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ABSTRACT 

Approximate computing is a promising alternative to improve en-

ergy efficiency for IoT devices on the edge. This work proposes an 

optimally approximated and unbiased floating-point approximate 

multiplier with runtime configurability. We provide a theoretically 

sound formulation that turns multiplication approximation to an op-

timization problem. With the formulation and findings, a multi-

level architecture is proposed to easily incorporate runtime config-

urability and module execution parallelism. Finally, an optimiza-

tion scheme is applied to improve the area, making it linearly de-

pendent on the precision, instead of quadratically or exponentially 

as in prior work. In addition to the optimal approximation and con-

figurability, the proposed design has an efficient circuit implemen-

tation that uses inversion, shift and addition instead of complex 

arithmetic operations. When compared to the prior state-of-the-art 

approximate floating-point multiplier, ApproxLP [30], the pro-

posed design outperforms in all aspects including accuracy, area, 

and delay. By replacing the regular full-precision multiplier in GPU, 

the proposed design can improve the energy efficiency for various 

edge computing tasks. Even with Level 1 approximation, the pro-

posed design improves energy efficiency up to 122× for machine 

learning on CIFAR-10, with almost negligible accuracy loss. 

1 Introduction 

Due to the rapid growth of Internet-of-Things (IoT), energy effi-

ciency has become a critical concern, especially when IoT devices 

are deployed with constrained resources [1-4].  There have been 

various research efforts to optimize energy efficiency for IoT de-

vices from algorithm, architecture, to circuit [5-15]. Among such 

efforts, approximate computing has emerged as a promising alter-

native for designers to trade computational accuracy with energy 

efficiency. This is especially applicable to human sensory or ma-

chine learning tasks where a small amount of inaccuracy is 

tolerable or even ignorable [16-19]. 

At the edge, IoT devices are designed to consume the minimum 

resource to achieve the desired accuracy. However, the conven-

tional processors, such as CPU or GPU, can only conduct all the 

computations with pre-determined but sometimes unnecessary pre-

cisions, inevitably degrading their energy efficiency. When running 

data-intensive applications, e.g., image processing or machine 

learning, due to the large range of input operands, most conven-

tional processors heavily rely on floating-point units (FPU) [7, 21]. 

To cover the same dynamic range, the fixed-point unit demands up 

to 5x larger area compared to its FP counterpart and hence is a far 

less common option [22]. Among different FP operations, multipli-

cation is widely used but possibly the most energy consuming op-

eration for various data-intensive scenarios, such as streaming, neu-

ral network, image processing, etc. In other words, when running 

inaccuracy-tolerable applications on the conventional processors, 

significant energy and time are spent on FP multipliers computing 

highly accurate outputs that are not necessarily demanded. Thus, 

for FP multiplication in IoT devices, there is a need to optimize its 

energy efficiency by providing sufficient instead of excessively ac-

curate computational precisions.  

As a common arithmetic component that has been studied for dec-

ades [23, 24], the past focus for FP multiplier is mainly placed upon 

accuracy and performance. Recently, with awareness of the com-

promise between the stringent resource constraint and the accuracy 

tolerance for edge applications, researchers have growing interests 

in designing an approximate FP multiplier to improve energy effi-

ciency. For example, Camus et al. redesigned major arithmetic 

components to reduce circuitry complexity [25], where the approx-

imation error is controlled by construction. Works in [26, 27] use a 

hybrid method by employing both accurate and inaccurate multi-

pliers for runtime configurable approximation. However, such FP 

multipliers can hardly guarantee unbiased error distribution with 

near-zero average error, causing the risk of aggregated error for 

applications with multiple multiplications in series.  

To address the issues, several works propose to design approximate 

multipliers at the algorithmic level to achieve configurability by 

combining different product sizes or truncating unwanted bits [28, 

29]. Recently, some work proposed to improve computational effi-

ciency and configurability by directly approximating the product of 

two FP inputs with linear fitting [30]. However, due to the focus at 

algorithmic level, the proposed approaches may suffer from 

quickly increased circuitry complexity and degraded efficiency 

with higher precision requirements, eventually impairing energy 
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efficiency and computation time. More importantly, for the re-

quired precision and configuration, is the proposed approximation 

the best we can have? Many designs happen to rely on hand-crafted 

structures or heuristics. How to achieve an optimal approximation 

with unbiased error distribution remains an open question. Thus, it 

is highly desired to develop a systematic methodology to design un-

biased, configurable, and circuit-implementation-friendly FP mul-

tiplier with optimal approximation.  

Apparently, this is not a trivial task: (1) On one hand, unlike the 

many approximations in prior work that stem from heuristic find-

ings [12, 26, 28, 30], we need to formally define the problem, in-

cluding objective function and constraints, to enable the theoreti-

cally sound basis for optimal approximation. (2) On the other hand, 

when ensuring configurability, the underlying architecture should 

facilitate the circuitry implementation instead of introducing im-

plementation-unfriendly logics or operations, to prevent exponen-

tially growing area complexity with higher precision requirements. 

(3) Finally, how to ensure unbiasedness and tunability for the op-

timally approximated FP multiplier is not straightforward. It is hard 

to achieve all the features in one design. 

Thus, in this paper, by addressing the aforementioned challenges 

we propose to design a runtime configurable FP multiplier that is 

optimally approximated with unbiased error distribution. The ma-

jor contributions of our work are listed as follows. 

