626, 2011.

[64] M.H. Najafi, S. Jamali-Zavareh, D.J. Lilja, M.D. Riedel, K. Ba-

zargan, and R. Harjani, “Time-Encoded Values for Highly Effi-

cient Stochastic Circuits,” IEEE Trans VLSI, vol. 99, pp.1-14,

2016.

[65] M.H. Najafi, D.J. Lilja, M. Riedel and K. Bazargan, “Polysyn-

chronous Stochastic Circuits,” Proc. Asia and South Pacific De-

sign Automation Conf. (ASP-DAC), pp.492-498, 2016.

[66] M.H. Najafi and D.J. Lilja, “High-Speed Stochastic Circuits Us-

ing Synchronous Analog Pulses,” Proc. Asia and South Pacific

Design Automation Conf. (ASP-DAC), 2017.

[67] M.H. Najafi and M.E. Salehi, “A Fast Fault-Tolerant Architecture

for Sauvola Local Image Thresholding Algorithm Using Stochas-

tic Computing,” IEEE Trans. VLSI, vol. 24, pp. 808-812, 2016.

[68] N. Nedjah and L. de Macedo Mourelle, “Stochastic Reconfigura-

ble Hardware For Neural Networks,” Proc. Euromicro Conf. on

Digital System Design (DSD), pp. 438-442, 2003.

[69] F. Neugebauer I. Polian and J. P. Hayes, “Framework for Quanti-

fying and Managing Accuracy in Stochastic Circuit Design,”

Proc. Design, Automation and Test in Europe Conf. (DATE), pp.

1-6, 2017.

[70] A. V. Oppenheim, A. S. Willsky and S. H. Nawab, Signals &

Systems (2nd Ed.). Prentice-Hall, Upper Saddle River, NJ, 1996.

[71] B. Parhami and C.-H. Yeh, "Accumulative Parallel Counters,"

Proc. Asilomar Conf. Signals, Systems & Computers, pp. 966-

970, 1995.

[72] K. Parhi and Y. Liu, “Architectures for IIR Digital Filters Using

Stochastic Computing,” Proc. Intl. Symp. Circuits and Systems

(ISCAS), pp. 373-376, 2014.

[73] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks

of Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[74] W.J. Poppelbaum, C. Afuso and J.W. Esch, J.W, “Stochastic

Computing Elements and Systems,” Proc. AFIPS Fall Joint Com-

puter Conf., pp. 635-644, 1967.

[75] W. Qian, Digital yet Deliberately Random: Synthesizing Logical

Computation on Stochastic Bit Streams, PhD Dissertation, Uni-

versity of Minnesota, 2011.

[76] W. Qian, X. Li, M. Riedel, K. Bazargan and D.J. Lilja, “An Archi-

tecture for Fault-Tolerant Computation with Stochastic Logic,”

IEEE Trans. Comp., vol. 60, pp. 93-105, 2011.

[77] W. Qian and M. D. Riedel, “The Synthesis of Robust Polynomial

Arithmetic with Stochastic Logic,” Proc. Design Autom. Conf.

(DAC), pp. 648-653, 2008.

[78] W. Qian, M.D. Riedel and I. Rosenberg, “Uniform Approximation

and Bernstein Polynomials with Coefficients in the Unit Interval,”

in European Jour. Combinatorics, vol. 32, pp. 448-463, 2011.

[79] W. Qian, M.D. Riedel, H. Zhou and J. Bruck, “Transforming

Probabilities with Combinational Logic,” IEEE Trans. CAD , vol.

30, pp. 1279-1292, 2011.

[80] A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, B. Yuan, and Y.

Wang, “SC-DCNN: Highly-Scalable Deep Convolutional Neural

Network using Stochastic Computing,” Proc. Intl. Conf. Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS), pp. 405-418, 2017.

