

Optimally Approximated and Unbiased Floating-Point Multiplier

with Runtime Configurability

Chuangtao Chen2, Sen Yang1, Weikang Qian4, Mohsen Imani5, Xunzhao Yin1, Cheng Zhuo1,3*

1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
2College of Electrical Engineering, Zhejiang University

3ASIC & System Key Lab, School of Microelectronics, Fudan University, Shanghai, China
4University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University

5 Department of Computer Science and Engineering, University of California, Irvine

*E-mail: czhuo@zju.edu.cn

ABSTRACT

Approximate computing is a promising alternative to improve en-

ergy efficiency for IoT devices on the edge. This work proposes an

optimally approximated and unbiased floating-point approximate

multiplier with runtime configurability. We provide a theoretically

sound formulation that turns multiplication approximation to an op-

timization problem. With the formulation and findings, a multi-

level architecture is proposed to easily incorporate runtime config-

urability and module execution parallelism. Finally, an optimiza-

tion scheme is applied to improve the area, making it linearly de-

pendent on the precision, instead of quadratically or exponentially

as in prior work. In addition to the optimal approximation and con-

figurability, the proposed design has an efficient circuit implemen-

tation that uses inversion, shift and addition instead of complex

arithmetic operations. When compared to the prior state-of-the-art

approximate floating-point multiplier, ApproxLP [30], the pro-

posed design outperforms in all aspects including accuracy, area,

and delay. By replacing the regular full-precision multiplier in GPU,

the proposed design can improve the energy efficiency for various

edge computing tasks. Even with Level 1 approximation, the pro-

posed design improves energy efficiency up to 122× for machine

learning on CIFAR-10, with almost negligible accuracy loss.

1 Introduction

Due to the rapid growth of Internet-of-Things (IoT), energy effi-

ciency has become a critical concern, especially when IoT devices

are deployed with constrained resources [1-4]. There have been

various research efforts to optimize energy efficiency for IoT de-

vices from algorithm, architecture, to circuit [5-15]. Among such

efforts, approximate computing has emerged as a promising alter-

native for designers to trade computational accuracy with energy

efficiency. This is especially applicable to human sensory or ma-

chine learning tasks where a small amount of inaccuracy is

tolerable or even ignorable [16-19].

At the edge, IoT devices are designed to consume the minimum

resource to achieve the desired accuracy. However, the conven-

tional processors, such as CPU or GPU, can only conduct all the

computations with pre-determined but sometimes unnecessary pre-

cisions, inevitably degrading their energy efficiency. When running

data-intensive applications, e.g., image processing or machine

learning, due to the large range of input operands, most conven-

tional processors heavily rely on floating-point units (FPU) [7, 21].

To cover the same dynamic range, the fixed-point unit demands up

to 5x larger area compared to its FP counterpart and hence is a far

less common option [22]. Among different FP operations, multipli-

cation is widely used but possibly the most energy consuming op-

eration for various data-intensive scenarios, such as streaming, neu-

ral network, image processing, etc. In other words, when running

inaccuracy-tolerable applications on the conventional processors,

significant energy and time are spent on FP multipliers computing

highly accurate outputs that are not necessarily demanded. Thus,

for FP multiplication in IoT devices, there is a need to optimize its

energy efficiency by providing sufficient instead of excessively ac-

curate computational precisions.

As a common arithmetic component that has been studied for dec-

ades [23, 24], the past focus for FP multiplier is mainly placed upon

accuracy and performance. Recently, with awareness of the com-

promise between the stringent resource constraint and the accuracy

tolerance for edge applications, researchers have growing interests

in designing an approximate FP multiplier to improve energy effi-

ciency. For example, Camus et al. redesigned major arithmetic

components to reduce circuitry complexity [25], where the approx-

imation error is controlled by construction. Works in [26, 27] use a

hybrid method by employing both accurate and inaccurate multi-

pliers for runtime configurable approximation. However, such FP

multipliers can hardly guarantee unbiased error distribution with

near-zero average error, causing the risk of aggregated error for

applications with multiple multiplications in series.

To address the issues, several works propose to design approximate

multipliers at the algorithmic level to achieve configurability by

combining different product sizes or truncating unwanted bits [28,

29]. Recently, some work proposed to improve computational effi-

ciency and configurability by directly approximating the product of

two FP inputs with linear fitting [30]. However, due to the focus at

algorithmic level, the proposed approaches may suffer from

quickly increased circuitry complexity and degraded efficiency

with higher precision requirements, eventually impairing energy

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

ICCAD '20, November 2–5, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8026-3/20/11…$15.00

https://doi.org/10.1145/3400302.3415702

mailto:Permissions@acm.org
https://doi.org/10.1145/3400302.3415702

efficiency and computation time. More importantly, for the re-

quired precision and configuration, is the proposed approximation

the best we can have? Many designs happen to rely on hand-crafted

structures or heuristics. How to achieve an optimal approximation

with unbiased error distribution remains an open question. Thus, it

is highly desired to develop a systematic methodology to design un-

biased, configurable, and circuit-implementation-friendly FP mul-

tiplier with optimal approximation.

