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Abstract—Stochastic computing (SC) is an 

unconventional method of computation that treats data as 

probabilities. Typically, each bit of an N-bit stochastic 

number (SN) X is randomly chosen to be 1 with some 

probability pX, and X is generated and processed by 

conventional logic circuits. For instance, a single AND gate 

performs multiplication. The value X of an SN is measured 

by the density of 1s in it, an information-coding scheme 

also found in biological neural systems. SC has uses in 

massively parallel systems and is very tolerant of soft 

errors. Its drawbacks include low accuracy, slow 

processing, and complex design needs.  Its ability to 

efficiently perform tasks like communication decoding and 

neural network inference has rekindled interest in the field. 

Many challenges remain to be overcome, however, before 

SC becomes widespread. In this paper, we discuss the 

evolution of SC, mostly focusing on recent developments. 

We highlight the main challenges and discuss potential 

methods of overcoming them.  

Index Terms—Approximate computing, pulse circuits, 

stochastic circuits, unconventional computing methods 

 

I. INTRODUCTION 

ROM its beginnings in the 1940s, electronic compu-

ting has relied on weighted binary numbers of the 

form 𝑋 = 𝑥1𝑥2 𝑥𝑘  to represent numerical data [16]. 

Typical is the use of X to denote a fixed-point fraction 

𝑣 = ∑ 2−𝑖𝑥𝑖
𝑘
𝑖=1  lying in the unit interval [0,1]. Efficient 

arithmetic circuits for processing such binary numbers 

(BNs) were soon developed.  There were, however, con-

cerns about the cost and reliability of these circuits, 

which led to the consideration of alternative number 

formats. Notable among the latter are stochastic numbers 

(SNs), where the 𝑥𝑖  bits are randomly chosen to make 

X’s value be the probability  𝑝𝑋 that 𝑥𝑖 = 1.  Again the 
resulting data values are in the unit interval [0,1]. In the 

late 1960s, research groups led by Gaines in the U.K. 

[28][29] and Poppelbaum in the U.S. [74] investigated 

data processing with SNs, a field that soon came to be 

known as stochastic computing (SC). Their pioneering 

work identified key features of SC, including its ability 

to implement arithmetic operations by means of tiny log-

ic circuits, its redundant and highly error-tolerant data 

formats, and its low precision levels comparable to ana-

log computing.  

Like some early binary computers, stochastic circuits 

process data serially in the form of bit-streams. Figure 1 

shows a stochastic number generator (SNG) that converts 

a given BN B to stochastic bit-stream form. The SNG 

samples a random BN R which it compares with B, and 

outputs an SN of probability 𝐵/2𝑘at a rate of one bit per 

clock cycle. After N clock cycles, it has produced an N-

bit SN X with  𝑝𝑋   𝐵/2𝑘. The value  𝑝𝑋 is the frequency 

or rate at which 1s appear, so an estimate  �̂�𝑋 
 of  𝑝𝑋 can 

be made simply by counting the 1s in X. In general, the 

estimate’s accuracy depends on the randomness of X’s 

bit-pattern, as well as its length N. Rather than a true 

random source, an SNG normally employs a logic circuit 

like a linear feedback shift register (LFSR) whose out-

puts are repeatable and have many of the characteristics 

of true random numbers [32]. Mathematically speaking, 

the SNG approximates a Bernoulli process that generates 

random binary sequences of the coin-flipping type, 

where each new bit is independent of all earlier bits. 

The essence of SC can be seen in how it is used to 

perform basic multiplication. Let X and Y be two N-bit 

SNs that are applied synchronously to a two-input AND 

gate, as in Figure 2. A 1 appears in the AND’s output bit-

stream Z if and only if the corresponding values of X and 

Y are both 1, hence  

�̂�𝑍   𝑝𝑋 × 𝑝𝑌  (1) 
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Figure 1. Stochastic number generator (SNG). 
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Figure 2. AND gate as a stochastic multiplier, with 𝑝𝑋 = 8 16⁄ , 𝑝𝑌 =
6 16⁄  and  𝑝𝑍 = 𝑝𝑋  𝑝𝑌 = 3 16⁄ . Equivalently, 𝑍 =  𝑋  𝑌 = 3/16. 
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In other words, the AND gate serves as a multiplier of 

probabilities, and can be orders of magnitude smaller 

than a comparable BN multiplier. The SC multiplier’s 

output bit-pattern Z varies with the randomness of the 

SNGs generating X and Y. These variations have little 

impact on the multiplier’s output value �̂�𝑍, however, in-

dicating a naturally high degree of error tolerance. On the 

other hand, the precision with which  �̂�𝑍 reflects 𝑝𝑋 × 𝑝𝑌 

tends to be rather low. This situation can be improved by 

increasing N, but N must be doubled for every desired 

extra bit of precision, a property that leads to very long 

bit-streams and slow computations. For example, BNs of 

length k = 8 provide 8-bit precision. To obtain similar 

precision with SC requires SNs of length N = 2k = 256 or 

more.  Hence, SC tends to be restricted to low-precision 

applications where the bit-streams are not excessively 

long. More troublesome is the need for X and Y to have 

statistically independent or uncorrelated bit-patterns in 

order for  �̂�𝑋 
and  �̂�𝑌 

to be treated as independent proba-

bilities, as required by Equation (1). In the extreme case 

where exactly the same bit-pattern X is applied to both 

inputs of the AND gate, the output bit-stream’s value 

becomes pX instead of pX2, implying a potentially large 

computation error which cannot be corrected simply by 

extending N.  

As the cost and reliability of conventional binary 

computing (BC) improved in the 1960s and ‘70s with the 

development of integrated circuits tracked by Moore’s 

Law, interest in SC waned. It was seen as poorly suited to 

general-purpose computation, where high speed, accura-

cy, and compact storage were routinely expected. How-

ever, SC continued to find niche applications in areas 

such as image processing, control systems, and models of 

neural networks, which can take advantage of some of its 

unique features.   

Neural networks, both natural and artificial, constitute 

an interesting case. As Figure 3 suggests, biological neu-

rons process noisy sequences of voltage spikes which 

loosely resemble SNs [31][57]. Information is encoded in 

both the timing and the frequency of the spikesthe 

exact nature of the neural code is one of nature’s myster-

ies.  However, significant information, such as the inten-

sity of a muscular action, is embedded SN-like in the 

spike rate over some time window; the spike positions 

also exhibit SN-style randomness.  Moreover, the opera-

tion of a single neuron is commonly modeled by an in-

ner-product function of the form   

𝐹 = ∑ 𝑊𝑖
𝑁
𝑖=1 × 𝑋𝑖   (2) 

where the Xi’s are signals from other neurons, and the 

𝑊𝑖′s are synaptic weights denoting the influence of those 
neurons.  Since the number of interneural connections 

and multiplications N can be in the thousands, SC-based 

implementations of Equation (2) are attractive because of 

their relatively low hardware cost [14][46]. 

The state of SC circa 2000 can be characterized as fo-

cused on a handful of old and specialized applications 

[3][59]. The situation changed dramatically when Gaudet 

and Rapley observed that SC could be applied success-

fully to the difficult task of decoding low-density parity 

check (LDPC) codes [30].  Although LDPC codes, like 

SC, were discovered in the 1960s, there was little practi-

cal interest in them until the advent of suitable decoding 

methods and circuits, as well as the inclusion of LDPC 

codes in new wireless communication standards such as 

digital video broadcasting (DVB-S2) and WiMAX (IEEE 

802.16). LDPC decoding employs a probabilistic algo-

rithm that passes messages around a code representation 

called a Tanner graph, while repeatedly performing two 

basic operations, parity checking and equality checking. 

It turns out that these operations are implemented effi-

ciently by the stochastic circuits in Figure 4. Many cop-

ies of these circuits can be operated in parallel, resulting 

in fast, low-cost decoding, and demonstrating the poten-

tial of SC to provide massive parallelism. Recent devel-

opments have shown that SC-based LDPC decoders are 

competitive in performance and cost with conventional 

binary designs [47].  

Other new applications and technology developments 

supported this revival of interest in SC. With the emer-

gence of mobile devices such as smart phones and medi-

cal implants, extremely small size and power, as well as 

low-cost digital signal processing, have become major 

system goals [48]. An illustrative application of SC in the 

medical field is the design of retinal implants to aid the 

blind. An implant chip can be placed in the eye to receive 

 
Figure 3. Spike trains in a biological neural network and equivalent 
SNs. 
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Figure 4. Stochastic circuits for LDPC decoding [30]: (a) parity 

check node; (b) equality node. 
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and process images and transfer the results via pulse 

trains through the optic nerve directly to the brain. The 

chip must satisfy extraordinarily severe size and power 

constraints, which SC is particularly well-suited to 

meet [4].  

Significant aspects of SC that had been ignored in the 

pastWhy does the apparently simple logic circuit of 

Figure 4b implement such a complex arithmetic func-

tion? now began to receive attention. The relation be-

tween logic circuits and the stochastic functions they 

implement has been clarified, resulting in general design 

procedures for implementing arithmetic operations [75]. 

Correlation effects in SC have recently been quantified, 

leading to the surprising conclusion that correlation can 

serve as a valuable computational resource [5]. Bit-

stream length can be reduced by careful management of 

correlation and precision (progressive precision [6]). The 

high contribution of stochastic-binary number conversion 

circuits to overall SC costs [75] is being recognized and 

addressed. New technologies, notably memristors, have 

appeared that have naturally stochastic properties which 

reduce data-conversion needs [43]. 

Despite these successes, SC still has limitations that 

must be considered when used in certain applications. 