[81] T.J. Richardson and R.L. Urbanke, “The Capacity of Low-Density

Parity-Check Codes Under Message-Passing Decoding,” IEEE

Trans. Info. Theory, vol. 47, pp. 599-618, 2001

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

18 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

[82] N. Saraf, K. Bazargan, D.J. Lilja and M. Riedel, “Stochastic

Functions using Sequential Logic,” Proc. Intl. Conf. Computer

Design (ICCD), pp. 507–510, 2013.

[83] N. Saraf, K. Bazargan, D.J. Lilja and M. Riedel, “IIR Filters Us-

ing Stochastic Arithmetic,” Proc. Design, Automation and Test in

Europe Conf. (DATE), pp. 1–6, 2014.

[84] N. Saraf and K. Bazargan, “Polynomial arithmetic using sequen-

tial stochastic logic,” Proc. Great Lakes Symposium on VLSI

(GLSVLSI), pp. 245-250, 2016.

[85] G. Sarkis and W. Gross, “Efficient Stochastic Decoding of Non-

Binary LDPC Codes with Degree-Two Variable Nodes,” IEEE

Communications Letters, vol. 12, pp. 389-391, 2012.

[86] G. Sarkis, S. Hemati, S. Mannor, and W. Gross, “Stochastic De-

coding of LDPC Codes over GF(q),” IEEE Trans. Communica-

tions, vol. 61, pp. 939-950, 2013.

[87] J. Sauvola and M. Pietikäinen, “Adaptive document image binari-

zation,” Pattern Recog., vol. 33, no. 2, pp. 225–236, 2000.

[88] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises

beschränkt sind,” Jour. Reine Angew. Math., vol. 147, pp. 205–

232, 1917.

[89] S.S. Tehrani, S. Mannor and W.J. Gross, “Fully Parallel Stochastic

LDPC Decoders,” IEEE Trans. Signal Processing, vol. 56, pp.

5692–5703, 2008.

[90] S.S. Tehrani, A. Naderi., G.-A. Kamendje, S. Hemati, S. Mannor

and W.J. Gross, “Majority-Based Tracking Forecast Memories for

Stochastic LDPC Decoding,” IEEE Trans. Signal Processing,

vol. 58, pp. 4883–4896, 2010.

[91] P. S. Ting and J. P. Hayes, “Stochastic Logic Realization of Ma-

trix Operations,” Proc. Euromicro Conf. Digital System Design

(DSD), pp. 356-364, 2014.

[92] P. S. Ting and J. P. Hayes, “Isolation-Based Decorrelation of

Stochastic Circuits,” Proc. Intl. Conf. Computer Design (ICCD),

pp. 88-95, 2016.

[93] J.E. Tomberg and K.K.K. Kaski, “Pulse-Density Modulation

Technique in VLSI Implementations of Neural Network Algo-

rithms,” IEEE Jour. Solid-State Circuits, vol. 25, pp. 1277-1286,

1990.

[94] S. L. Toral, J. M. Quero and L. G. Franquelo, “Stochastic Pulse

Coded Arithmetic,” Proc. Intl. Symp. Circuits and Systems (IS-

CAS), pp. 599-602, 2000.

[95] D.E. Van Den Bout and T. K. Miller, III, “A Digital Architecture

Employing Stochasticism for the Simulation of Hopfield Neural

Nets,” IEEE Trans. Circuits & Syst., vol. 36, pp. 732–738, 1989.

[96] B. Yuan and K. Parhi, “Successive Cancellation Decoding of

Polar Codes using Stochastic Computing,” Proc. Intl. Symp. Cir-

cuits and Systems (ISCAS), pp. 3040-3043, 2015.

[97] B. Yuan and K. Parhi, “Belief Propagation Decoding of Polar

Codes using Stochastic Computing,” Proc. Intl. Symp. Circuits

and Systems (ISCAS), pp. 157-160, 2016.

[98] B. Yuan, Y. Wang and Z. Wang, “Area-Efficient Error-Resilient

Discrete Fourier Transformation Design using Stochastic Compu-

ting,” Proc. Great Lakes Symp. on VLSI (GLSVLSI), pp. 33-38,

2016.