Apparently, this is not a trivial task: (1) On one hand, unlike the

many approximations in prior work that stem from heuristic find-

ings [12, 26, 28, 30], we need to formally define the problem, in-

cluding objective function and constraints, to enable the theoreti-

cally sound basis for optimal approximation. (2) On the other hand,

when ensuring configurability, the underlying architecture should

facilitate the circuitry implementation instead of introducing im-

plementation-unfriendly logics or operations, to prevent exponen-

tially growing area complexity with higher precision requirements.

(3) Finally, how to ensure unbiasedness and tunability for the op-

timally approximated FP multiplier is not straightforward. It is hard

to achieve all the features in one design.

Thus, in this paper, by addressing the aforementioned challenges

we propose to design a runtime configurable FP multiplier that is

optimally approximated with unbiased error distribution. The ma-

jor contributions of our work are listed as follows.

⚫ A theoretically sound optimization formulation is pro-

posed to optimize the approximation error of the approximate

multiplier and act as the basis for multiplier architecture de-

sign. With the proposed formulation, the error can be sym-

metrically distributed, yielding an unbiased error distribution.

⚫ Based on the optimization formulation and findings, we pro-

pose a multi-level FP multiplier architecture that can eas-

ily incorporate run-time configurability. The accuracy is

configured by adding up different levels of error compensa-

tions, while each level of compensation is designed with cir-

cuit-implementation-friendly operations, such as shifting, in-

version, and addition. Moreover, the modules at different

levels are independent and hence support parallel execu-

tion to achieve higher efficiency.

⚫ A common issue of the prior approximate FP multiplier de-

signs is the quickly growing area complexity with the in-

creased precision requirements. With the proposed architec-

ture, we theoretically analyze the cost complexity and pro-

pose an optimization scheme to reduce the complexity

from 𝑶(𝟒𝒏) to 𝑶(𝒏), where 𝑛 is the number of approxima-

tion levels, while ensuring the same accuracy quality.

Experimental results show that, with the proposed formulation to

determine the optimal approximation, we can implement an en-

ergy-efficient and configurable approximate multiplier. The pro-

posed multiplier is found to have comprehensive superiority over

many prior work [12, 26-28, 30]. When compared with a state-of-

the-art (SOTA) multiplier, the proposal can achieve accuracy im-

provements up to 37% in terms of mean square error (MSE) with

far smaller area (84% saving) and delay (43% improvement). In

addition, when replacing a regular FP multiplier with the proposed

multiplier and evaluating with various edge-application tasks, we

ca achieve 1.8-83.3× energy improvement and 2.4-132.1× energy

efficiency improvement while the quality or accuracy loss is almost

negligible.

2 Background

2.1 Floating-Point Multiplication

Compared to integer computing, FP arithmetic is usually costlier

and energy consuming, due to its complexity. IEEE 754 standard is

a technical standard for FP arithmetic [31]. According to it, an FP

number consists of sign, exponent and mantissa, as shown in Fig.

1(a). The mantissa of a normalized FP number is defined as integer

1 plus the fractional portion, whose exact value is between 1 and 2.

In a general-purpose processor, for an FP multiplication, as shown

in Fig. 1(b), the sign bits is computed by an XOR operation, and

the exponent bits are computed by an adder. Then the bias is sub-

tracted from the exponent to allow both negative and positive val-

ues. Finally, the product is shifted to the range of 1 and 2 to obtain

the final result.

Figure 1: (a) Representation of a 32-bit FP number according to IEE

E 754; (b) FP multiplication in a general-purpose processor.

Figure 2: Flow of the approximate multiplier

2.2 Approximate Multiplier

Approximate arithmetic has been a popular research area in the past

decade. While multiplier itself is complicated, most prior work on

approximate multiplier attempt to tackle the problem either from

gate or algorithmic levels to reduce the product bit-width or critical

path delay. For example, some work use approximate components,

such as adders, to build the multiplier, so as to speed up addition or

partial product generation [12, 25, 29, 32-34]. To approximate from

a higher design level, [35] proposed a pipelined log-based approx-

imation using the classical Mitchell multiplier with an iterative pro-

cedure to improve accuracy. To speed up the iterative procedure,

researchers propose to truncate the bits after the leading one to con-

serve energy or utilize a hybrid method with both inaccurate and

accurate multipliers to adjust the computational accuracy by select-

ing the appropriate multiplier, thereby trading off between accuracy

and cost [26-28].

However, there are several issues of directly applying the prior

work to the IoT devices at the edge. While those methods can pre-

cisely control the error, it is hard for many of them to guarantee

unbiased output with zero-mean error distribution. On the other

hand, configurability is highly demanded for versatile edge scenar-

ios. The limitation of many prior approaches is either lack of con-

figurability, or the notably high cost to implement such configura-

bility with higher precision requirements.

Recently, ApproxLP is proposed to approximate the mantissa prod-

uct using linear fitting [30]. The design shows much higher perfor-

mance for the given error rate when compared to the prior approx-

imate multiplier solutions, which is hence considered as a state-of-

the-art (SOTA) FP multiplier with significant advantages over prior

approximation methods. Fig. 2 describes the basic concept of Ap-

proxLP. As shown in the flow, the ranges of the two mantissas are

first partitioned into multiple sub-regions, with linear functions in-

troduced to fit each sub-region. The partitioning can be further fine-

grained to deeper levels to improve the overall accuracy at the cost

of area and delay. The sum of the outputs at each level gradually

approaches the exact multiplication product, so that the accuracy

can be runtime-configured by enabling different levels. However,

while ApproxLP improves the efficiency compared with the prior

approximation works, it still does not fully address the aforemen-

tioned challenges of large implementation cost and biased output

error. For example, the error distribution of level 1 approximation

in ApproxLP is biased which may cause error accumulation with

multiple multiplications in series. The branching for sub-region se-

lection is also hardware-demanding, causing significantly more

area with deeper levels. In addition, as the proposed fitted functions

are heuristically customized, it raises a very natural question

whether we can achieve more optimal approximation through more

theoretically sound formulation. Thus, it is highly motivated for us

to fully overcome the existing issues in the prior work and provide

the capability to design optimally approximated and unbiased FP

multiplier with low hardware cost and runtime configurability.