Most importantly, the run time of SC circuits increases 

prohibitively when high precision or highly accurate 

computations are needed. Recent investigations have 

shown that the long computation time may lead to exces-

sive energy consumption, thus making low-precision BC 

a better choice [1][58][62]. Manohar [58] provides a the-

oretical comparison between SC and BC and shows that 

even for multiplication, SC ends up having more gate 

invocations (i.e., the number of times an AND gate is 

called). Aguiar and Khatri [1] perform a similar compari-

son but instead of comparing the number of gate invoca-

tions, they actually implement BC and SC multipliers 

with different bit widths. They conclude that SC multi-

plication is more energy efficient for computations that 

require 6 bits of precision (or lower). However, if con-

version circuits are needed, SC is almost always worse 

than BC [1]. 

This poses an important challenge to SC designers: 

their designs must be competitive in terms of energy effi-

ciency with BC circuits of similar accuracy/precision. 

Some of the topics that can potentially address this prob-

lem are (i) exploiting progressive precision to reduce 

overall run time, (ii) exploiting SC’s error tolerance to 

improve energy usage, and (iii) reducing or eliminating 

the cost of data conversion. Examples of these tech-

niques appear in the current literature.   

This paper focuses on more recent SC work than the 

survey [3], and attempts to highlight the big challenges 

facing SC and their potential solutions. The remainder of 

the paper is organized as follows. Section II provides a 

formal introduction to SC and its terminology, including 

SC data formats, basic operations, and randomness re-

quirements. Readers familiar with the topic can skip this 

section. General synthesis methods for combinational 

and sequential SC circuits are discussed in Section III. 

Section IV examines the application domains of SC, as 

well as some emerging new applications. Concluding 

remarks and future challenges of SC are discussed in 

Section V.  

II. BASIC CONCEPTS 

Probabilities are inherently analog quantities that corre-

spond to continuous real numbers. Stochastic circuits can 

be therefore interpreted as hybrid analog-digital circuits 

because they employ digital components and signals to 

process analog data. Theoretically, the AND gate of Fig-

ure 2 can perform multiplication on numbers with arbi-

trary precision. However, to find the probability  𝑝𝑍 =
𝑝𝑋 × 𝑝𝑌 we must obtain a finite number of discrete sam-

ples of the circuit’s output from which to estimate 𝑝𝑍 . 

The estimation’s accuracy increases slowly with the 

number of samples, and is limited by noise considera-

tions, making it impractical to estimate 𝑝𝑍 with high pre-

cision. 

 
A. Stochastic number formats 

Interpreting SNs as probabilities is natural, but it limits 

them to the unit interval [0,1]. To implement arithmetic 

operations outside this interval, we need to scale the 

number range in application-dependent ways. For exam-

ple, integers in the range [0,256] can be mapped to [0,1] 

by dividing them by a scaling factor of 256, so that {0, 1, 

2, …, 255, 256} is replaced by {0, 1/256, 2/256, …, 

255/256, 1}. Such scaling can be considered as a pre-

processing step required by SC.  

SC can readily be defined to handle signed numbers. 

An SN X whose numerical value is interpreted in the 

most obvious fashion as 𝑝𝑋 is said to have the unipolar 

format. To accommodate negative numbers, many SC 

systems employ the bipolar format where the value of X 

is interpreted as 2𝑝𝑋 − 1 , so the SC range effectively 
becomes [1, 1]. Thus, an all-0 bit-stream has unipolar 

value 0 and bipolar value 1, while a bit-stream with 

equal numbers of 0’s and 1’s has unipolar value 0.5, but 

bipolar value 0.  Note that the function of an SC circuit 

usually changes with the data format used. For instance, 

the AND gate of Figure 2 does not perform multiplica-

tion in the bipolar domain. Instead, an XNOR gate must 

be used, as shown in Example 1 below. On the other 

hand, both formats can use the same adder circuit. In 

what follows, to reduce confusion, we use X to denote 

the numerical value of the SN X. With this convention, 

𝑋 = 𝑝𝑋  in the unipolar domain, while 𝑋 = 2𝑝𝑋 − 1 in 
the bipolar domain. 

Several other SN formats have appeared in the litera-

ture [60]. Inverted bipolar is used in [2] to simplify the 

notation for spectral transforms. In [61] the value of a 

bit-stream is interpreted as the ratio of 1’s to 0’s, which 

creates a very wide, albeit sparse, number range. Table I 

shows the various number formats mentioned so far. 
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These formats deal with single bit-stream only. Dual-rail 

and multi-rail representations have also been proposed. 

Gaines [29], for example, presents dual-rail unipolar and 

bipolar number formats, along with the basic circuits for 

each format. Toral et al. propose another dual-rail encod-

ing that represents a ternary stochastic number 𝑋 =
𝑥1𝑥2 …𝑥𝑁, where each 𝑥𝑖 ∈ {−1,0,1} [94]; it will be dis-
cussed in Section IV-A. The binomial distribution gener-

ator of [75], which is discussed in Section III, produces a 

multi-rail SN. 

B. Stochastic number generation 

We can map an ordinary binary number to an SN in uni-

polar format using the SNG in Figure 1. To convert the 

unipolar SN back to the binary, it suffices to count the 

number of 1’s in the bit-stream using a plain (up) coun-

ter. Slight changes to these circuits allow for conversion 

between bipolar SNs and binary numbers. In SC, num-

ber-conversion circuits tend to cost much more than 

number-processing circuits. For example, to multiply two 

8-bit binary numbers using the SC multiplier of Figure 2, 

we need two SNGs and a counter. A rough gate count 

reveals that the conversion circuits have about 250 gates 

while the computation part, is just a single AND gate. 

Extensive use of conversion circuits can severely affect 

the cost of SC circuits. Qian et al. [76] report that the 

conversion circuits consume up to 80% of the total area 

of several representative designs. For this reason, it is 

highly desirable to reduce the cost of conversion circuits.  

Methods to reduce the cost of constant number gen-

eration are investigated in [25][79]. For massively paral-

lel applications such as LDPC decoding, a single copy of 

random number generator can be shared among multiple 

copies of SC circuits to provide random inputs, thus ef-

fectively amortizing the cost of conversion circuits 

[21][89]. Furthermore, inherently stochastic nanotech-

nologies like memristors offer the promise of very low-

cost SNGs [43]. The cost of data conversion can also be 

lowered if analog inputs are provided to the SC circuit. 

In this case, it may be feasible to directly convert the 

inputs from analog to stochastic using ramp-compare 

analog-to-digital converters [46][64] or delta-sigma con-

verters [83]. 

 
C. Accuracy and randomness 

The generation of an SN X resembles an ideal Bernoulli 

process producing an infinite sequence of random 0’s 

and 1’s. In such a process, each 1 is generated inde-

pendently with fixed probability 𝑝𝑋; 0’s thus appear with 

probability 1 − 𝑝𝑋 .  The difference between the exact 

value 𝑝𝑋 and its estimated value  �̂�𝑋  (estimated over N 

samples) indicates the accuracy of X. This difference is 

usually expressed by the mean square error (MSE) 𝐸𝑋 

given by  

𝐸𝑋 = 𝔼[(�̂�𝑋 − 𝑝𝑋)2] =
𝑝𝑋(1 − 𝑝𝑋)

𝑁
 

(3) 

Equation (3) implies that inaccuracies due to random 

fluctuations in the SN bit-patterns can be reduced as 

much as desired by increasing the bit-stream length N. 

Hence the precision of X can be increased by increasing 

N or, loosely speaking, the quality of a stochastic compu-

tation tends to improve over time.  This property is 

termed progressive precision, and is a feature of SC that 

will be discussed further later. 

Stochastic circuits are subject to another error source 

which is much harder to deal with, namely insufficient 

independence or correlation among the input bit-streams 

of a stochastic circuit. Correlation is due to signal reuse 

caused by reconvergent fanout, shared randomness 

sources, and the like. As noted in Section I, if a bit-

stream representing X is fanned out to both inputs of the 

AND gate in Figure 2, the gate computes X instead of X 

squared. This major error is due to maximal (positive) 

correlation between the AND’s input signals.  In general, 

if correlation changes the output number, the resulting 

error does not necessarily go toward zero as N increases.   

It is instructive to interpret SN generation as a Monte 

Carlo sampling process [6]. Consider again the SNG of 

Figure 1 and, for simplicity, assume that both the input B 

and the random source 𝑅  have arbitrary precision. As-
sume further that the value 𝑝𝑋 of B is unknown. The 
SNG effectively generates a sequence X of  𝑁 samples, 
and we can get an estimate  �̂�𝑋 of 𝑝𝑋  by counting the 

number of 1’s in X.    It is known that  �̂�𝑋 converges to 

the exact value 𝑝𝑋 at the rate of 𝑂(1/√𝑁). 
For most stochastic designs, LFSRs are used as the 

random number sources to produce stochastic bit-

streams. Although these random sources are, strictly 

speaking deterministic, they pass various randomness 

tests [32][44] and so are considered pseudo-random. 

Such tests measure certain properties of a bit-stream, 

e.g., the frequency of 1’s, the frequency of runs of k 1’s, 

etc., and check the extent to which these properties 

match the behavior of a true random number generator. 

Despite what is commonly believed, SNs do not need 

to pass many randomness tests. In fact, in order to have 

 �̂�𝑋 
= 𝑝𝑋 we only need X to have the correct frequency 

Table I. Possible interpretations of a bit-stream of length 𝑁 containing 𝑁1 1’s and 𝑁0 0’s. 

Format Number value Number range Relation to unipolar value 𝒑𝑿 

Unipolar (UP) 𝑁1/𝑁 [0, 1] 𝑝𝑋 

Bipolar (BP) (𝑁1 − 𝑁0)/𝑁 [1, 1] 2𝑝𝑋 − 1 

Inverted bipolar (IBP) (𝑁0 − 𝑁1)/𝑁 [1, 1] 1 − 2𝑝𝑋 

Ratio of 1’s to 0’s 𝑁1/𝑁0 [0, +∞] 𝑝𝑋/(1 − 𝑝𝑋) 
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of 1’s. So it is possible to replace random number 

sources by so-called deterministic sources, which employ 

predictable patterns and lack most of the usual random-

ness attributes [6][38]. An example of a deterministic 

format is where all the 1’s of an SN are grouped together 

and followed by all the 0’s, as in 111111100000 [13]. 