[99] B. Yuan, Y. Wang and Z. Wang, “Area-Efficient Scaling-Free

DFT/FFT Design Using Stochastic Computing,” IEEE Trans. Cir-

cuits and Systems II: Express Briefs, vol. 63, pp. 1131-1135,

2016.

[100] D. Zhang and H. Li, “A Stochastic-based FPGA Controller for an

Induction Motor Drive with Integrated Neural Network Algo-

rithms,” IEEE Trans. Industrial Electronics, vol. 55, pp. 551–561,

2008.

[101] Z. Zhao and W. Qian, “A General Design of Stochastic Circuit

and its Synthesis,” Proc. Design, Automation and Test in Europe

Conf. (DATE), pp. 1467-1472, 2015.

Armin Alaghi (S’06–M’15) re-

ceived the B.Sc. degree in electrical

engineering (2006) and M.Sc. degree

in computer architecture (2009) from

the University of Tehran, Iran. He

received his Ph.D. from the Electri-

cal Engineering and Computer Sci-

ence Department at the University of

Michigan (2015). From 2005 to 2009, he was a research

assistant in the Field-Programmable Gate-Array (FPGA)

Lab and the Computer-Aided Design (CAD) Lab at the

University of Tehran, where he worked on FPGA testing

and Network-on-Chip (NoC) testing. From 2009-2015,

he was with the Advanced Computer Architecture Lab

(ACAL) at the University of Michigan. He is currently a

research associate at the University of Washington. His

research interests include digital system design, embed-

ded systems, VLSI circuits, computer architecture and

electronic design automation.

Weikang Qian (S’07–M’11) is an

assistant professor in the University

of Michigan-Shanghai Jiao Tong

University Joint Institute at Shanghai

Jiao Tong University. He received

his Ph.D. degree in Electrical Engi-

neering at the University of Minne-

sota in 2011 and his B.Eng. degree in

Automation at Tsinghua University

in 2006. His main research interests include electronic

design automation and digital design for emerging tech-

nologies. His research works were nominated for the

Best Paper Awards at the 2009 International Conference

on Computer-Aided Design (ICCAD) and the 2016 In-

ternational Workshop on Logic and Synthesis (IWLS).

John P. Hayes (S’67–M’70–
SM’81–F’85–LF’10) received the

B.E. degree from the National Uni-

versity of Ireland, Dublin, and the

M.S. and Ph.D. degrees from the

University of Illinois, Urbana-

Champaign, all in electrical engi-

neering. While at the University of

Illinois, he participated in the design

of the ILLIAC III computer. In 1970 he joined the Oper-

ations Research Group at the Shell Benelux Computing

Center in The Hague, where he worked on mathematical

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

ALAGHI ET AL.: THE PROMISE AND CHALLENGE OF STOCHASTIC COMPUTING 19

programming and software development. From 1972 to

1982 he was a faculty member of the Departments of

Electrical Engineering–Systems and Computer Science

of the University of Southern California. Since 1982 he

has been with the Electrical Engineering and Computer

Science Department of the University of Michigan, Ann

Arbor, where he holds the Claude E. Shannon Chair in

Engineering Science. His teaching and research interests

include computer-aided design, verification, and testing;

VLSI circuits; computer architecture; and unconvention-

al computing systems. Professor Hayes has authored over

300 technical papers, several patents, and seven books,

including Computer Architecture and Organization (3rd

ed., 1998), and Design, Analysis and Test of Logic Cir-

cuits under Uncertainty (with S. Krishnaswamy and I.L.

Markov, 2012). He has served as editor of the Communi-

cations of the ACM and the IEEE Transactions on Paral-

lel and Distributed Systems. Professor Hayes was elected

a Fellow of the ACM in 2001. His awards and honors

include the University of Michigan’s Distinguished Fac-

ulty Achievement Award (1999) and the Alexander von

Humboldt Foundation’s Research Award (2004). He

received the IEEE Lifetime Contribution Medal for out-

standing contributions to test technology in 2013, and the

ACM Pioneering Achievement Award for contributions

to logic design, fault tolerant computing, and testing in

2014.