3 Design and Optimization of Approximate FP

Multiplier

With the aforementioned goals, we would like to tackle the chal-

lenges with the following steps: (1) Formally formulate the prob-

lem of approximated multiplication that can incorporate desired

design targets; (2) Propose a multiplier architecture that can facili-

tate runtime configurability with low hardware cost; (3) Optimize

the circuit to improve the overall efficiency.

3.1 Problem Formulation

As shown in Fig. 1, the key operation of an FP multiplication is the

product of the two mantissas. We define an FP multiplication as:

𝑧 = 𝑥𝑦, where z is the output, and x and y are the input mantissas

within the range of [1, 2). A common solution to approximate a

function is to project it to another space with equal or lower dimen-

sion for simplification. Without loss of generality, we can define

the bases of the space as {1, 𝑥, 𝑦, 𝑥2, 𝑦2} and the following inner

product for the space to measure the distance of two functions:

⟨𝒇, 𝒈⟩ = ∫ ∫ 𝒇 × 𝒈 𝒅𝒙𝒅𝒚
𝒚𝟐

𝒚𝟏

𝒙𝟐

𝒙𝟏

(𝟏)

where 𝑥1, 𝑥2, 𝑦1, 𝑦2 are the constants that define the input domain

of f and g. When 𝑥2 > 𝑥1 ≥ 0, 𝑦2 > 𝑦1 ≥ 0, we can easily prove

that the bases 1, 𝑥, 𝑦, 𝑥2, 𝑦2 are linearly independent.

To project the multiplication z to the above inner space, we define

the following approximate function: 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 +

𝑘3𝑥2 + 𝑘4𝑦2, which is a linear combination of the bases. We fur-

ther define an error measure within the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2].

A mathematically friendly choice is the square error defined below:

‖𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥‖
2

= ⟨𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 , 𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥⟩ (2)

By minimizing the square error, we minimize the deviation be-

tween the original and the projected functions.

When there are no additional constraints, this unconstrained prob-

lem can be easily solved to obtain the following solution:

[𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4] = [−
(𝑥1+𝑥2)(𝑦1+𝑦2)

4
,

𝑦1+𝑦2

2
,

𝑥1+𝑥2

2
, 0,0] (3)

Note that the formulation above is not limited to square error meas-

ure, but applicable to different targets or measures for optimization.

Now for 𝑧 = 𝑥𝑦 defined on [𝑥1, 𝑥2] × [𝑦1, 𝑦2], we can optimally

approximate it by the following linear function according to Eq. (3):

𝑧 = 𝑥𝑦 ≈ 𝑧𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑘0 + 𝑘1𝑥 + 𝑘2𝑦 (4)

The following lemmas state some properties for the approximation

by Eq. (4).

Lemma 1. For 𝑧 = 𝑥𝑦 in the domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2] , the

maximum absolute error by the approximation shown in Eq. (4) is

reached when {𝑥, 𝑦}={𝑥1, 𝑦1}, {𝑥1, 𝑦2}, {𝑥2, 𝑦1}, or {𝑥2, 𝑦2}.

Proof:

The partial derivatives of (𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥) w.r.t. x or y are:

∂(𝑧−𝑧𝑎𝑝𝑝𝑟𝑜𝑥)

∂𝑥
= 𝑦 − 𝑘1 or

∂(𝑧−𝑧𝑎𝑝𝑝𝑟𝑜𝑥)

∂𝑦
= 𝑥 − 𝑘2 (5)

We divide the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2] into four sub-regions:

𝑅1 = [𝑥1, 𝑘2] × [𝑦1, 𝑘1], 𝑅2 = [𝑥1, 𝑘2] × [𝑘1, 𝑦2], 𝑅3 = [𝑘2, 𝑥2] ×
[𝑦1, 𝑘1], and 𝑅3 = [𝑘2, 𝑥2] × [𝑘1, 𝑦2]. In each sub-region, the de-

rivatives are constantly ≥ 0 or ≤ 0,, which simply means the max-

imum error of each sub-region always lies at its corners. Then we

can find the maximum error in the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2] by

comparing the errors at all 9 corners. Since the five corners in the

center happen to be 0, the maximum absolute errors are then

reached at the four corners of [𝑥1, 𝑥2] × [𝑦1, 𝑦2] , i.e., {𝑥1, 𝑦1} ,

{𝑥1, 𝑦2}, {𝑥2, 𝑦1}, or {𝑥2, 𝑦2}.

Lemma 2. For 𝑧 = 𝑥𝑦 in the domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2], the ap-

proximation by Eq. (4) is unbiased, i.e., the mean of error distribu-

tion is 0 for uniformly distributed inputs.