To generate a deterministic bit-stream of the above 

form, we can use a counter to generate a sequence of 

deterministic values 0, 1/𝑁, 2/𝑁,… , (𝑁 − 1)/𝑁  and 

feed it to the comparator of Figure 1. It can be proved 

that the difference between  �̂�𝑋 (the value of the generat-

ed bit-stream) and  𝑝𝑋  (the constant number fed to the 

comparator) is no more than 1/𝑁, implying that �̂�𝑋 con-

verges to 𝑝𝑋 at the faster rate of 𝑂(1/𝑁). This motivates 
the use of deterministic number sources in SC, and in-

deed some SC circuits use such deterministic numbers 

[6]. However, there are several challenges to overcome 

when deterministic number formats are used, including 

limited scalability, and the cost of number generation to 

conserve the deterministic formats. 

When many mutually uncorrelated SNs are needed, 

we can still extend the foregoing deterministic number 

generation approach, but its cost significantly increases 

with number of inputs. Gupta and Kumaresan [34] de-

scribed an SN multiplier that produces exact results for 

any given input precision. However, to multiply 𝑘 𝑚-bit 

numbers using their method requires bit-streams of 

length 2𝑘𝑚, which becomes impractical for circuits with 

a large number of inputs.  

By employing the deterministic approach, one gains 

a better control over the progressive precision of the SNs. 

Random number sources provide this property naturally 

to some degree. To fully exploit it, quasi-random or low-

discrepancy sources may be used [6]. SNs generated via 

low-discrepancy sequences converge with the rate of  

𝑂(1/𝑁). However, the benefits of using low-discrepancy 

sequences also diminish as the number of inputs in-

crease, because the cost of generating them is much 

higher than pseudo-random number generation. 
In summary, it may be beneficial to use deterministic 

number sources for SC circuits that have few inputs 

(three or fewer uncorrelated inputs). For circuits with 

more number sources, it appears better to use LFSRs and 

settle for the slower 𝑂(1/√𝑁) convergence rate. 

D. Basic arithmetic operations 

SC multiplication was discussed in the previous sections. 

SC addition is usually   performed by a multiplexer 

(MUX) implementing the Boolean function 𝑧 =
(𝑥  𝑟′)  (𝑦  𝑟), where  𝑥 and 𝑦 are the primary (data) 
inputs and 𝑟  is the select input. A purely random bit-
stream of probability  𝑝𝑅 = 0.5 is applied to r. The bit-
streams X, Y, and Z can be interpreted either as unipolar 

or bipolar. As Figure 5 shows, half the output bit-stream 

Z comes from X (blue) and the other half from Y (red), as 

decided by R. It follows that 𝑝𝑍 = 0.5(𝑝𝑋) + 0.5(𝑝𝑌) . 
Therefore, with either the unipolar or bipolar format, the 

output value 𝑍 = 0.5𝑋 + 0.5𝑌. Notice that R provides a 
scaling factor of 0.5 and maps the sum to [0, 1] in the 

unipolar case, or to [1, 1] in the bipolar case. This type 

of scaled addition entails a loss of precision since half of 

the information in the input bit-streams is effectively 

discarded. Thus, in the case of Figure 5 where the input 

precision is log2 N = 4 bits, the precision of the output 

also drops to 4 bits (as opposed to the expected 5 bits of 

precision).  To ensure that Z has precision of 5, the length 

of all the bit-streams would have to be doubled to 32. It 

should also be noted that the probability 𝑝𝑍  can be ex-

pected to fluctuate around  0.5(𝑝𝑋 + 𝑝𝑌) due to random 
fluctuations in R.  

Several other adder designs have been proposed in the 

literature. A novel, scaling-free stochastic adder is proposed 

in [99], which operates on the ternary stochastic encoding 

proposed in [94]. Its key idea is to use a counter to remem-

ber carries of 1 and −1 and release them at a later time slot. 
Lee et al. [46] describe an adder that eliminates the need for 

a separate random source. Since adding is expensive, Ting 

and Hayes [91] propose using accumulative parallel coun-

ters (APCs) [71] in computations that end with an adding 

reduction e.g., matrix multiplication. An APC performs ad-

dition and stochastic-to-binary conversion simultaneously.  

SC subtraction is easily implemented in the bipolar 

domain. Because inverting a bit-stream negates its bipo-

lar value, we can use an inverter and a MUX to imple-

ment a bipolar subtractor.  However, with unipolar en-

coding, since the value range [0, 1] does not include neg-

ative numbers, implementing subtraction becomes com-

plicated. Various methods of approximating unipolar 

subtraction exist in the literature [5][27]. 

SC division is the most difficult of the basic opera-

tions. First, the result 𝑍 = 𝑋1/𝑋2 falls outside the range 

[0, 1] if 𝑋1 > 𝑋2, so we must assume that 𝑋1 ≤ 𝑋2. Sec-

ond, as will be discussed in Section II.E, SC combina-

tional circuits are only capable of implementing multi-

linear functions, but division is naturally a non-linear 

function. Nevertheless, SC circuits that implement divi-

sion have been proposed in the literature. These circuits 

either include sequential elements, or exploit correlation 

among the input SNs. 

Gaines [29] implemented division using a feedback 

loop (Figure 6). First, an initial guess of the result is 

stored in a binary variable 𝑝𝑍, and then  𝑌 = 𝑍 ×  𝑋2 is 

calculated using an SC multiplier.  If 𝑍 were a correct 
guess of the division result 𝑋1/𝑋2 , then 𝑋1 = 𝑌  must 
hold. So based on the observed value of 𝑌, the guessed 

x 0

1

MUX

X = 1011100101010010

Y = 0110101000110000

R = 0010100110011101

Z = 1011100001010010

y

z

r  
 

Figure 5. Multiplexer serving as a stochastic adder, with  𝑝𝑋 =
8 16⁄ , 𝑝𝑌 = 6 16⁄ ,  𝑝𝑅 = 8 16⁄ , and  𝑝𝑍 = 1/2( 𝑝𝑋 + 𝑝𝑌) = 7 16⁄ . 
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result 𝑝𝑍 is updated. If 𝑌 > 𝑋1, 𝑝𝑍 is reduced, and if 𝑌 <
𝑋1, 𝑝𝑍  is increased. Given sufficient time, 𝑝𝑍  eventually 

converges to 𝑋1/𝑋2. Note that this method needs a binary 

register to hold the guessed result 𝑝𝑍 , and an SNG to 

generate an SN representing 𝑍. Furthermore, the conver-
gence time of the circuit can be long. 

An approximate divider can be implemented by a JK 

flip-flop. If we connect the J and K inputs to 𝑋1 and 𝑋2, 

respectively, then the SN appearing at the output of the 

flip-flop implements 𝑍 = 𝑋1/(𝑋1 + 𝑋2). The JK flip-flop 

of Figure 4b is used for the purpose of division. Recently, 

a new SC divider has been proposed by Chen and Hayes 

[20]. This divider exploits correlation among its inputs 

and implements an exact division function. 

E. Stochastic functions 

As shown in the previous sections, SC addition and 

multiplication can be implemented by simple combina-

tional circuits. A related question is: Given an arbitrary 

combinational circuit, what SC function does it compute? 

Consider a combinational circuit C implementing the 

Boolean function 𝑓(𝑥1, … , 𝑥𝑘). When supplied with un-

correlated SNs, C implements the (unipolar) stochastic 

function 𝐹(𝑋1, … , 𝑋𝑘) defined by 

𝐹(𝑋1, … , 𝑋𝑘) = 
                        (1 − 𝑋1)(1 − 𝑋2)… (1 − 𝑋𝑘)𝑓(0,0, … ,0) 

          + (1 − 𝑋1)(1 − 𝑋2)… (𝑋𝑘)𝑓(0,0, … ,1) 

   . . . 

+ (𝑋1)(𝑋2) … (𝑋𝑘)𝑓(1,1, … ,1) (4) 

When expanded out, Equation (4) takes the form of a 

multilinear polynomial. Consequently, combinational 

circuits with uncorrelated inputs can only approximate 

their target function via a suitable multilinear polynomial 

(see Section III).  

Example 1: Let 𝑓(𝑥1, 𝑥2)  be the logic function of an 
XOR gate. Then from Equation (4) 

𝑍 = 𝐹(𝑥1, 𝑥2) = (1 − 𝑋1)𝑋2 + 𝑋1(1 − 𝑋2)
=  𝑋1 + 𝑋1 − 2𝑋1𝑋2 

or, equivalently, 

𝑝𝑍 = 𝑝𝑋1
+ 𝑝𝑋2

− 2 𝑝𝑋1
𝑝𝑋2

 (5) 

Thus 𝑋1 + 𝑋2 − 2𝑋1𝑋2 is the unipolar stochasic function 

of XOR. If we treat the SNs as bipolar numbers, where 

𝑋 = 2𝑝𝑋 − 1,  Equation (5) can be rewritten as 2𝑝𝑍 −
1 = −(2𝑝𝑋1

− 1)( 2𝑝𝑋2
− 1), i.e.,  𝑍 = −𝑋1𝑋2 . Hence, 

an XOR gate serves as a bipolar multiplier with negation. 

Using the inverted bipolar or IBP format (see Table I), 

we get 𝐹 = 𝑋1𝑋2 , and the XOR gate becomes an IBP 

multiplier without negation. Clearly, an XNOR gate is 

the basic bipolar multiplier.                        
We can extend the functionality of SC circuits by in-

corporating sequential elements, as in the examples of 

Figure 4. In particular, sequential elements enable im-

plementation of rational functions. Section III shows how 

arbitrary functions can be implemented efficiently using 

sequential SC circuits. 