⚫ A theoretically sound optimization formulation is pro-

posed to optimize the approximation error of the approximate 

multiplier and act as the basis for multiplier architecture de-

sign. With the proposed formulation, the error can be sym-

metrically distributed, yielding an unbiased error distribution.   

⚫ Based on the optimization formulation and findings, we pro-

pose a multi-level FP multiplier architecture that can eas-

ily incorporate run-time configurability. The accuracy is 

configured by adding up different levels of error compensa-

tions, while each level of compensation is designed with cir-

cuit-implementation-friendly operations, such as shifting, in-

version, and addition. Moreover, the modules at different 

levels are independent and hence support parallel execu-

tion to achieve higher efficiency. 

⚫ A common issue of the prior approximate FP multiplier de-

signs is the quickly growing area complexity with the in-

creased precision requirements. With the proposed architec-

ture, we theoretically analyze the cost complexity and pro-

pose an optimization scheme to reduce the complexity 

from 𝑶(𝟒𝒏) to 𝑶(𝒏), where 𝑛 is the number of approxima-

tion levels, while ensuring the same accuracy quality. 

Experimental results show that, with the proposed formulation to 

determine the optimal approximation, we can implement an en-

ergy-efficient and configurable approximate multiplier. The pro-

posed multiplier is found to have comprehensive superiority over 

many prior work [12, 26-28, 30]. When compared with a state-of-

the-art (SOTA) multiplier, the proposal can achieve accuracy im-

provements up to 37% in terms of mean square error (MSE) with 

far smaller area (84% saving) and delay (43% improvement). In 

addition, when replacing a regular FP multiplier with the proposed 

multiplier and evaluating with various edge-application tasks, we 

ca achieve 1.8-83.3× energy improvement and 2.4-132.1× energy 

efficiency improvement while the quality or accuracy loss is almost 

negligible. 

2 Background 

2.1 Floating-Point Multiplication 

Compared to integer computing, FP arithmetic is usually costlier 

and energy consuming, due to its complexity. IEEE 754 standard is 

a technical standard for FP arithmetic [31]. According to it, an FP 

number consists of sign, exponent and mantissa, as shown in Fig. 

1(a). The mantissa of a normalized FP number is defined as integer 

1 plus the fractional portion, whose exact value is between 1 and 2. 

In a general-purpose processor, for an FP multiplication, as shown 

in Fig. 1(b), the sign bits is computed by an XOR operation, and 

the exponent bits are computed by an adder. Then the bias is sub-

tracted from the exponent to allow both negative and positive val-

ues. Finally, the product is shifted to the range of 1 and 2 to obtain 

the final result.  

 
Figure 1: (a) Representation of a 32-bit FP number according to IEE

E 754; (b) FP multiplication in a general-purpose processor. 

 

Figure 2: Flow of the approximate multiplier 

2.2 Approximate Multiplier 

Approximate arithmetic has been a popular research area in the past 

decade. While multiplier itself is complicated, most prior work on 



  

 

 

approximate multiplier attempt to tackle the problem either from 

gate or algorithmic levels to reduce the product bit-width or critical 

path delay. For example, some work use approximate components, 

such as adders, to build the multiplier, so as to speed up addition or 

partial product generation [12, 25, 29, 32-34]. To approximate from 

a higher design level, [35] proposed a pipelined log-based approx-

imation using the classical Mitchell multiplier with an iterative pro-

cedure to improve accuracy. To speed up the iterative procedure, 

researchers propose to truncate the bits after the leading one to con-

serve energy or utilize a hybrid method with both inaccurate and 

accurate multipliers to adjust the computational accuracy by select-

ing the appropriate multiplier, thereby trading off between accuracy 

and cost [26-28]. 

However, there are several issues of directly applying the prior 

work to the IoT devices at the edge. While those methods can pre-

cisely control the error, it is hard for many of them to guarantee 

unbiased output with zero-mean error distribution. On the other 

hand, configurability is highly demanded for versatile edge scenar-

ios. The limitation of many prior approaches is either lack of con-

figurability, or the notably high cost to implement such configura-

bility with higher precision requirements.   

Recently, ApproxLP is proposed to approximate the mantissa prod-

uct using linear fitting [30]. The design shows much higher perfor-

mance for the given error rate when compared to the prior approx-

imate multiplier solutions, which is hence considered as a state-of-

the-art (SOTA) FP multiplier with significant advantages over prior 

approximation methods. Fig. 2 describes the basic concept of Ap-

proxLP. As shown in the flow, the ranges of the two mantissas are 

first partitioned into multiple sub-regions, with linear functions in-

troduced to fit each sub-region. The partitioning can be further fine-

grained to deeper levels to improve the overall accuracy at the cost 

of area and delay. The sum of the outputs at each level gradually 

approaches the exact multiplication product, so that the accuracy 

can be runtime-configured by enabling different levels. However, 

while ApproxLP improves the efficiency compared with the prior 

approximation works, it still does not fully address the aforemen-

tioned challenges of large implementation cost and biased output 

error. For example, the error distribution of level 1 approximation 

in ApproxLP is biased which may cause error accumulation with 

multiple multiplications in series. The branching for sub-region se-

lection is also hardware-demanding, causing significantly more 

area with deeper levels. In addition, as the proposed fitted functions 

are heuristically customized, it raises a very natural question 

whether we can achieve more optimal approximation through more 

theoretically sound formulation. Thus, it is highly motivated for us 

to fully overcome the existing issues in the prior work and provide 

the capability to design optimally approximated and unbiased FP 

multiplier with low hardware cost and runtime configurability.  