Proof:

When the inputs are uniformly distributed in the domain of

[𝑥1, 𝑥2] × [𝑦1, 𝑦2], by Eq. (3), the mean of error distribution is:

∬ 𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑥𝑦 − (𝑘0 + 𝑘1𝑥 + 𝑘2𝑦)𝑑𝑥𝑑𝑦
𝑦2

𝑦1

= 0
𝑥2

𝑥1

(6)

This implies that the approximation by Eq. (4) is unbiased

Lemma 3. For a given number of sub-regions partitioned from the

domain of [𝑥1, 𝑥2] × [𝑦1, 𝑦2], with one approximate function in

each sub-region, the total square error of approximation is mini-

mized when each sub-region contains exactly the same area.

Proof:

The square error for the domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2] is:

‖𝑧 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥‖
2

=
(𝑥1 − 𝑥2)3(𝑦1 − 𝑦2)3

144
=

𝑆3

144
(7)

where 𝑆 = (𝑥1 − 𝑥2)(𝑦1 − 𝑦2) is the area of the region. Suppose

that we partition [𝑥1, 𝑥2] × [𝑦1, 𝑦2] into 𝑛 sub-regions, with the to-

tal area of all the sub-regions equal to S, i.e. Σ
𝑖
𝑠𝑖 = 𝑆, where 𝑠𝑖 is

the area of the 𝑖𝑡ℎ sub-region.

Within each sub-region, we can compute a fitted approximation us-

ing Eqs. (3) and (4), reaching a square error of 𝑠𝑖
3/144. The total

square error for all the sub-regions are simply Σ𝑠𝑖
3/144 . Accord-

ing to the generalized mean inequality, we have:

√Σ𝑠𝑖
3

𝑛

3

≥
Σ𝑠𝑖

𝑛
=

𝑆

𝑛
(9)

Equality is reached if and only if:

𝑠1 = 𝑠2 = ⋯ = 𝑠𝑖 = ⋯ = 𝑠𝑛 =
𝑆

𝑛
(10)

yielding the following minimum square error for n sub-regions:

Min(
Σ𝑠𝑖

3

144
) =

𝑆3

144𝑛2
(11)

Eq. (11) also implies that, with more fine-grained partitioning into

smaller sub-regions and computing approximations within each

sub-region, the total square error can be further reduced.

3.3 Architecture for Multi-Level Approximate

Multiplier with Runtime Configurability

From the derivations in the last subsection, we can observe that: (1)

According to Lemma 2, the approximation by Eq. (4) on a rectangle

domain naturally has unbiased error distribution; (2) According to

Lemma 3, the finer granularity of partition yields to smaller approx-

imation error, which can support the design of a configurable mul-

tiplier. Thus, we here propose a multi-level approximate multiplier

architecture that is runtime configurable. Fig. 3 shows the proposed

architecture with a multi-level structure. As shown in the figure,

Level 0 is denoted as the basic approximation module, which

provides an initial estimation 𝒛𝒂𝒑𝒑𝒓𝒐𝒙
𝟎 , while the deeper levels act

as error compensation to gradually improve the overall accuracy.

Thus, the run-time configurability can be easily realized by speci-

fying the desired depths.

Figure 3: Architecture of the proposed approximate multiplier.

Figure 4: Procedure of partitioning for the proposed multiplier.

As discussed in Sec. 2, the initial domain for the mantissas in an FP

multiplication is [1,2) × [1,2). According to the lemmas in the last

subsection, for one level deeper, we can partition the underlying

domain to 22
 sub-regions of rectangle shapes. Thus, if the multiplier

is configured with a depth of n, as shown in Fig. 4, we can recur-

sively partition the underlying domain and obtain 4𝑛 sub-regions,

each with an area of
1

4𝑛
. In other words, the approximation after

the ith partition, denoted as 𝒛𝒂𝒑𝒑𝒓𝒐𝒙
𝒊 for Level i, is a piecewise

linear model that contains 𝟒𝒊 linear models as shown in Eq. (4),

one corresponding to a rectangular sub-region.

Thus, the error compensation simply provides the deviation from a

finer granularity partitioning to a coarser one. If we denote ∆𝑧𝑖 =

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑖 − 𝑧𝑎𝑝𝑝𝑟𝑜𝑥

𝑖−1 as the difference between two approximations

with 4𝑖 and 4𝑖−1 sub-regions, then ∆𝑧𝑖 is also the output of the ith

level error compensation module. The proposed architecture in Fig.

3 simply implements the configurability and approximation

through the control of partitioning granularity as follows:

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑛 = ∑ ∆𝑧𝑖

𝑛
𝑖=1 +𝑧𝑎𝑝𝑝𝑟𝑜𝑥

0 (12)

For the initial estimation of 𝑧𝑎𝑝𝑝𝑟𝑜𝑥
0 on [1,2) × [1,2), it can be eas-

ily computed by Eqs. (3) and (4) as:

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
0 = 1.5𝑥 + 1.5𝑦 − 2.25 (13)

where x and y are the two input mantissas.