F. Correlation in stochastic operations 

Although correlation in input SNs is usually detrimental 

to the functional correctness of stochastic circuits, careful 

use of correlation may be beneficial.  Indeed, by feeding 

a circuit with inputs that are intentionally correlated, we 

obtain a different SC function, which may sometimes be 

very useful. For example, an XOR gate with maximally 

correlated inputs 𝑋 and 𝑌 implements the absolute differ-
ence function |𝑋 − 𝑌|, as shown in [5]. 

To measure the correlation between SNs, Alaghi and 

Hayes [5] introduced a similarity measure called SC cor-

relation (SCC), which is quite different from the more 

usual Pearson correlation measure [22]. It is claimed in 

[5] that SCC is more suitable for SC circuit design be-

cause unlike the Pearson correlation, it is independent 

from the value of SNs. However, SCC cannot be easily 

extended to more than two SNs. 

Maintaining a desired level of correlation between 

SNs is difficult. Consider the problem of decorrelation, 

i.e., systematic elimination of undesired correlation. 

There are two main ways to reduce correlation. One is 

regeneration, which converts a corrupted SN to binary 

form and then back to stochastic using a new SNG. An 

example of this is shown in Figure 7a, which computes 

𝑍 = 𝑋2. This decorrelation method has very high hard-

ware cost, and may eliminate desirable properties such as 

progressive precision. An alternative method called isola-

tion is illustrated in Figure 7b. A D-flip-flop (DFF) is 

inserted into line 𝑥  and clocked at the bit-stream fre-
quency, so it delays 𝑋 by one clock cycle. If the bits of 𝑋 
are independent, as is normally the case, then 𝑋 and a k-
cycle delayed version of 𝑋 are statistically independent 

in any given clock period. In general, isolation-based 

decorrelation has far lower cost than regeneration, but 

the numbers and positions of the isolators must be care-

fully chosen. Ting and Hayes [92] have developed a the-

SNG z

x2 y
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Figure 6. Counter-based stochastic divider. 
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Figure 7. (a) Regeneration-based and (b) isolation-based decorrelation 
of a squarer circuit. DFF denotes a D flip-flop isolator. 
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ory for placing isolators and have obtained conditions for 

a placement to be valid.  

As noted earlier, a stochastic multiplier requires inde-

pendent inputs for correct operation. However, Alaghi 

and Hayes noticed that some operations, including 

MUX-based addition, do not require their inputs to be 

independent [8]; such circuits are called correlation in-

sensitive (CI). Figure 8 shows how correlation insensitiv-

ity can be exploited in an SC adder. The original design 

of Figure 8a assumes that inputs X and Y are generated 

independently. Because an SC adder is CI, the input ran-

dom number sources (RNSs) can be shared as shown in 

Figure 8b. Correlation between X and Y does not lead to 

errors, since the output bit z at any time is taken from X 

or Y, but not both; cf. Figure 5.   

III. DESIGN METHODS 

Until recently, stochastic circuits were designed manual-

ly. The circuits of Figure 4 are examples of clever de-

signs that implement complex functions with a handful 

of gates. Designing stochastic circuits for arbitrary func-

tions is not easy.  This problem has been studied inten-

sively in the last few years, and several general synthesis 

methods have been proposed 

[2][7][19][49][52][82][101]. These methods can be clas-

sified into two types depending on whether the target 

design is reconfigurable or fixed. A reconfigurable design 

has some programmable inputs that allow the same de-

sign to be reused for different functions. A fixed design 

can only implement one target function. In this section, 

unless otherwise specified, we only discuss SC design in 

the unipolar domain. 

A. Reconfigurable stochastic circuits 

The basic form of a reconfigurable stochastic circuit is 

shown in Figure 9. Its computing core consists of a dis-

tribution-generating circuit (DGC) and a MUX. The 

DGC has 𝑚 inputs 𝑥1, … , 𝑥𝑚. It outputs a binary value 𝑠 
in the range {0,1, … , 𝑛} . The inputs 𝑥1, … , 𝑥𝑚  are fed 

with independent SNs 𝑋1, 𝑋2, … , 𝑋𝑚 , all encoding the 

same variable value 𝑋 . Then the port 𝑠  outputs a se-
quence of random numbers. The probability of 𝑠 to as-
sume the value 𝑖 (0 ≤ 𝑖 ≤ 𝑛) is a function of the variable 
𝑋 , denoted by 𝐹𝑖(𝑋) . With different DGCs, different 

probability distributions 𝐹0(𝑋), … , 𝐹𝑛(𝑋)  of 𝑠  can be 
achieved. The signal 𝑠 is used as the select input of the 
MUX. The data inputs of the MUX are 𝑛 + 1  SNs 
𝐵0, … , 𝐵𝑛, which encode constant probabilities 𝐵0 , … , 𝐵𝑛. 

The value of the output SN 𝑌 of the MUX can be ex-

pressed as  

𝑌 = 𝑃(𝑦 = 1) = ∑𝑃(𝑦 = 1|𝑠 = 𝑖)𝑃(𝑠 = 𝑖)

𝑛

𝑖=0

= ∑𝐵𝑖𝐹𝑖(𝑋)

𝑛

𝑖=0

 

 

(6) 

As Equation (6) shows, the final output is a linear 

combination of the distribution functions 

𝐹0(𝑋), … , 𝐹𝑛(𝑋). This type of circuit is reconfigurable 
because with different sets of constant values 𝐵𝑖 , differ-

ent functions can be realized using the same design. Of 

course, not every function can be realized exactly by 

Equation (6). Given a target function 𝐺(𝑋), an optimal 
set of constant values are determined by minimizing the 

approximation error between the linear combination and 

𝐺(𝑋) [76]. 
Prior research on synthesizing reconfigurable stochas-

tic circuits can be distinguished by the form of the DGC 

proposed. The first work in this category employed an 

adder as the DGC [77]. The adder takes 𝑛 Boolean inputs 
and computes their sum as the output signal 𝑠. Given that 
the 𝑛 Boolean inputs are independent and have the same 
probability 𝑋 of being 1, the output 𝑠 follows the well-
known binomial distribution 

𝑃(𝑠 = 𝑖) = (
𝑛
𝑖
) (1 − 𝑋)𝑛−𝑖𝑋𝑖  

for 𝑖 = 0,1, … , 𝑛. Therefore, the computation realized has 
the following form: 

𝑌 = ∑𝐵𝑖 (
𝑛
𝑖
) (1 − 𝑋)𝑛−𝑖𝑋𝑖

𝑛

𝑖=0
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Figure 8. Exploiting correlation insensitivity in an SC adder: (a) origi-
nal design and (b) design sharing an RNS. 

MUX...

0

1

n

Distribution 

generating 

circuit DGC

P(s = i) = Fi (X)

X

Y  
SNG

SNG

SNG

SNG

...

SNG

...

...

SN X2

SN Xm

B0

B1

Bn

Counter

SN B0

SN B1

SN Bn

SN Y

x1

x2

xm

s

y

SN X1

SNG

 
Figure 9. Reconfigurable stochastic circuit; examples of the distribu-

tion generating circuit include an adder [77] and an up/down counter 

[52]. 
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which is known as a Bernstein polynomial [55][78]. The 

approach of [76] finds a Bernstein polynomial that is 

closest to the target function and realizes it using the re-

configurable stochastic circuit. The drawback of this 

method is that 𝑛 SNGs are required to generate 𝑛  SNs 
𝑋1, … , 𝑋𝑛. To address this issue, later work explored the 

use of sequential circuits as the DGC. The key is to find a 

simple circuit which produces a distribution that approx-

imates arbitrary functions closely. 

Li et al. [52] first studied the use of an up/down coun-

ter as the DGC. The counter has a Boolean input 𝑥 and 
outputs the current count value. If 𝑥 = 1, the count in-
creases by one, otherwise it decreases by one. The count 

value remains unchanged for 𝑥 = 1 if it has reached its 
maximal value. Also, it remains unchanged for 𝑥 = 0 if it 
has reached its minimal value.  

If the input 𝑥 carries an SN X, the state behavior of the 
counter can be modeled as a time-homogeneous Markov 

chain [82]. A Markov chain has an equilibrium distribu-

tion (𝜋0(𝑋), … , 𝜋𝑛(𝑋)), where 𝜋𝑖(𝑋)  is the probability 
of the state 𝑖 at equilibrium, which is a function of the 
input value 𝑋 . The equilibrium probability distribution 
can be used as the DGC of Figure 9, yielding  𝐹𝑖(𝑋) =
𝜋𝑖(𝑋)  and  

𝑌 = ∑𝐵𝑖𝜋𝑖(𝑋)

𝑛

𝑖=0

 

However, the reconfigurable stochastic circuit using the 

counter as the DGC is not able to approximate a wide 

range of functions. To enhance the representation capa-

bility, extensions were proposed in [49][84]. These ex-

tensions use FSMs with extra degrees of freedom, thus 

allowing a wider range of functions to be implemented. 
 

B. Fixed stochastic circuits 

In many applications, the computation does not change, 

so a fixed stochastic circuit is enough. The design of 

fixed stochastic circuits based on combinational logic has 

been studied in several recent papers [2][7][101]. 