3 Design and Optimization of Approximate FP 

Multiplier 

With the aforementioned goals, we would like to tackle the chal-

lenges with the following steps: (1) Formally formulate the prob-

lem of approximated multiplication that can incorporate desired 

design targets; (2) Propose a multiplier architecture that can facili-

tate runtime configurability with low hardware cost; (3) Optimize 

the circuit to improve the overall efficiency.  

3.1  Problem Formulation 

As shown in Fig. 1, the key operation of an FP multiplication is the 

product of the two mantissas. We define an FP multiplication as: 

𝑧 = 𝑥𝑦, where z is the output, and x and y are the input mantissas 

within the range of [1, 2). A common solution to approximate a 

function is to project it to another space with equal or lower dimen-

sion for simplification. Without loss of generality, we can define 

the bases of the space as {1, 𝑥, 𝑦, 𝑥2, 𝑦2} and the following inner 

product for the space to measure the distance of two functions: 

⟨𝒇, 𝒈⟩ = ∫ ∫ 𝒇 × 𝒈 𝒅𝒙𝒅𝒚
𝒚𝟐

𝒚𝟏

𝒙𝟐

𝒙𝟏

(𝟏) 

where 𝑥1, 𝑥2, 𝑦1, 𝑦2 are the constants that define the input domain 

of f and g. When 𝑥2 > 𝑥1 ≥ 0, 𝑦2 > 𝑦1 ≥ 0, we can easily prove 

that the bases 1, 𝑥, 𝑦, 𝑥2, 𝑦2 are linearly independent.   

To project the multiplication z to the above inner space, we define 

the following approximate function: 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 +

𝑘3𝑥2 + 𝑘4𝑦2, which is a linear combination of the bases. We fur-

ther define an error measure within the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2]. 

A mathematically friendly choice is the square error defined below: 

‖𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥‖
2

= ⟨𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 , 𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥⟩ (2)  

By minimizing the square error, we minimize the deviation be-

tween the original and the projected functions. 

When there are no additional constraints, this unconstrained prob-

lem can be easily solved to obtain the following solution: 

[𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4] = [−
(𝑥1+𝑥2)(𝑦1+𝑦2)

4
,

𝑦1+𝑦2

2
,

𝑥1+𝑥2

2
, 0,0]     (3) 

Note that the formulation above is not limited to square error meas-

ure, but applicable to different targets or measures for optimization.  

Now for 𝑧 = 𝑥𝑦 defined on [𝑥1, 𝑥2] × [𝑦1, 𝑦2], we can optimally 

approximate it by the following linear function according to Eq. (3): 

𝑧 = 𝑥𝑦 ≈ 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 (4) 

The following lemmas state some properties for the approximation 

by Eq. (4). 

Lemma 1. For 𝑧 = 𝑥𝑦  in the domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2] , the 

maximum absolute error by the approximation shown in Eq. (4) is 

reached when {𝑥, 𝑦}={𝑥1, 𝑦1}, {𝑥1, 𝑦2}, {𝑥2, 𝑦1}, or {𝑥2, 𝑦2}. 

Proof:  

The partial derivatives of (𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥) w.r.t. x or y are: 

∂(𝑧−𝑧𝑎𝑝𝑝𝑟𝑜𝑥)

∂𝑥
= 𝑦 − 𝑘1   or    

∂(𝑧−𝑧𝑎𝑝𝑝𝑟𝑜𝑥)

∂𝑦
= 𝑥 − 𝑘2        (5) 

We divide the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2]  into four sub-regions: 

𝑅1 = [𝑥1, 𝑘2] × [𝑦1, 𝑘1], 𝑅2 = [𝑥1, 𝑘2] × [𝑘1, 𝑦2], 𝑅3 = [𝑘2, 𝑥2] ×
[𝑦1, 𝑘1], and 𝑅3 = [𝑘2, 𝑥2] × [𝑘1, 𝑦2]. In each sub-region, the de-

rivatives are constantly ≥ 0 or ≤ 0,, which simply means the max-

imum error of each sub-region always lies at its corners. Then we 

can find the maximum error in the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2] by 

comparing the errors at all 9 corners. Since the five corners in the 

center happen to be 0, the maximum absolute errors are then 



  

 

 

 

reached at the four corners of [𝑥1, 𝑥2] × [𝑦1, 𝑦2] , i.e., {𝑥1, 𝑦1} , 

{𝑥1, 𝑦2}, {𝑥2, 𝑦1}, or {𝑥2, 𝑦2}.  

Lemma 2. For 𝑧 = 𝑥𝑦 in the domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2], the ap-

proximation by Eq. (4) is unbiased, i.e., the mean of error distribu-

tion is 0 for uniformly distributed inputs. 

Proof:  

When the inputs are uniformly distributed in the domain of 

[𝑥1, 𝑥2] × [𝑦1, 𝑦2], by Eq. (3), the mean of error distribution is: 

∬ 𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑥𝑦 − (𝑘0 + 𝑘1𝑥 + 𝑘2𝑦)𝑑𝑥𝑑𝑦
𝑦2

𝑦1

= 0
𝑥2

𝑥1

(6) 

This implies that the approximation by Eq. (4) is unbiased 

Lemma 3. For a given number of sub-regions partitioned from the 

domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2], with one approximate function in 

each sub-region, the total square error of approximation is mini-

mized when each sub-region contains exactly the same area. 