The remaining question of the proposed architecture is how to re-

alize the error compensation ∆𝑧𝑖 for each level. Here we propose a

simple but circuit-implementation-friendly model to efficiently

compute the error compensation. Note that in Eq. (3), the found

coefficients of 𝑘1 and 𝑘2 are just the coordinates of the interval

center, and 𝑘0 is the negated product of 𝑘1 and 𝑘2. Such properties

can be leveraged to enable easy implementation of error compen-

sation. As in Fig. 4, if we denote the kth interval for x on the ith level

as [𝑥𝑘−1
𝑖 , 𝑥𝑘

𝑖], the interval center (middle point) is simply:

𝑥𝑘
�̂� = 𝑥𝑘−1

𝑖 +
1

2𝑖+1
 (14)

Note that if representing 𝑥𝑘−1
𝑖 in a binary format, its decimal part

just needs i bits. Thus, 𝑥𝑘
�̂� simply attaches an additional bit ‘1’ at

the end of 𝑥𝑘−1
𝑖 . Fig. 5 gives a simple example for the 6th interval

on the 4th level to illustrate the above discussion, where

x=1.01010…0 is an input mantissa, 𝑥5
4=1.0101 is the left bound of

the 6th interval, 𝑥5
4̂=1.01011 is the interval center. For y-axis, we

can reach a similar construction method.

Figure 5: An example for the 6th interval on the 4th level.

Then, by Eq. (3), we can derive the following for any level n:

𝑧𝑎𝑝𝑝𝑟𝑜𝑥
𝑛 = 𝑥𝑝(𝑛)

�̂� × 𝑦 + 𝑦𝑞(𝑛)
�̂� × 𝑥 − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂� (15)

∆𝑧𝑛 = (𝑥𝑝(𝑛)
�̂� − 𝑥𝑝(𝑛−1)

𝑛−1̂) × 𝑦 + (𝑦𝑞(𝑛)
�̂� − 𝑦𝑞(𝑛−1)

𝑛−1̂) × 𝑥 + 𝑜𝑝,𝑞
𝑛 (16)

where 𝑝(𝑛), 𝑞(𝑛) are the indexes to specify the subregions of x and

y in the nth level; 𝑜𝑝,𝑞
𝑛 is a constant that can be pre-calculated as

below for each sub-region:

𝑜𝑝,𝑞
𝑛 = 𝑥𝑝(𝑛−1)

𝑛−1̂ × 𝑦𝑞(𝑛−1)
𝑛−1̂ − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂� (17)

The formulations above still seem complex but can be further sim-

plified to more circuit-implementation-friendly format by noting

the characteristics when representing in binaries. As in Fig. 5, if we

denote nth bit of the input mantissa x as 𝑥[𝑛], we have the following:

𝑥𝑝(𝑛)
�̂� − 𝑥𝑝(𝑛−1)

𝑛−1̂ =
𝑥[𝑛]?(1):(−1)

2𝑛+1
(18)

The absolute difference between 𝑥𝑝(𝑛)
�̂� and 𝑥𝑝(𝑛−1)

𝑛−1̂ is always

1/2𝑛+1, while the sign is determined by 𝑥[𝑛]. In other words, Eq.

(18) can be easily implemented in circuit with 𝟏 (𝒏 + 𝟏)-bit

right shift operation and at most 1 inversion operation.

In summary, with the pre-calculated constants 𝑜𝑝,𝑞
𝑛 (that can be

stored in RAM or hard-coded in circuit) by Eq. (17), we can achieve

the following circuit-implementation-friendly models for the pro-

posed architecture:

∆𝑧𝑛 = {
1.5𝑥 + 1.5𝑦 − 2.25 𝑛 = 0

{𝑦[𝑛]?(1):(−1)}𝑥+{𝑥[𝑛]?(1):(−1)}𝑦

2𝑛+1
+ 𝑜𝑝,𝑞

𝑛 𝑛 > 0
 (19)

Apparently in eq. (19), when n>0, the model does not include any

multiplication. All the operations it has are: 2 inversion (at most),

1 n+1-bit shift, and 2 additions, which can be implemented with

much smaller circuit cost.

3.4 Optimization for Complexity Reduction

As described in the last sub-section, each sub-region has a constant

𝑜𝑝,𝑞
𝑛 . Since there are 4n sub-regions for level 𝑛, the circuit imple-

mentation cost to store/compute 𝑜𝑝,𝑞
𝑛 grows exponentially with 𝑛,

eventually impairing the multiplier efficiency. This is also a com-

mon challenge that most configurable multipliers have to confront

[26, 27, 30]. Thus, we further optimize the formulation in Eq. (19)

to significantly reduce the complexity in area.

With Eq. (18), we can rewrite Eq. (17) to the following:

𝑜𝑝,𝑞
𝑛 = 𝑥𝑝(𝑛−1)

𝑛−1̂ × 𝑦𝑞(𝑛−1)
𝑛−1̂ − 𝑥𝑝(𝑛)

�̂� × 𝑦𝑞(𝑛)
�̂�

= 𝑥𝑝(𝑛−1)
𝑛−1̂ × 𝑦𝑞(𝑛−1)

𝑛−1̂ − (𝑥𝑝(𝑛−1)
𝑛−1̂ +

𝑥[𝑛]?(1):(−1)

2𝑛+1) (20)

 × (𝑦𝑞(𝑛−1)
𝑛−1̂ +

𝑦[𝑛]?(1):(−1)

2𝑛+1)

This equation can be further simplified to the following, where ≫

denotes the shift operation:

𝑜𝑝,𝑞
𝑛 = −[(𝑥[𝑛]? (1): (−1)) × 𝑦𝑞(𝑛−1)

𝑛−1̂] ≫ (𝑛 + 1)

 −[(𝑦[𝑛]? (1): (−1)) × 𝑥𝑝(𝑛−1)
𝑛−1̂] ≫ (𝑛 + 1) (21)

 +[(𝑥[𝑛]^𝑦[𝑛])? (1): (−1)] ≫ (2𝑛 + 2)

where ^ denotes XOR operation.