The work in [7] proposes a synthesis method 

STRAUSS based on the Fourier transform of a Boolean 

function. The Fourier transform maps a vector �⃗�  repre-

senting a Boolean function into a spectrum vector 𝑆  as 
follows 

𝑆 =
1

2𝑛
𝐻𝑛 × �⃗�  

 (8) 

Here �⃗�  is obtained by replacing 0 and 1 in the output 
column of the truth table by +1 and −1, respectively, 
and 𝐻𝑛 is the Walsh matrix recursively defined as 

𝐻1 = [
+1 +1
+1 −1

] ,  𝐻𝑛 = [
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
] 

The authors of [7] first demonstrate a fundamental re-

lation between the computation of a stochastic circuit and 

its spectrum vector. They use the IBP format for SNs 

defined in Table I. The Boolean function  𝑓(𝑥1, … , 𝑥𝑛)   
then corresponds to the stochastic function  

𝐹(𝑋1, … , 𝑋𝑛) = ∑ 𝑐(𝑎1, … , 𝑎𝑛)∏𝑋
𝑗

𝑎𝑗

𝑛

𝑗=1(𝑎1,…,𝑎𝑛)∈{0,1}𝑛

 

where the 𝑐(𝑎1, … , 𝑎𝑛)’s are constant coefficients. This is 
a multilinear polynomial on 𝑋1, … , 𝑋𝑛 , cf. Equation (4).  

An important finding in [7] is that the coefficient vector 

𝑐 = [𝑐(0, … ,0), … , 𝑐(1, … ,1)]𝑇  is the spectrum vector 𝑆  
specified by Equation (8). 

Example 2. Consider an XOR gate, which serves as a 

multiplier in IBP format (see Example 1). Its original 

truth table vector is [0  1  1 0]T.  Replacing 0s and 1s by 

+1s and −1s, we get the vector �⃗� = [+1  − 1  − 1 +
1]T. Applying Equation (8) to perform the Fourier trans-
form yields the spectrum vector 

𝑆 =
1

22
[

+1 +1
+1 −1

+1 +1
+1 −1

+1 +1
+1 −1

−1 −1
−1 +1

] [

+1
−1
−1
+1

] = [

0
0
0
1

] 

This again shows that the stochastic function of XOR is 

IBP multiplication.             

Based on the relation between spectral transforms and 

stochastic circuits, a method to synthesize a stochastic 

circuit for a target function 𝑆  is proposed in [7]. The 

basic idea is to apply the inverse Fourier transform �⃗� =

𝐻𝑛𝑆  to obtain the vector �⃗� . However, this vector may 
contain entries that are neither +1 nor −1, implying that 

𝑆   does not correspond to a Boolean function. For exam-
ple, consider the scaled addition function 1/2(𝑋1 + 𝑋2). 

Its 𝑆   (coefficient) vector is [0  1/2  1/2  0]T , and the 

inverse Fourier transform �⃗� = 𝐻2𝑆  yields �⃗� =
[1   0   0  − 1]T , which contains the non-Boolean ele-

ment zero. This problem is implicitly resolved in the 

standard MUX-based scaled adder (Figure 5) which has a 

third input r that introduces the constant probability 0.5.   

In general, an entry −1 < 𝑞 < 1 in the �⃗�  vector corre-
sponds to an SN of constant probability (1 − 𝑞)/2 . 
STRAUSS employs extra SNs of probability 0.5 to gen-

erate these SNs, since a probability of 0.5 can be easily 

obtained from an LFSR. A heuristic method is introduced 

to synthesize a low-cost circuit to produce multiple con-

stant probabilities simultaneously. 

A synthesis problem similar to that of [7] is addressed 

in [101]. The authors first analyze the stochastic behavior 

of a general combinational circuit whose inputs comprise 

n variable SNs 𝑋1, … , 𝑋𝑛  and m constant input SNs 

𝑅1, … , 𝑅𝑚  of value 0.5, as shown in Figure 10. If the 

Boolean function of the combinational circuit is 

𝑓(𝑥1, … 𝑥𝑛 , 𝑟1, … , 𝑟𝑚), then the stochastic circuit in Fig-
ure 10 realizes a polynomial of the form 
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𝐹(𝑋1, … , 𝑋𝑛) = ∑
𝑔(𝑎1,… , 𝑎𝑛)

2𝑚
∏𝑋

𝑗

𝑎𝑗
(1 − 𝑋𝑗)

1−𝑎𝑗

𝑛

𝑗=1(𝑎1,…,𝑎𝑛)

∈{0,1}𝑛

 
 

(9) 

In this equation, for any (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛 , 

𝑔(𝑎1, … , 𝑎𝑛) denotes the weight of the Boolean function 
𝑓(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚)  on 𝑟, … 𝑟𝑚 , i.e., the number of 

input vectors (𝑏1, … , 𝑏𝑚) ∈ {0,1}𝑚 such that 𝑓(𝑎1, … , 𝑎𝑛,
𝑏1, … , 𝑏𝑚) = 1. 

Example 3. Consider the case where the combinational 

circuit in Figure 10 is a MUX, with 𝑥1 and 𝑥2 as its data 

inputs and 𝑟1  as its select input. Then, the circuit’s 
Boolean function is 𝑓(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1̅) ∨ (𝑥2 ∧ 𝑟1). 
We have 𝑓(0,0, 𝑟1) = 0, 𝑓(0,1, 𝑟1) = 𝑟1, 𝑓(1,0, 𝑟1) =  𝑟1̅, 
and 𝑓(1,1, 𝑟1) = 1. Correspondingly, we have 𝑔(0,0) =
0 , 𝑔(0,1) = 𝑔(1,0) = 1  and 𝑔(1,1) = 2.  According to 
Equation (9), the circuit’s stochastic function  is 

𝐹(𝑋1, 𝑋2) =
1

2
(1 − 𝑋1)𝑋2 +

1

2
𝑋1(1 − 𝑋2) +

2

2
𝑋1𝑋2  

= 1/2(𝑋1 + 𝑋2)         

      

This again shows that the stochastic function of MUX is 

a scaled addition.        

A synthesis method is further proposed in [101] to re-

alize a general polynomial. It first converts the target to a 

multilinear polynomial. Then, it transforms the multilin-

ear polynomial to a polynomial of the form shown in 

Equation (9). This transformation is unique and can be 

easily obtained. After that, the problem reduces to find-

ing an optimal Boolean function 𝑓∗(𝑥1, … , 𝑥𝑛 , 𝑟1, … , 𝑟𝑚) 
such that for each (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛 , the weight of 
𝑓∗(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚) is equal to the value 𝑔(𝑎1, … , 𝑎𝑛) 
specified by the multilinear polynomial. A greedy meth-

od is applied to find a good Boolean function. The au-

thors also find that in synthesizing polynomials of degree 

more than 1, all (𝑎1, … , 𝑎𝑛) ∈ {0,1}𝑛  can be partitioned 
into a number of equivalent classes and the weight con-

straint can be relaxed so that the sum of the weights 

𝑓(𝑎1, … , 𝑎𝑛 , 𝑟1, … , 𝑟𝑚)  over all (𝑎1, … , 𝑎𝑛) ’s in each 
equivalence class is equal to a fixed value derived from 

the target polynomial. The authors of [101] exploit this 

freedom to further reduce the circuit cost.  

IV. APPLICATIONS  

Stochastic computing has been applied to a variety of appli-

cation domains, including artificial neural networks (ANNs) 

[12][14][15][17][24][39][46][93][95], control systems [59], 

[100], reliability estimation [35], data mining [21], digital 

signal processing (DSP) [4][18][40][48][50][54][83], and 

decoding of modern error-correcting codes 

[26][30][47][63][85][86][89][90][96][97]. Most of these 

applications are characterized by the need of a large amount 

of arithmetic computation, which can leverage the simple 

circuitry provided by SC. They also have low precision re-

quirements for the final results, which can avoid the use of 

the excessively long SNs to represent data values. In this 

section, we review four important applications for which SC 

has had some success: filter design, image processing, 

LDPC decoding, and artificial neural networks. 

A. Filter design 

The design of finite impulse response (FIR) filters is consid-

ered in [18][36]. A general 𝑀-tap FIR filter computes an 

output based on the M most recent inputs as follows: 

𝑌[𝑛] = 𝐻0𝑋[𝑛] + 𝐻1𝑋[𝑛 − 1] + ⋯
+ 𝐻𝑀−1𝑋[𝑛 − 𝑀 + 1] 

(10) 

where 𝑋[𝑛] is the input signal, 𝑌[𝑛] is the output signal, 
and 𝐻𝑖  is the filter coefficient. The FIR filter thus computes 

the inner product of two vectors, cf. Equation (2). A conven-

tional binary implementation of Equation (10) requires 𝑀 

multipliers and 𝑀 − 1  adders, which has high hardware 
complexity. SC-based designs can potentially mitigate this 

problem. 

Since the values of 𝐻, 𝑋, and 𝑌 may be negative, bipolar 
SNs are used to encode them. A straightforward way to 

implement Equation (10) uses 𝑀 XNOR gates for multi-

plications and an 𝑀-to-1 MUX for additions. However, 

this implementation has the problem that the output of 

the MUX is 1/𝑀 times the desired output. Such down-

scaling causes severe accuracy loss when 𝑀 is large.  
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Figure 10. The general form of a fixed stochastic circuit based on a 

combinational circuit. 
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Figure 11. Stochastic implementation of a 5-tap FIR filter with an 

uneven-weighted MUX tree. 
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To address the foregoing problem, a stochastic design 

based on an uneven-weighted MUX tree has been pro-

posed  [18][36]. Figure 11 shows such a design for a 5-

tap FIR filter. The input Sign(𝐻𝑖) is a stream of bits, each 
equal to the sign bit of 𝐻𝑖  in its 2’s complement binary 

representation. The probability for the select input of 

each MUX is shown in the figure. The output probability 

of the design is 𝑌[𝑛] ∑ |𝐻𝑖|
4
𝑖=0⁄ . In the general case, the 

output probability of an uneven-weighted MUX tree is 

𝑌[𝑛] ∑ |𝐻𝑖|
𝑀−1
𝑖=0⁄ . Note that the scaling factor is reduced 

to ∑ |𝐻𝑖|
𝑀−1
𝑖=0 ≤ 𝑀. In the case where ∑ |𝐻𝑖|

𝑀−1
𝑖=0 < 1, the 

proposed design will even scale up the result. 