Proof: 

The square error for the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2] is: 

‖𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥‖
2

=
(𝑥1 − 𝑥2)3(𝑦1 − 𝑦2)3

144
=

𝑆3

144
(7) 

where 𝑆 = (𝑥1 − 𝑥2)(𝑦1 − 𝑦2) is the area of the region. Suppose 

that we partition [𝑥1, 𝑥2] × [𝑦1, 𝑦2] into 𝑛 sub-regions, with the to-

tal area of all the sub-regions equal to S, i.e. Σ
𝑖
𝑠𝑖 = 𝑆, where 𝑠𝑖 is 

the area of the 𝑖𝑡ℎ sub-region.  

Within each sub-region, we can compute a fitted approximation us-

ing Eqs. (3) and (4), reaching a square error of 𝑠𝑖
3/144. The total 

square error for all the sub-regions are simply Σ𝑠𝑖
3/144 . Accord-

ing to the generalized mean inequality, we have: 

√Σ𝑠𝑖
3

𝑛

3

≥
Σ𝑠𝑖

𝑛
=

𝑆

𝑛
(9) 

Equality is reached if and only if: 

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑖 = ⋯ = 𝑠𝑛 =
𝑆

𝑛
(10) 

yielding the following minimum square error for n sub-regions: 

Min(
Σ𝑠𝑖

3

144
) =

𝑆3

144𝑛2
(11) 

Eq. (11) also implies that, with more fine-grained partitioning into 

smaller sub-regions and computing approximations within each 

sub-region, the total square error can be further reduced. 

3.3  Architecture for Multi-Level Approximate 

Multiplier with Runtime Configurability 

From the derivations in the last subsection, we can observe that: (1) 

According to Lemma 2, the approximation by Eq. (4) on a rectangle 

domain naturally has unbiased error distribution; (2) According to 

Lemma 3, the finer granularity of partition yields to smaller approx-

imation error, which can support the design of a configurable mul-

tiplier. Thus, we here propose a multi-level approximate multiplier 

architecture that is runtime configurable. Fig. 3 shows the proposed 

architecture with a multi-level structure. As shown in the figure, 

Level 0 is denoted as the basic approximation module, which 

provides an initial estimation 𝒛𝒂𝒑𝒑𝒓𝒐𝒙
𝟎 , while the deeper levels act 

as error compensation to gradually improve the overall accuracy. 

Thus, the run-time configurability can be easily realized by speci-

fying the desired depths.  

 
Figure 3: Architecture of the proposed approximate multiplier. 

 
Figure 4: Procedure of partitioning for the proposed multiplier. 

As discussed in Sec. 2, the initial domain for the mantissas in an FP 

multiplication is [1,2) × [1,2). According to the lemmas in the last 

subsection, for one level deeper, we can partition the underlying 

domain to 22
 sub-regions of rectangle shapes. Thus, if the multiplier 

is configured with a depth of n, as shown in Fig. 4, we can recur-

sively partition the underlying domain and obtain 4𝑛 sub-regions, 

each with an area of  
1

4𝑛
. In other words, the approximation after 

the ith partition, denoted as 𝒛𝒂𝒑𝒑𝒓𝒐𝒙
𝒊  for Level i, is a piecewise 

linear model that contains 𝟒𝒊 linear models as shown in Eq. (4), 

one corresponding to a rectangular sub-region. 

Thus, the error compensation simply provides the deviation from a 

finer granularity partitioning to a coarser one. If we denote ∆𝑧𝑖 =

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑖 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥

𝑖−1  as the difference between two approximations 

with 4𝑖 and 4𝑖−1 sub-regions, then ∆𝑧𝑖 is also the output of the ith 

level error compensation module. The proposed architecture in Fig. 

3 simply implements the configurability and approximation 

through the control of partitioning granularity as follows:  

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑛 = ∑ ∆𝑧𝑖

𝑛
𝑖=1 +𝑧𝑎𝑝𝑝𝑟𝑜𝑥

0                  (12) 

For the initial estimation of 𝑧𝑎𝑝𝑝𝑟𝑜𝑥
0  on [1,2) × [1,2), it can be eas-

ily computed by Eqs. (3) and (4) as: 

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
0 = 1.5𝑥 + 1.5𝑦 − 2.25                 (13) 

where x and y are the two input mantissas.  

The remaining question of the proposed architecture is how to re-

alize the error compensation ∆𝑧𝑖 for each level. Here we propose a 

simple but circuit-implementation-friendly model to efficiently 



  

 

 

compute the error compensation. Note that in Eq. (3), the found 

coefficients of 𝑘1  and 𝑘2  are just the coordinates of the interval 

center, and 𝑘0 is the negated product of 𝑘1 and 𝑘2. Such properties 

can be leveraged to enable easy implementation of error compen-

sation. As in Fig. 4, if we denote the kth interval for x on the ith level 

as [𝑥𝑘−1
𝑖 , 𝑥𝑘

𝑖 ], the interval center (middle point) is simply: 

𝑥𝑘
�̂� = 𝑥𝑘−1

𝑖 +
1

2𝑖+1
                              (14) 

Note that if representing 𝑥𝑘−1
𝑖  in a binary format, its decimal part 

just needs i bits. Thus, 𝑥𝑘
�̂�  simply attaches an additional bit ‘1’ at 

the end of 𝑥𝑘−1
𝑖 . Fig. 5 gives a simple example for the 6th interval 

on the 4th level to illustrate the above discussion, where 

x=1.01010…0 is an input mantissa,  𝑥5
4=1.0101 is the left bound of 

the 6th interval, 𝑥5
4̂=1.01011 is the interval center. For y-axis, we 

can reach a similar construction method. 