Then, Eq. (19) for n>0 can be refined to the following:

∆𝑧𝑛 = {[(𝑥[𝑛]? (1): (−1)) × (𝑦 − 𝑦𝑞(𝑛−1)
𝑛−1̂)]

+ [(𝑦[𝑛]? (1): (−1)) × (𝑥 − 𝑥𝑝(𝑛−1)
𝑛−1̂)]} ≫ (𝑛 + 1) (22)

 +[(𝑥[𝑛]^𝑦[𝑛])? (1): (−1)] ≫ (2𝑛 + 2)

Note that 𝑥𝑝(𝑛−1)
𝑛−1̂ is the middle point of the interval that contains x.

The subtraction 𝑥 − 𝑥𝑝(𝑛−1)
𝑛−1̂ can be implemented with logic opera-

tions by turning the first n bits in x to 0 and bit flipping (if necessary)

for the rest of bits instead of arithmetic operations. Thus, with the

improved formulation shown in Eq. (22), the approximation com-

putation for an input pair involves 1 XOR, 1 shift, and 2 additions

as well as several inversion and logic operations. The area cost is

hence linear with the depth n for higher precisions instead of

exponential or quadratic dependence as in prior work.

Figure 6: Complexity comparison in LUT usage for ApproxLP [30], the

proposed multiplier implemented using Eq. (19), and the optimized

multiplier implemented using Eq. (22).

Fig. 6 compares the normalized LUT usages among ApproxLP [30],

the proposed multiplier implemented using Eq. (19), and the opti-

mized multiplier implemented using Eq. (22). Note that in [30],

ApproxLP only provides the fitted model coefficients for the first

three levels, which already shows nonlinear trend. The comparison

validates the linear complexity of the optimized multiplier w.r.t. the

approximation levels, i.e. depth n. Moreover, it is noted that for

smaller level of approximations, the implementation by Eq. (19)

incurs smaller area overhead by hard-coding the constants. Since

the modules of the proposed architecture at different levels does not

depend on each other, we can employ a hybrid implementation us-

ing both Eqs. (19) and (22) to further minimize the area.

3.5 Additional Features

In addition to the discussion above, there are a few additional fea-

tures that we can use to facilitate the implementation efficiency:

⚫ The computation for each level in the proposed multiplier is

completely independent. Thus, when the number of levels n

is determined, the modules at different levels can be simulta-

neously invoked and executed.

⚫ For each module, we can implement it by Eq. (19) or Eq. (22).

Most operations involved have a very efficient circuit imple-

mentation, such as inversion, shift and addition.

⚫ Unlike ApproxLP that needs complex arithmetic to determine

the sub-region, i.e., 𝑥 + 𝑦 ≥ 1, and has dependence on the

lower level modules, the proposal can separately evaluate the

sub-regions that x and y belong to, and execute modules at

different levels in parallel.

⚫ To determine which sub-region the input pair is located, the

proposed module at level 𝑛 only requires the first 𝑛 bits in-

stead of the complete number.

4 Error Analysis

In this section, we further discuss the error distribution for different

levels of approximations in the proposed multiplier. Again, here we

assume the mantissas of the two inputs x and y are uniformly dis-

tributed within [1, 2). We check all the possible pairs of x and y in

FP representations, and normalize the deviation w.r.t. the accurate

product, in order to fully investigate if the results are consistent

with our theoretical derivations.

Figure 7: 2-D error distribution for different approximation levels.

Fig. 7 shows the axonometric and top views of the error distribu-

tions for Level 0, 1, and 2 approximations. From Fig. 7, we can see

that, for each sub-region, the distribution is saddle shaped, with the

extreme values reached at the corners of each sub-region. In addi-

tion, the unbiasedness is achieved due to the symmetricity of the

error distribution. The maximum error quickly drops with a factor

close to 4 when using more levels of error compensation. We then

measure the performance of the proposed design for different error

measures, as shown in Fig. 8, which plots 1-D view for clarity. Two

error measures, mean square error (MSE) and maximum absolute

error (MAE) are used. Like Fig. 7, we can see that both measures

yield to similar error distribution but with different error reduction

rate w.r.t. the approximation level. In Fig. 9, we further compare

the envelope of the error distribution histograms for different levels

of approximation. It is clear that when configured to a deeper level

in the multiplier, i.e., with more error compensation, most calcula-

tions by the proposed design have almost zero errors. With the der-

ivations in the prior sections, we can easily compute the relation-

ship between the error measures and the number of levels used in

the proposed multiplier. For an arbitrary depth n, we can achieve

the following for MSE and MAE:

𝑀𝑆𝐸 =
1

9×16𝑛+1
, 𝑀𝐴𝐸 =

1

4𝑛+2
 (23)

This can be used as the error control mechanism to configure the

desired precision of the multiplier at runtime.