Although the datapath of the stochastic FIR filter con-

sists of just a few logic gates as shown in Figure 11, the 

interface SNGs (not shown) may occupy a large area, 

offsetting the potential area benefit brought by the simple 

datapath. To further reduce the area of SNGs, techniques 

of sharing the RNSs used in the SNGs and circularly 

shifting the outputs of the RNS to generate multiple ran-

dom numbers with low correlation are proposed in [36]. 
Area-efficient stochastic designs for the discrete Fourier 

transform (DFT) and the fast Fourier transform (FFT), 

which are important transformation techniques between the 

time and frequency domains, are described in [99]. An 𝑀-

point DFT for discrete signals 𝑋[𝑛] (𝑛 = 0,1, … ,𝑀 − 1) 
computes the frequency domain values 𝑌[𝑘]  ( 𝑘 =
0,1, … ,𝑀 − 1) as follows: 

𝑌[𝑘] = ∑ 𝑋[𝑛]𝑊𝑀
𝑘𝑁

𝑀−1

𝑛=0

 

where 𝑊𝑀 = 𝑒−𝑗(2𝜋/𝑀). The FFT is an efficient way to re-

alize the DFT by using a butterfly architecture [70]. 

The basic DFT computation resembles that of an FIR fil-

ter. Although the technique of the uneven-weighted MUX 

tree can be applied [98], the accuracy of the result degrades 

as the number of points becomes larger due to the growing 

scaling factor. To address this problem, the work in [99] 

proposes a scaling-free stochastic adder based on a two-line 

stochastic encoding scheme [94]. This encoding represents a 

value in the interval [−1,1] by a magnitude stream 𝑀(𝑋) 
and a sign stream 𝑆(𝑋). Figure 12a shows an example of 
encoding the value −0.5 . Indeed, this encoding can be 
viewed as employing a ternary stochastic stream 𝑋 =
𝑥1𝑥2 …𝑥𝑁 with each 𝑥𝑖 ∈ {−1,0,1}. The magnitude and the 
sign of 𝑥𝑖 are represented by the 𝑖-th bit in the magnitude 
stream and the sign stream, respectively. If the sign bit is 0 

(1), the value is positive (negative). Figure 12b shows the 

multiplier for this encoding. Experimental results indicate 

that using the stochastic multiplier and the special stochastic 

adder to implement DFT/FFT can achieve much higher 

accuracy than an implementation based on the uneven-

weighted MUX tree when the number of points 𝑀 is large.  

The design of infinite impulse response (IIR) filters is 

considered in [53][54][72]. Compared to FIR filters, the 

implementation of IIR filters using SC is more challenging. 

The main difficulty is the feedback loop in the IIR filter, 

which causes correlation in the stochastic bit-streams. How-

ever, the correct computation of SC usually requires the 

independence of the stochastic bit-streams. To address this 

problem, Liu and Parhi [54] propose transforming the IIR 

filter into a lattice structure via the Schur algorithm [88]. 

The benefit of such a lattice structure is that its states are 

orthogonal and hence, are uncorrelated, which makes the 

design suitable for stochastic implementation. To reduce 

error due to the state overflow (where the state value may be 

outside of the range [−1, 1] of the bipolar stochastic repre-
sentation), the authors further propose a scaling method that 

derives a normalized lattice structure as the implementation 

target.  

B. Image processing 

A DSP application that is well-suited to SC is image pro-

cessing [4][50][67]. It can exploit the massive parallelism 

provided by simple stochastic circuits, because many im-

age-processing operations are applied pixel-wise or block-

wise across an entire image [33]. Also, long SNs are not 

required for image-processing applications, because the 

precision demands are low; in many cases, 8-bit precision is 

enough. 

Li et al. [50] propose stochastic implementations for five 

image processing tasks: edge detection, median filter-based 

noise reduction, image contrast stretching, frame difference-

based image segmentation, and kernel density estimation 

(KDE)-based image segmentation. Their designs introduce 

some novel SC elements based on sequential logic. All the 

designs show smaller area than their conventional counter-

parts. The reduction in area is greatest for KDE-based image 

segmentation, due to its high computational complexity. 

This work demonstrates that stochastic designs are advanta-

geous for relatively complicated computations. 

Najafi and Salehi [67] apply SC to a local image thresh-

olding algorithm called the Sauvola method [87]. Image 

thresholding is an important step in optical character recog-

nition. It selects a threshold and uses that threshold to de-

termine whether a pixel should be set to 1 (background) or 0 

(foreground). The Sauvola method determines the threshold 

for each pixel in an image and involves calculating product, 

sum, mean, square, absolute difference, and square root. All 

these operations can be realized efficiently by SC units. 

Improved stochastic designs for several image-

processing applications were also proposed in [4]. An ex-

ample is real-time edge detection. The authors consider the 

Robert cross operator, which takes an input image and pro-

duces an output image with edges highlighted. Let 𝑋𝑖,𝑗 and 

𝑍𝑖,𝑗  denote the pixel values at row 𝑖  and column 𝑗 in the 

X =   0.5: 0, 1,+1, 1,0, 1, 1, 1

M(X): 01110111

S(X): 11010111

M(A)
S(A)

M(B)
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Figure 12. Two-line stochastic encoding: (a) An example of encoding 

the value −0.5; (b) Multiplier for the encoding. 
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input and the output images, respectively. The operator cal-

culates 𝑍𝑖,𝑗 in the following way: 

𝑍𝑖,𝑗 = 0.5(|𝑋𝑖,𝑗 − 𝑋𝑖+1,𝑗+1| + |𝑋𝑖,𝑗+1 − 𝑋𝑖+1,𝑗|) 
 
(11) 

A stochastic implementation of Equation (11) is shown 

in Figure 13a. It consists of only two XOR gates and one 

MUX. By deliberately correlating the two input SNs of an 

XOR gate so they have the maximum overlap of 0s and 1s, 

the XOR computes the absolute difference between the two 

input SNs [5]. The MUX further performs a scaled addition 

on two absolute differences. In contrast, a conventional im-

plementation of Equation (11) on BNs is much more com-

plicated, as suggested by Figure 13b; it has two subtractors, 

two absolute value calculators, and an adder. 

Although a stochastic implementation often needs a large 

number of clock cycles to obtain the final result, the critical 

path delay of the stochastic implementation is much smaller 

than a conventional implementation’s due to the simplicity 

of the stochastic circuit. For instance, the overall delay of 

the circuit of Figure 13a is only 3× higher than the delay of 

its binary counterpart (Figure 13b).   

Another benefit of a stochastic implementation is its er-

ror tolerance. Figure 14 visually demonstrates this ad-

vantage by comparing the stochastic implementation of 

edge detection with conventional binary implementations 

for different levels of noise injected into the input sensor [4]. 

As shown in the first row of Figure 14, when the noise level 

is 10% to 20%, the conventional design generates useless 

outputs. In contrast, the SC implementation in the second 

row is almost unaffected by noise and is able to detect the 

edges even at a noise level of 20%.  

C. Decoding Error-Correcting Codes  

One successful application of SC is the decoding of certain 

modern error-correcting codes (ECCs). Researchers have 

proposed stochastic decoder designs for several ECCs, such 

as turbo code [26], polar code [96][97], binary low-density 

parity-check (LDPC) codes [30][47][89][90], and non-

binary LDPC codes [85][86]. 

The earliest stochastic decoder was proposed for binary 

LDPC codes (for simplicity, hereafter referred to as LDPC 

codes), which have very efficient decoding performance that 

approaches the Shannon capacity limit [81]. They have been 

adopted in several recent digital communication standards, 

such as the DVB-S2, the IEEE 802.16e (WiMAX), and the 

IEEE 802.11n (WiFi) standards. 

A binary LDPC code is characterized by a bipartite factor 

graph consisting of two groups of nodes: variable nodes 

(VNs) and parity-check nodes (PNs). A widely-used method 

to decode an LDPC code applies the sum-product algorithm 

(SPA) to the factor graph. The SPA iteratively passes a 

probability value, which represents the belief that a bit in the 

code block is 1, from a VN to a connected PN, or vice versa. 

The codeword is determined by comparing the final proba-

bilities against a threshold. 

 The major computation in the decoder involves the fol-

lowing two operations on probabilities: 

 

𝑝𝐶 = 𝑝𝐴(1 − 𝑝𝐵) + 𝑝𝐵(1 − 𝑝𝐴) (12) 
 

𝑝𝑍 =
𝑝𝑋𝑝𝑌

𝑝𝑋𝑝𝑌 + (1 − 𝑝𝑋)(1 − 𝑝𝑌)
 (13) 

Binary implementation of Equations (12) and (13) requires  

complicated arithmetic circuits, such as adders, multipliers, 

and dividers. To alleviate this problem, Gaudet and Rapley 

proposed a stochastic implementation of LDPC decoding in 

which Equations (12) and (13) are realized efficiently by 

the circuits in Figure 4a and 4b, respectively [30]. 

Besides reducing the area of the processing units, SC al-

so reduces routing area. In a conventional binary implemen-

tation, the communication of probability values of precision 

𝑘 between two nodes requires 𝑘 wires connecting the two 
nodes, which leads to a large routing area. However, with 

SC, due to its bit-serial nature, communication between two 

nodes only requires a single wire. Another benefit of SC is 

its support of an asynchronous pipeline. In SN representa-

tion, bit order does not matter, so we do not require the input 

of the PNs and VNs to be the output bits of the immediately 

previous cycle. This allows different edges to use different 

numbers of pipeline stages, thus increasing the clock fre-

quency and throughput [89]. 

To improve the SPA convergence rate, the authors of [89] 

add a module called edge memory (EM) to each edge in the 

factor graph. Since one EM is assigned to each edge, the 

hardware usage of EMs can be large. To further reduce this 

hardware cost, Tehrani et al. [90] introduce a module called 

a majority-based tracking forecast memory (MTFM), which 

is assigned to each VN. This method has been integrated 

into a fully parallel stochastic decoder ASIC that decodes 

the (2048, 1723) LDPC code from the IEEE 802.3an 

(10GBASE-T) standard [90]. This decoder turns out to be 

one of the most area-efficient fully parallel LDPC decoders. 
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Figure 13. Two implementations of Roberts cross operator: (a) sto-

chastic, and (b) conventional. 