   
Figure 5: An example for the 6th interval on the 4th level. 

Then, by Eq. (3), we can derive the following for any level n: 

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑛 =  𝑥𝑝(𝑛)

�̂� × 𝑦 + 𝑦𝑞(𝑛)
�̂� × 𝑥 − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂�     (15) 

∆𝑧𝑛 = (𝑥𝑝(𝑛)
�̂� − 𝑥𝑝(𝑛−1)

𝑛−1̂ ) × 𝑦 + (𝑦𝑞(𝑛)
�̂� − 𝑦𝑞(𝑛−1)

𝑛−1̂ ) × 𝑥 + 𝑜𝑝,𝑞
𝑛     (16) 

where 𝑝(𝑛), 𝑞(𝑛) are the indexes to specify the subregions of x and 

y in the nth level; 𝑜𝑝,𝑞
𝑛  is a constant that can be pre-calculated as 

below for each sub-region: 

𝑜𝑝,𝑞
𝑛 = 𝑥𝑝(𝑛−1)

𝑛−1̂ × 𝑦𝑞(𝑛−1)
𝑛−1̂ − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂� (17) 

The formulations above still seem complex but can be further sim-

plified to more circuit-implementation-friendly format by noting 

the characteristics when representing in binaries. As in Fig. 5, if we 

denote nth bit of the input mantissa x as 𝑥[𝑛], we have the following: 

𝑥𝑝(𝑛)
�̂� − 𝑥𝑝(𝑛−1)

𝑛−1̂ =
𝑥[𝑛]?(1):(−1)

2𝑛+1
(18)                       

The absolute difference between 𝑥𝑝(𝑛)
�̂�  and 𝑥𝑝(𝑛−1)

𝑛−1̂  is always 

1/2𝑛+1, while the sign is determined by 𝑥[𝑛]. In other words, Eq. 

(18) can be easily implemented in circuit with 𝟏 (𝒏 + 𝟏)-bit 

right shift operation and at most 1 inversion operation.  

In summary, with the pre-calculated constants 𝑜𝑝,𝑞
𝑛  (that can be 

stored in RAM or hard-coded in circuit) by Eq. (17), we can achieve 

the following circuit-implementation-friendly models for the pro-

posed architecture: 

∆𝑧𝑛 = {
1.5𝑥 + 1.5𝑦 − 2.25 𝑛 = 0

{𝑦[𝑛]?(1):(−1)}𝑥+{𝑥[𝑛]?(1):(−1)}𝑦

2𝑛+1
+ 𝑜𝑝,𝑞

𝑛 𝑛 > 0
      (19) 

Apparently in eq. (19), when n>0, the model does not include any 

multiplication. All the operations it has are: 2 inversion (at most), 

1 n+1-bit shift, and 2 additions, which can be implemented with 

much smaller circuit cost.  

3.4 Optimization for Complexity Reduction  

As described in the last sub-section, each sub-region has a constant 

𝑜𝑝,𝑞
𝑛 . Since there are 4n sub-regions for level 𝑛, the circuit imple-

mentation cost to store/compute 𝑜𝑝,𝑞
𝑛  grows exponentially with 𝑛, 

eventually impairing the multiplier efficiency. This is also a com-

mon challenge that most configurable multipliers have to confront 

[26, 27, 30]. Thus, we further optimize the formulation in Eq. (19) 

to significantly reduce the complexity in area. 

With Eq. (18), we can rewrite Eq. (17) to the following:  

𝑜𝑝,𝑞
𝑛 = 𝑥𝑝(𝑛−1)

𝑛−1̂ × 𝑦𝑞(𝑛−1)
𝑛−1̂ − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂�                                         

= 𝑥𝑝(𝑛−1)
𝑛−1̂ × 𝑦𝑞(𝑛−1)

𝑛−1̂ − (𝑥𝑝(𝑛−1)
𝑛−1̂ +

𝑥[𝑛]?(1):(−1)

2𝑛+1 )          (20) 

                    × (𝑦𝑞(𝑛−1)
𝑛−1̂ +

𝑦[𝑛]?(1):(−1)

2𝑛+1 )      

This equation can be further simplified to the following, where ≫ 

denotes the shift operation: 

𝑜𝑝,𝑞
𝑛 = −[(𝑥[𝑛]? (1): (−1)) × 𝑦𝑞(𝑛−1)

𝑛−1̂ ] ≫ (𝑛 + 1)      

  −[(𝑦[𝑛]? (1): (−1)) × 𝑥𝑝(𝑛−1)
𝑛−1̂ ] ≫ (𝑛 + 1)       (21) 

                         +[(𝑥[𝑛]^𝑦[𝑛])? (1): (−1)] ≫ (2𝑛 + 2) 

where ^ denotes XOR operation. 