Figure 8: Error distribution for different error measures.

Figure 9: Envelopes of error distribution histogram for different leve

ls of approximation for the proposed multiplier.

5 Experimental Results

We developed both software and hardware implementations of the

proposed approximate multiplier for different evaluations. Similar

as [26, 27, 30], the software implementation can be deployed into

various applications by replacing the existing FP multiplier unit

with the proposed approximated multiplier. The hardware imple-

mentation is on FPGA and we use Xilinx Vivado to evaluate the

delay and energy. The experiments are organized as follows. We

first qualitatively compare the proposed multiplier with several

prior approximate multipliers. Then, we evaluate the performance

of hardware implementation of the proposed multiplier. Since

ApproxLP [30] was reported to have SOTA performance in almost

all the aspects when compared with the prior multipliers, in this

paper, we directly compare with ApproxLP [30] and use the same

setup for fairness. Finally, we evaluate the software performance in

terms of quality and energy efficiency for various edge applications

when using the proposed multiplier.

5.1 Qualitative Comparison to Prior Work

With the theoretically sound derivations and formulations in Sec. 3,

we can design an optimally approximated and unbiased FP multi-

plier with runtime configurability. Here, we qualitatively compare

the properties of the proposed multiplier with several prior approx-

imate multiplier works in terms of unbiasedness (denoted as bi-

ased), configurability (denoted as conf.), request of full precision

multiplier (denoted as ReqMul), and area complexity w.r.t. preci-

sion requirements (denoted as Complexity). Such comparison helps

us better understand the superiority of the proposed multiplier in

various aspects.

In Table 1, other than the first two multipliers [12, 28], the others

are for FP multiplications. Note that RMAC [26] and CFPU [27]

employ a hybrid solution to include both full precision multiplier

and approximate multiplier, which is very area consuming. Thus, it

is not fair to evaluate their area complexity for different precision

requirements. ApproxLP [30], as SOTA in prior work, cannot guar-

antee unbiasedness and demand significant area with growing pre-

cision requirements. Thus, through comparison, we find the pro-

posed multiplier can achieve good accuracy, unbiasedness, config-

urability, and low area complexity, which are the features highly

desired by edge IoT applications.

Table 1: Qualitative comparison of the proposed multiplier with sev-

eral prior approximate multipliers

Design Type Biased conf. ReqMul Complexity

Kulkarni [12] Integer Y N N 𝑂(𝑛2)

DRUM [28] Fixed Pt N N N 𝑂(𝑛2)

CFPU [27] FP N Y Y N/A

RMAC [26] FP Y Y Y N/A

ApproxLP [30] FP Y Y N 𝑂(4𝑛)

Proposed FP N Y N 𝑂(𝑛)

5.2 Quantitative Comparison to ApproxLP

Although both ApproxLP [30] and the proposed multiplier can em-

ploy multi-level approximations for configurability, there are some

intrinsic differences in the multi-level partitioning, modeling, and

implementation. Table 2 summarizes the number of sub-regions,

LUT usage, and maximum delay for different levels of approxima-

tion for the two multipliers. Note that, with the growing approxi-

mation levels, the multiplier is expected to have higher precision

and more sub-regions. For ApproxLP, the partitioning starts with 2

sub-regions (denoted as Level 1 in [30]), while the proposed design

starts with 1 sub-region (no partitioning, denoted as Level 0). Here,

for comparison purpose, ApproxLP [30] also starts with Level 0

(which is actually Level 1 in [30]). For ApproxLP, we report both

1 ApproxLP in [30] only reports the approximations up to 3 levels. Thus, 4th or high

level approximation data are not available.

its absolute number and relative change w.r.t. the proposed design

using the same level of approximations.

As in Table 2, while the number of sub-regions for the proposed

design grows faster than ApproxLP [30], its LUT usage is much

lower, up to 84% less LUT usage for Level 2 approximation. For

the maximum delay, due to the capability of parallel execution and

lower hardware cost, the critical path for the proposed design has

pretty much the same delay even with growing approximation lev-

els. In contrast, ApproxLP shows 43% higher delay for Level 2 ap-

proximation when compared to the proposed design.

Table 2: Comparison of sub-region count, LUT usage, maximum delay

between the proposed multiplier and ApproxLP [30].

Level
#sub-region #LUT Max delay (ns)

Prop. ApproxLP Prop. ApproxLP Prop. ApproxLP

0 1 2 57 50/-12% 7.9 9.2/16%

1 4 4 95 160/68% 8.3 9.2/11%

2 16 12 151 278/84% 8.3 11.9/43%

3 64 N/A1 195 N/A 8.3 N/A

Table 3: Accuracy comparison for different error measures between

the proposed multiplier and ApproxLP [30] for different approxima-

tion levels (Level 1 and 2).

Metrics
Level 1 approximation Level 2 approximation

ApproxLP Prop./Imp. ApproxLP Prop./Imp.

MSE 6.9e-4 4.3e-4/37% 4.3e-5 2.7e-5/37%

MAE 2.1e-2 1.6e-2/24% 5.2e-3 3.9e-3/25%

MSE(R) 1.7e-4 1.1e-4/35% 1.1e-5 6.9e-6/37%

MAE(R) 9.9e-3 7.6e-3/23% 2.5e-3 1.9e-3/24%

Figure 10: Error distribution comparison between the proposed multi-

plier and ApproxLP [30] for different approximation levels (0-2).