 

Figure 14. Edge-detection performance for two implementation 

methods with noise levels of (a) 5%, (b) 10% and (c) 20%. 



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2017.2778107, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 

Stochastic LDPC decoders essentially implement the be-

lief propagation algorithm [73]. This fundamental approach 

can also be used to decode other ECCs, such as polar codes 

and non-binary LDPC codes. Given their algorithm-level 

similarity, researchers have proposed SC-based decoders for 

these codes [85][86][96][97]. For example, to resolve the 

slow convergence problem of a pure stochastic decoder for 

non-binary LDPC codes, a way of mixing the binary com-

putation and stochastic computation units has been proposed 

[86]. A technique of splitting and shuffling stochastic bit-

streams is described in [97] to simultaneously mitigate the 

costs of long stochastic bit-streams and re-randomization of 

a stochastic decoder for polar codes. 

D. Artificial neural networks 

Artificial neural networks (ANNs), mimicking aspects of 

biological neural networks, are an early application of 

SC [14][15][24][68][93]. Only recently, with advances in 

machine learning algorithms and computer hardware 

technology, have they found commercial success in ap-

plications such as computer vision and speech recogni-

tion [45]. ANNs are usually implemented in software on 

warehouse-scale computing platforms, which are ex-

tremely costly in size and energy needs. These shortcom-

ings have stimulated renewed interest in using SC in 

ANNs [10][11][41][46][80]. Furthermore, many classifi-

cation tasks such as ANNs do not require high accuracy; 

it suffices that their classification decisions be correct 

most of the time [51]. Hence, SC’s drawbacks of low 

precision and stochastic variability are well-tolerated in 

ANN applications.  

A widely used type of ANN is the feed-forward net-

work shown in Figure 15 [37]. It is composed of an input 

layer, several hidden layers, and an output layer. A node 

in the network is referred to as a neuron. Each neuron in 

a hidden or an output layer is connected to a number of 

neurons in the previous layer via weighted edges. The 

output 0 (inactive) or 1 (active) of a neuron is determined 

by applying an activation function to the weighted sum 

of its inputs. For example, the output of the neuron 𝑌1 in 
Figure 15 is given by  

𝑌1 = 𝐹 (∑ 𝑊𝑖𝑋𝑖

𝑛

𝑖=1
) (14) 

where 𝑋𝑖 is the signal produced by the 𝑖-th input neuron 
of 𝑌1 , 𝑊𝑖  is the weight of the edge from 𝑋𝑖  to 𝑌1 , and 
𝐹(𝑍) is the activation function. A frequent choice for F is 
the sigmoid function defined by 

𝐹(𝑍) =
1

1 + 𝑒−𝛽𝑍
 

where 𝛽 is the slope parameter. 
A key problem in ANN design is the addition of a 

large number of items supplied to a neuron; a similar 

problem occurs in FIR filters with a large number of taps.  

The straightforward use of MUX-based adders to per-

form the scaled addition is not a good solution, because 

the scaling factor is proportional to the number of a neu-

ron’s connections. When rescaling the final MUX output, 

even a very small error due to stochastic variation may 

be enlarged significantly. To address this problem, Li et 

al. [51] revive the old idea of using an OR gate as an 

adder [29]. OR combines two unipolar SNs 𝑋 and 𝑌 as 
follows: 

𝑍 = 𝑋 + 𝑌 − 𝑋𝑌 

This is not strictly addition, but when either 𝑋 ≪ 1 or 
𝑌 ≪ 1, the output Z is approximately the sum of the two 
inputs. To make the inputs close to zero, the authors of 

[51] apply a moderate scaling factor to scale down the 

inputs.  

Some other studies have addressed the addition prob-

lem with new stochastic data representations [11][17]. In 

[17], an encoding scheme called extended stochastic log-

ic (ESL) is proposed which uses two bipolar SNs 𝑋 and 
𝑌  to represent the number 𝑋/𝑌 . ESL addition has the 
advantage of being exact, with no scaling factor. More-

over ESL encoding allows easy implementation of multi-

plication, division, and the sigmoid function. Together, 

these operations lead to an efficient neuron design. 

Ardakani et al. have proposed the concept of integer 

stochastic number (ISN) in which a sequence of random 

integers represents a value equal to the mean of these 

integers [11]. For example, the sequence 2,0,4,1 repre-

sents 7/4. With this encoding, any real number can be 

represented without prior scaling. The weights in an 

ANN, which can lie outside the range [−1,1], do not 
need to be scaled. The addition of two ISNs uses a con-

ventional binary adder, which makes the sum exact. Mul-

tiplication of two ISNs requires a conventional binary 

multiplier, which is expensive. Fortunately, in the ANN 

implementation proposed in [11], one input to the multi-

plier, which corresponds to the neuron signal, is always a 

binary SN. Then, the conventional multiplier is reduced 

to several AND gates. The sigmoid activation function is 

implemented by a counter similar to that in [14]. Al-

though the hardware cost of the ISN implementation is 

larger than that of a binary stochastic implementation, the 

former has much lower latency and energy consumption. 

Compared to the conventional binary design, the ISN 

design produces fewer misclassification errors, while 

reducing energy and area cost substantially.   

  
Figure 15. A typical feed-forward network structure 
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Another recent work [41] proposes two new ways to 

design ANNs with SC. The first considers training in the 

design phase to make the network friendly to a stochastic 

implementation. The authors observe that weights close 

to zero, which correspond to (bipolar) SNs of probability 

0.5, contribute the most to random fluctuation errors. 

Therefore, they propose to iteratively drop near-zero 

weights and then re-train the network to derive a network 

with high classification accuracy but no near-zero 

weights. The second technique is to exploit the progres-

sive precision property of SC. The authors observe that 

most of the input data can be classified easily because 

they are far from the decision boundary. For these input 

data, computation with low-precision SNs is enough to 

obtain the correct results. Based on this, the authors de-

vise an early decision termination (EDT) strategy which 

adaptively selects the number of bits to use in the compu-

tation depending on the difficulty of the classification 

tasks. The resulting design has a misclassification error 

rate very close to the conventional implementation. Fur-

thermore, EDT reduces energy consumption with a slight 

increase in misclassification errors. 

Efficient stochastic implementation of convolutional 

neural networks (CNNs), a special type of feed-forward 

ANN, is the focus of [10]. In a CNN, the signals of all 

the neurons in a layer are obtained by first convolving a 

kernel with the signals in the input layera special kind 

of filtering operationand then applying an activation 

function. The size of the kernel is much less than that of 

the input layer, which means a neuron signal only de-

pends on a subset of the neurons in its input layer. CNNs 

have been successfully applied to machine learning tasks 

such as face and speech recognition. A major contribu-

tion of [10] is an efficient stochastic implementation of 

the convolution operation. Unlike SC that uses SNs to 

encode real values, the proposed method uses the proba-

bility mass function of a random variable to represent an 

array of real values. An efficient implementation of con-

volution is developed based on this representation. Fur-

thermore, a few other techniques are introduced in [10] 

to implement other components of a CNN, such as the 

pooling and nonlinear activation components. Compared 

to a conventional binary CNN, the proposed SC imple-

mentation achieves large improvements in performance 

and power efficiency.  

Efficient stochastic implementation of CNNs has also 

been studied by Ren et al. [80]. They perform a compre-

hensive study of SC operators and how they should be 

optimized to obtain energy-efficient CNNs. Ren at al. 

adopt the approximate accumulative parallel counter 

(APC) of [42] to add a large number of input stochastic 

bit-streams. Kim et al. report that the approximate APC 

has negligible accuracy loss and is about 40% smaller 

than the exact APC [42]. 

V. DISCUSSION 

Since the turn of the present century, significant progress 

has been made in developing the theory and application 

of stochastic computing. New questions and challenges 

have emerged, many of which still need to be addressed. 

With the notable exception of LDPC decoder chips, few 

large-scale SC-based systems have actually been built 

and evaluated. As a result, real-world experience with SC 

is limited, making it likely that many practical aspects of 

SC such as its true design costs, run-time performance, 

and energy consumption are not yet fully appreciated. 

Small-scale theoretical and simulation-based studies are 

fairly plentiful, but they often consider only a narrow 

range of issues under restrictive assumptions. 

A. Conclusions 

Based on what is now known, we can draw some general 

conclusions about what SC is, and is not, good for. 

Precision and errors: SC is inherently approximate 

and inexact. Its probability-based and redundant data 

encoding makes it a relatively low-precision technology, 

but one that is very tolerant of errors. It has been success-

fully applied to image-processing using 256-bit stochas-

tic numbers (SNs), which correspond roughly to 8-bit 

(fixed-point) BNs. SC is unsuited to the very high 32- or 

64-bit precision error-sensitive calculations that are the 

domain of BNs and binary computing (BC).  This is seen 

in the random noise-like fluctuations that are normal to 

SNs, in the way SNs are squeezed into the unit interval 

producing errors near the boundaries, and in the fact that 

SNs grow in length exponentially faster than BNs as the 

desired level of precision increases. Also the stochastic 

encoding of numbers does not provide a dynamic range, 

similar to the one provided by floating point numbers. 

On the other hand, low precision and error tolerance 

have definite advantages. They have evolved in the natu-

ral world for use by the human brain and nervous system. 

Similar features are increasingly seen in artificial con-

structs like deep learning networks that aim to mimic 

brain operations [23]. Thus it seems pointless to compare 

SC and BC purely on the basis of precision or precision-

related costs alone [1][58]. 