Then, Eq. (19) for n>0 can be refined to the following: 

∆𝑧𝑛 = {[(𝑥[𝑛]? (1): (−1)) × (𝑦 − 𝑦𝑞(𝑛−1)
𝑛−1̂ )]                                

+ [(𝑦[𝑛]? (1): (−1)) × (𝑥 − 𝑥𝑝(𝑛−1)
𝑛−1̂ )]} ≫ (𝑛 + 1)   (22) 

              +[(𝑥[𝑛]^𝑦[𝑛])? (1): (−1)] ≫ (2𝑛 + 2) 

Note that 𝑥𝑝(𝑛−1)
𝑛−1̂  is the middle point of the interval that contains x. 

The subtraction 𝑥 − 𝑥𝑝(𝑛−1)
𝑛−1̂  can be implemented with logic opera-

tions by turning the first n bits in x to 0 and bit flipping (if necessary) 

for the rest of bits instead of arithmetic operations. Thus, with the 

improved formulation shown in Eq. (22), the approximation com-

putation for an input pair involves 1 XOR, 1 shift, and 2 additions 

as well as several inversion and logic operations. The area cost is 

hence linear with the depth n for higher precisions instead of 

exponential or quadratic dependence as in prior work.  

 
Figure 6: Complexity comparison in LUT usage for ApproxLP [30], the 

proposed multiplier implemented using Eq. (19), and the optimized 

multiplier implemented using Eq. (22). 

Fig. 6 compares the normalized LUT usages among ApproxLP [30], 

the proposed multiplier implemented using Eq. (19), and the opti-

mized multiplier implemented using Eq. (22). Note that in [30], 



  

 

 

 

ApproxLP only provides the fitted model coefficients for the first 

three levels, which already shows nonlinear trend. The comparison 

validates the linear complexity of the optimized multiplier w.r.t. the 

approximation levels, i.e. depth n. Moreover, it is noted that for 

smaller level of approximations, the implementation by Eq. (19) 

incurs smaller area overhead by hard-coding the constants. Since 

the modules of the proposed architecture at different levels does not 

depend on each other, we can employ a hybrid implementation us-

ing both Eqs. (19) and (22) to further minimize the area. 

3.5 Additional Features 

In addition to the discussion above, there are a few additional fea-

tures that we can use to facilitate the implementation efficiency: 

⚫ The computation for each level in the proposed multiplier is 

completely independent. Thus, when the number of levels n 

is determined, the modules at different levels can be simulta-

neously invoked and executed.  

⚫ For each module, we can implement it by Eq. (19) or Eq. (22). 

Most operations involved have a very efficient circuit imple-

mentation, such as inversion, shift and addition.  

⚫ Unlike ApproxLP that needs complex arithmetic to determine 

the sub-region, i.e., 𝑥 + 𝑦 ≥ 1,  and has dependence on the 

lower level modules, the proposal can separately evaluate the 

sub-regions that x and y belong to, and execute modules at 

different levels in parallel.   

⚫ To determine which sub-region the input pair is located, the 

proposed module at level 𝑛 only requires the first 𝑛 bits in-

stead of the complete number. 

4  Error Analysis 

In this section, we further discuss the error distribution for different 

levels of approximations in the proposed multiplier. Again, here we 

assume the mantissas of the two inputs x and y are uniformly dis-

tributed within [1, 2). We check all the possible pairs of x and y in 

FP representations, and normalize the deviation w.r.t. the accurate 

product, in order to fully investigate if the results are consistent 

with our theoretical derivations. 

 
Figure 7: 2-D error distribution for different approximation levels. 

Fig. 7 shows the axonometric and top views of the error distribu-

tions for Level 0, 1, and 2 approximations. From Fig. 7, we can see 

that, for each sub-region, the distribution is saddle shaped, with the 

extreme values reached at the corners of each sub-region. In addi-

tion, the unbiasedness is achieved due to the symmetricity of the 

error distribution. The maximum error quickly drops with a factor 

close to 4 when using more levels of error compensation. We then 

measure the performance of the proposed design for different error 

measures, as shown in Fig. 8, which plots 1-D view for clarity. Two 

error measures, mean square error (MSE) and maximum absolute 

error (MAE) are used. Like Fig. 7, we can see that both measures 

yield to similar error distribution but with different error reduction 

rate w.r.t. the approximation level. In Fig. 9, we further compare 

the envelope of the error distribution histograms for different levels 

of approximation. It is clear that when configured to a deeper level 

in the multiplier, i.e., with more error compensation, most calcula-

tions by the proposed design have almost zero errors. With the der-

ivations in the prior sections, we can easily compute the relation-

ship between the error measures and the number of levels used in 

the proposed multiplier. For an arbitrary depth n, we can achieve 

the following for MSE and MAE: 

𝑀𝑆𝐸 =
1

9×16𝑛+1
,   𝑀𝐴𝐸 =

1

4𝑛+2
                    (23) 

This can be used as the error control mechanism to configure the 

desired precision of the multiplier at runtime. 

 
Figure 8: Error distribution for different error measures. 

 
Figure 9: Envelopes of error distribution histogram for different leve

ls of approximation for the proposed multiplier.  

5 Experimental Results 

We developed both software and hardware implementations of the 

proposed approximate multiplier for different evaluations. Similar 

as [26, 27, 30], the software implementation can be deployed into 

various applications by replacing the existing FP multiplier unit 

with the proposed approximated multiplier. The hardware imple-

mentation is on FPGA and we use Xilinx Vivado to evaluate the 

delay and energy. The experiments are organized as follows. We 

first qualitatively compare the proposed multiplier with several 

prior approximate multipliers. Then, we evaluate the performance 

of hardware implementation of the proposed multiplier. Since 



  

 

 

ApproxLP [30] was reported to have SOTA performance in almost 

all the aspects when compared with the prior multipliers, in this 

paper, we directly compare with ApproxLP [30] and use the same 

setup for fairness. Finally, we evaluate the software performance in 

terms of quality and energy efficiency for various edge applications 

when using the proposed multiplier. 

5.1 Qualitative Comparison to Prior Work 

With the theoretically sound derivations and formulations in Sec. 3, 

we can design an optimally approximated and unbiased FP multi-

plier with runtime configurability. Here, we qualitatively compare 

the properties of the proposed multiplier with several prior approx-

imate multiplier works in terms of unbiasedness (denoted as bi-

ased), configurability (denoted as conf.), request of full precision 

multiplier (denoted as ReqMul), and area complexity w.r.t. preci-

sion requirements (denoted as Complexity). Such comparison helps 

us better understand the superiority of the proposed multiplier in 

various aspects. 

In Table 1, other than the first two multipliers [12, 28], the others 

are for FP multiplications. Note that RMAC [26] and CFPU [27] 

employ a hybrid solution to include both full precision multiplier 

and approximate multiplier, which is very area consuming. Thus, it 

is not fair to evaluate their area complexity for different precision 

requirements. ApproxLP [30], as SOTA in prior work, cannot guar-

antee unbiasedness and demand significant area with growing pre-

cision requirements. Thus, through comparison, we find the pro-

posed multiplier can achieve good accuracy, unbiasedness, config-

urability, and low area complexity, which are the features highly 

desired by edge IoT applications. 

Table 1: Qualitative comparison of the proposed multiplier with sev-

eral prior approximate multipliers 

Design Type Biased conf. ReqMul Complexity 

Kulkarni [12] Integer Y N N 𝑂(𝑛2) 

DRUM [28] Fixed Pt N N N 𝑂(𝑛2) 

CFPU [27] FP N Y Y N/A 

RMAC [26] FP Y Y Y N/A 

ApproxLP [30] FP Y Y N 𝑂(4𝑛) 

Proposed FP N Y N 𝑂(𝑛) 

5.2  Quantitative Comparison to ApproxLP 

Although both ApproxLP [30] and the proposed multiplier can em-

ploy multi-level approximations for configurability, there are some 

intrinsic differences in the multi-level partitioning, modeling, and 

implementation. Table 2 summarizes the number of sub-regions, 

LUT usage, and maximum delay for different levels of approxima-

tion for the two multipliers. Note that, with the growing approxi-

mation levels, the multiplier is expected to have higher precision 

and more sub-regions. For ApproxLP, the partitioning starts with 2 

sub-regions (denoted as Level 1 in [30]), while the proposed design 

starts with 1 sub-region (no partitioning, denoted as Level 0). Here, 

for comparison purpose, ApproxLP [30] also starts with Level 0 

(which is actually Level 1 in [30]). For ApproxLP, we report both 

 
1 ApproxLP in [30] only reports the approximations up to 3 levels. Thus, 4th or high 

level approximation data are not available. 

its absolute number and relative change w.r.t. the proposed design 

using the same level of approximations. 

As in Table 2, while the number of sub-regions for the proposed 

design grows faster than ApproxLP [30], its LUT usage is much 

lower, up to 84% less LUT usage for Level 2 approximation. For 

the maximum delay, due to the capability of parallel execution and 

lower hardware cost, the critical path for the proposed design has 

pretty much the same delay even with growing approximation lev-

els. In contrast, ApproxLP shows 43% higher delay for Level 2 ap-

proximation when compared to the proposed design. 

Table 2: Comparison of sub-region count, LUT usage, maximum delay 

between the proposed multiplier and ApproxLP [30]. 

Level 
#sub-region #LUT Max delay (ns) 

Prop. ApproxLP Prop. ApproxLP Prop. ApproxLP 

0 1 2 57 50/-12% 7.9 9.2/16% 

1 4 4 95 160/68% 8.3 9.2/11% 

2 16 12 151 278/84% 8.3 11.9/43% 

3 64 N/A1 195 N/A 8.3 N/A 

Table 3: Accuracy comparison for different error measures between 

the proposed multiplier and ApproxLP [30] for different approxima-

tion levels (Level 1 and 2). 

Metrics 
Level 1 approximation Level 2 approximation 

ApproxLP  Prop./Imp. ApproxLP  Prop./Imp. 

MSE 6.9e-4 4.3e-4/37% 4.3e-5 2.7e-5/37% 

MAE 2.1e-2 1.6e-2/24% 5.2e-3 3.9e-3/25% 

MSE(R) 1.7e-4 1.1e-4/35% 1.1e-5 6.9e-6/37% 

MAE(R) 9.9e-3 7.6e-3/23% 2.5e-3 1.9e-3/24% 

 
Figure 10: Error distribution comparison between the proposed multi-

plier and ApproxLP [30] for different approximation levels (0-2). 

We further compare the accuracy of the proposed design w.r.t. Ap-

proxLP [30] for different error measures and different approxima-

tion levels in Table 3. In the table, we have four different error 

measures, where MSE(R) and MAE(R) refer to the relative error 

for MSE and MAE, respectively. Note that ApproxLP [30] and the 

proposed design have different approximation schemes with differ-

ent sub-regions for the same level of approximation. According to 

the same comparison principle in Table 2, for the same approxima-

tion level, the proposed design is able to achieve higher accuracy 

for all the error measures, with 23-37% accuracy improvement. Fig. 