Finally, we observe that while BC circuits have fixed 

precision, SC circuits have the advantage of inherently 

variable precision in their bit-streams. Moreover, the bit-

streams can be endowed with progressive precision 

where accuracy improves monotonically as computation 

proceeds, as has been demonstrated for some image-

processing tasks [4]. If a variable precision cannot be 

exploited, a simple bit-reduction technique in BC often 

provides better energy efficiency over SC. As reported in 

recent work, with fixed precision, SC becomes worse for 

designs above 6 bits of precision [1][46]. 

Area-related costs:  The use of tiny circuits for opera-

tions like multiplication and addition remains SC’s 

strongest selling point. A stochastic multiplier contains 

orders-of-magnitude fewer gates than a typical BC mul-
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tiplier. However, many arithmetic operations including 

multiplication require uncorrelated inputs to function 

correctly. This implies a need for randomization or 

decorrelation circuits incorporating many independent 

random sources or phase-shifting delay elements (isola-

tors), whose combined area can easily exceed that of the 

arithmetic logic [92]. The low-power benefit of stochas-

tic components must be weighed against the additional 

power consumed by their randomization circuitry. 

Speed-related costs:  Perhaps the clearest drawback of 

SC is its need for long, multicycle SNs to generate satis-

factory results. This leads to long run-times, which are 

compensated for, in part, by the fact that the clock cycles 

tend to be very short. Parallel processing, where long bit-

streams are partitioned into segments that are processed 

in parallel is a speed-up possibility that has often been 

proposed, but not be studied much [21]. The same can be 

said of progressive precision.  

Small stochastic circuits have relatively low power 

consumption. However, since energy = power × time, the 

longer run-times of stochastic circuits can lead to higher 

energy use than their BC counterparts [62]. Reducing 

energy usage is therefore emerging as a significant chal-

lenge for SC. 

Design issues: Until recently, SC design was an ad 

hoc process with little theory to guide it.  However, 

thanks to a deeper understanding of the properties of 

stochastic functions and circuits, several general synthe-

sis techniques have been developed, which can variously 

be classified as reconfigurable or fixed, and combina-

tional or sequential [7][49][76]. The new understanding 

has revealed unexpected and novel solutions to some of 

SC’s basic problems.  

For example, it has come to be recognized that differ-

ent circuits realizing different logic functions can have 

the same stochastic behavior [19]. Far from just being the 

enemy, correlation can sometimes be harnessed as a de-

sign resource to reduce circuit size and cost, as the edge 

detectors of Figure 13a vividly illustrate. Common cir-

cuits like the MUX-based scaled adder turn out to have 

correlation insensitivity that enables RNSs to be removed 

or shared; see Figure 8.  A fundamental redesign of the 

SC scaled adder itself is shown in Figure 16, which con-

verts it from a three-input to a two-input element, while 

improving both its accuracy and correlation properties 

[46]. Despite such progress, many questions concerning 

the properties of stochastic circuits that influence design 

requirements, remain unanswered. 

Circuit level aspects: Since SC employs digital com-

ponents, conventional digital design process (synthesis, 

automatic placement and routing, timing closure, etc.) 

have been used to implement SC ASIC and FPGA-based 

designs. However, as discussed in this paper, SC shares 

similarities with analog circuits, so the digital design 

aspects of it may differ from conventional digital circuits. 

Various circuit-level aspects of SC designs have been 

investigated very recently as a means of improving SC’s 

energy efficiency [9][65]. They suggest that SC circuits 

are probably not optimal if they are designed using 

standard digital design tools. Najafi et al. [65] demon-

strate that SC circuits do not need clock trees. Eliminat-

ing the clock tree significantly reduces the energy con-

sumption of the circuit. In fact, employing analog com-

ponents, rather than digital, can lead to significant energy 

savings [66]. One example is the use of analog integra-

tors, instead of counters, to collect the computation re-

sults. 

Alaghi et al. [9] have investigated a different circuit-

level aspect of SC. They show that SC’s inherent error-

tolerance makes it robust against errors caused by volt-

age overscaling. Voltage overscaling, i.e., the process of 

reducing the power consumption of the circuit without 

reducing the frequency, usually leads to critical path tim-

ing failures and catastrophic errors in regular digital cir-

cuits. However, timing violations in SC manifest as extra 

or missing pulses on the output SN. The extra and miss-

ing pulses tend to cancel each other out, leading to negli-

gible error. An optimization method is described in [9] 

that balances the circuit paths to guarantee maximum 

error cancellation. It is worth noting that the observations 

of [9] have been confirmed through a fabricated chip. 

The new results suggest that circuit-level aspects of 

SC must be considered at design time, as they provide 

valuable sources of energy saving. As a result, SC cir-

cuits should be either manually designed [64] or new 

CAD tools must be provided [9].      

Applications: As discussed in detail in Section IV, SC 

has been successfully applied to a relatively small range 

of applications, notably filter design, image processing, 

LDPC decoding, and ANN design. A common aspect of 

these applications is a need for very large numbers of 

low-precision arithmetic operations, which can take ad-

vantage of the small size of stochastic circuits. They also 

typically have a high degree of error tolerance. It is 

worth noting that current trends in embedded and cloud 

computing, e.g., the increasing use of fast on-line image 

recognition and machine learning techniques by smart-

phones and automobiles, call for algorithms for which 

SC is well suited.  The so-called Internet of Things is 

likely to create a big demand for tiny, ultra-low-cost pro-

cessing circuits with many of the characteristics of SC.  

B. Future Challenges 

The issues covered in the preceding sections are by no 

means completely understood, and many of them deserve 

further study.  There are however, other important topics 

that have received little recognition or attention; we 

briefly discuss four of them next. 

Accuracy management: In conventional BC, the ac-

curacy goals of a new design, such as its precision level 

and error bounds, are determined a priori during the 

specification phase. As the design progresses and proto-

types are produced, fine tuning may be needed to ensure 

that these goals and related performance requirements 
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are actually met.  This approach is much harder to apply 

to stochastic circuit design.  Interacting factors including 

bit-stream length, RNS placement, and correlation can 

drastically affect accuracy in complex ways. For exam-

ple, it is pointed out in [92] that cascading two well-

designed squarer circuits, each computing X 2, does not 

implement X 4, as might be expected; instead the cascad-

ed circuit implements X 3.   

Because of hard-to-predict behavior like this, exten-

sive simulation is almost always used to determine the 

basic accuracy limits and error sensitivities of a new SC 

design. SC projects often have a cut-and-try flavor which 

involves multiple design-and-simulate iterations that 

resemble design-space exploration rather than the fine 

tuning of well-founded designs.   It would be very useful 

to be able to incorporate into an SC design flow an “ac-

curacy manager” that can comprehend and automatically 

adjust the relations among the design parameters affect-

ing accuracy. A first step in this direction can be found in 

[69], while automatic decorrelation methods to enhance 

accuracy are addressed in [92]. 

Design optimization. Despite recent advances in SC 

synthesis, a number of open problems remain. It is now 

recognized that many different Boolean functions can 

realize the same computation [7][19][101]. For instance, 

the Boolean functions 𝑓1(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1̅) ∨ (𝑥2 ∧
𝑟1)  and 𝑓2(𝑥1, 𝑥2, 𝑟1) = (𝑥1 ∧ 𝑟1) ∨ (𝑥2 ∧ 𝑟1) ∨ (𝑥1 ∧
𝑥2)both realize the same stochastic addition function 
𝐹(𝑋1, 𝑋2) = 1/2(𝑋1 + 𝑋2). An open question is: Among 
numerous Boolean functions that have the same stochatic 

behavior, how can we find an optimal one? All the 

previous work on synthesis assumes that the input SNs 

are independent. However, as shown in [5][20], 

sometimes taking the advantage of correlated input SNs 

helps reduce circuit area. Another open problem is how 

to develop a synthesis approach that takes correlation 

into consideration and exploits it when necessary. 

Finally, most work on synthesis has been restricted to 

combinational logic. This has led to a deeper 

understanding of combinational synthesis, for example, 

the existence of stochastic equivalence classes [19]. In 

contrast, far fewer  theoretical advances have been made 

in understanding sequential stochastic design. How to 

synthesize optimal stochastic circuits based on sequential 

logic therefore remains an unsolved problem. 

Energy harvesting:  With the development of the Inter-

net-of-Things, many future computing systems are expected 

to be powered by energy harvested from the environment. 

The potential energy sources include solar energy, as well as 

ambient RF, motion, and temperature energy  [56]. A diffi-

culty with such energy sources is that they tend to be highly 

variable and unstable. This can significantly degrade the 

performance of BC systems. SC, on the other hand, has 

strong tolerance of errors caused by the random fluctuation 

of the supply voltage [9]. A problem for SC is the potential-

ly large energy needs of its many randomness sources for 

number conversion and decorrelation.  This may be solved 

by emerging technologies that have naturally stochastic 

behaviors. For example, very compact random sources 

can be constructed from memristors. Moreover, a single 

memristor source can supply independent random bit-

streams to multiple destinations simultaneously [43]. 

Biomedical devices:  It was remarked in Sec. 1 that 

stochastic bit-streams can mimic the low-power spike 

trains used for communication in natural neural net-

works; see Figure 3. This has suggested the use of SC in 

implantable devices such as retinal implants to treat the 

visually impaired [4]. Retinal implants are ICs that are 

placed directly on the retina, sense visual images in the 

form of pixel arrays, and convert the pixel information 

into bit-streams that are sent directly to the brain via the 

optic nerve where they produce flashes of light that the 

brain can be trained to interpret. With better understand-

ing of the information coding and data processing in-

volved, SC may be found applicable to other applications 

that involve interfacing stochastic circuits with natural 

neural networks. A particular advantage of SC in this 

domain is its very low power consumption which is nec-

essary to avoid heat damage to human tissue. So far, 

however, we know of no current work to incorporate SC 

into implantable medical devices.  
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