10 shows the error distribution of the proposed design and Ap-

proxLP. The proposed design can achieve much tighter error distri-

bution with smaller standard deviation than ApproxLP, indicating 

consistently more accurate approximation. 



 

 

Table 4: Comparison of PSNR/accuracy loss, energy and EDP improvements for different OpenCL, image processing and machine learning tasks 

using the proposed approximate multiplier with different levels of approximations (Level 0-2).   

Application 
PSNR(dB)/Accuracy Loss(%) Energy Improvement EDP Improvement 

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 

Sobel 30.13 40.05 49.92 2.2× 2.2× 1.8× 3.5× 3.0× 2.4× 

Kirsch 36.67 47.69 53.67 3.3× 2.6× 2.2× 5.2× 3.6× 2.9× 

Robert 27.96 38.71 48.00 2.7× 2.0× 1.3× 4.2× 2.8× 1.8× 

Prewitt 30.54 40.49 50.35 2.2× 2.2× 1.8× 3.5× 3.0× 2.4× 

Gauss Blur 49.69 56.68 64.55 86.0× 54.7× 50.2× 136.3× 75.3× 66.1× 

MNIST(MLP) 0.11% 0.02% 0% 62.6× 45.6× 41.8× 99.3× 62.7× 55.0× 

MNIST(CNN) 0.02% 0% 0% 62.9× 50.3× 41.9× 99.7× 69.2× 55.2× 

CIFAR-10 0.29% 0.01% 0% 121.9× 88.6× 81.3× 193.2× 122.0× 107.0× 

5.3 Application Level Quality 

We evaluate the efficiency of the proposed multiplier on several 

OpenCL, image processing and machine learning applications. 

MNIST(MLP) refers to the execution on a 5-layer MLP, while 

MNIST(CNN) and CIFAR-10 refer to the execution on a pre-

trained AlexNet. Please note that in all the applications, more than 

85% FP operations involve multiplications [27]. The embedded ap-

proximate multiplier can be configured to 3 levels of approximation 

(Level 0 to 2). The comparison is conducted by replacing the accu-

rate FP multiplier in GPU with the proposed multiplier, as in [26, 

27, 30]. The energy consumptions of the multipliers used in this 

section are obtained from Vivado. OpenCL/image processing tasks 

are evaluated with Peak Signal to Noise Ratio (PSNR), while ma-

chine learning tasks use accuracy loss as the accuracy measure. 

 
Figure 11: Output quality for image processing tasks using accurate 

and approximate multipliers with different approximate levels. 

Table 4 reports the PSNR and accuracy loss for all the task. For 

OpenCL/image processing tasks, output PSNR is closely related to 

the distribution of the filter matrix. For example, Robert, Sobel and 

Prewitt filters have many 1’s and 2’s, which are located close to the 

corners of the subregions, while Kirsch filter has many 0’s, 3’s and 

5’s, located in the center of the sub-region. This explains why 

Kirsch has a higher PSNR than Robert or Sobel. Machine learning 

tasks have a strong resilience to error with consistently small accu-

racy loss. From the table, even with Level 1 approximation, we can 

achieve 38-57dB for all the OpenCL/image processing tasks and 

almost negligible accuracy loss (0-0.02%) for machine learning 

tasks. Fig. 11 presents an example of computation quality using So-

bel, Kirsch and Gauss Blur running on the proposed multiplier with 

different approximation levels as well as the exact image (denoted 

as ‘Accurate’ on the first column). It is clear, the visual differences 

among the images are unnoticeable, while more approximation lev-

els help increase the PSNR. 

5.4 Application Level Efficiency 

Table 4 also compares the normalized energy and energy-delay-

product (EDP) improvements by the proposed multiplier in com-

parison to the case of using a full-precision FP multiplier. For tasks 

like Sobel, Kirsch, Robert and Prewitt, at least one input to the mul-

tiplier is relatively simple or stays stable during task execution. 

This simply implies there are fewer non-zero bits in an FP number, 

resulting in fewer bit switching and energy consumption during the 

task execution. Thus, for those tasks, EDP improvements by the 

proposed multiplier are limited, with only 4.1×, 3.1× and 2.4× on 

average for level 0, 1 and 2 approximations, respectively. For the 

tasks like Gauss Blur and machine learning, they have more vary-

ing inputs and many non-zeros in the FP numbers. This signifi-

cantly increase the bit switching activity and hence the dynamic 

power consumption, eventually resulting in huge benefits using the 

proposed multiplier. In particular, for CIFAR-10, the average EDP 

improvements for Level 0, 1 and 2 approximation can reach 193.2×, 

122.0× and 107.0×, respectively. 

6 Conclusions 

In this work, an efficient runtime-configurable approximate multi-

plier is proposed. The multi-level architecture can easily incorpo-

rate the run-time configurability without incurring much area over-

head, but naturally reach optimal approximation and unbiased error 

distribution. Our evaluation shows that the proposed design has 

comprehensive advantages over prior multiplier designs and is able 

to outperform SOTA design in terms of accuracy, area and delay. 

The evaluations also demonstrate its significant energy efficiency 

improvement over full-precision multipliers in GPU.  
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