We further compare the accuracy of the proposed design w.r.t. Ap-

proxLP [30] for different error measures and different approxima-

tion levels in Table 3. In the table, we have four different error

measures, where MSE(R) and MAE(R) refer to the relative error

for MSE and MAE, respectively. Note that ApproxLP [30] and the

proposed design have different approximation schemes with differ-

ent sub-regions for the same level of approximation. According to

the same comparison principle in Table 2, for the same approxima-

tion level, the proposed design is able to achieve higher accuracy

for all the error measures, with 23-37% accuracy improvement. Fig.

10 shows the error distribution of the proposed design and Ap-

proxLP. The proposed design can achieve much tighter error distri-

bution with smaller standard deviation than ApproxLP, indicating

consistently more accurate approximation.

Table 4: Comparison of PSNR/accuracy loss, energy and EDP improvements for different OpenCL, image processing and machine learning tasks

using the proposed approximate multiplier with different levels of approximations (Level 0-2).

Application
PSNR(dB)/Accuracy Loss(%) Energy Improvement EDP Improvement

Level 0 Level 1 Level 2 Level 0 Level 1 Level 2 Level 0 Level 1 Level 2

Sobel 30.13 40.05 49.92 2.2× 2.2× 1.8× 3.5× 3.0× 2.4×

Kirsch 36.67 47.69 53.67 3.3× 2.6× 2.2× 5.2× 3.6× 2.9×

Robert 27.96 38.71 48.00 2.7× 2.0× 1.3× 4.2× 2.8× 1.8×

Prewitt 30.54 40.49 50.35 2.2× 2.2× 1.8× 3.5× 3.0× 2.4×

Gauss Blur 49.69 56.68 64.55 86.0× 54.7× 50.2× 136.3× 75.3× 66.1×

MNIST(MLP) 0.11% 0.02% 0% 62.6× 45.6× 41.8× 99.3× 62.7× 55.0×

MNIST(CNN) 0.02% 0% 0% 62.9× 50.3× 41.9× 99.7× 69.2× 55.2×

CIFAR-10 0.29% 0.01% 0% 121.9× 88.6× 81.3× 193.2× 122.0× 107.0×

5.3 Application Level Quality

We evaluate the efficiency of the proposed multiplier on several

OpenCL, image processing and machine learning applications.

MNIST(MLP) refers to the execution on a 5-layer MLP, while

MNIST(CNN) and CIFAR-10 refer to the execution on a pre-

trained AlexNet. Please note that in all the applications, more than

85% FP operations involve multiplications [27]. The embedded ap-

proximate multiplier can be configured to 3 levels of approximation

(Level 0 to 2). The comparison is conducted by replacing the accu-

rate FP multiplier in GPU with the proposed multiplier, as in [26,

27, 30]. The energy consumptions of the multipliers used in this

section are obtained from Vivado. OpenCL/image processing tasks

are evaluated with Peak Signal to Noise Ratio (PSNR), while ma-

chine learning tasks use accuracy loss as the accuracy measure.

Figure 11: Output quality for image processing tasks using accurate

and approximate multipliers with different approximate levels.

Table 4 reports the PSNR and accuracy loss for all the task. For

OpenCL/image processing tasks, output PSNR is closely related to

the distribution of the filter matrix. For example, Robert, Sobel and

Prewitt filters have many 1’s and 2’s, which are located close to the

corners of the subregions, while Kirsch filter has many 0’s, 3’s and

5’s, located in the center of the sub-region. This explains why

Kirsch has a higher PSNR than Robert or Sobel. Machine learning

tasks have a strong resilience to error with consistently small accu-

racy loss. From the table, even with Level 1 approximation, we can

achieve 38-57dB for all the OpenCL/image processing tasks and

almost negligible accuracy loss (0-0.02%) for machine learning

tasks. Fig. 11 presents an example of computation quality using So-

bel, Kirsch and Gauss Blur running on the proposed multiplier with

different approximation levels as well as the exact image (denoted

as ‘Accurate’ on the first column). It is clear, the visual differences

among the images are unnoticeable, while more approximation lev-

els help increase the PSNR.

5.4 Application Level Efficiency

Table 4 also compares the normalized energy and energy-delay-

product (EDP) improvements by the proposed multiplier in com-

parison to the case of using a full-precision FP multiplier. For tasks

like Sobel, Kirsch, Robert and Prewitt, at least one input to the mul-

tiplier is relatively simple or stays stable during task execution.

This simply implies there are fewer non-zero bits in an FP number,

resulting in fewer bit switching and energy consumption during the

task execution. Thus, for those tasks, EDP improvements by the

proposed multiplier are limited, with only 4.1×, 3.1× and 2.4× on

average for level 0, 1 and 2 approximations, respectively. For the

tasks like Gauss Blur and machine learning, they have more vary-

ing inputs and many non-zeros in the FP numbers. This signifi-

cantly increase the bit switching activity and hence the dynamic

power consumption, eventually resulting in huge benefits using the

proposed multiplier. In particular, for CIFAR-10, the average EDP

improvements for Level 0, 1 and 2 approximation can reach 193.2×,

122.0× and 107.0×, respectively.

6 Conclusions

In this work, an efficient runtime-configurable approximate multi-

plier is proposed. The multi-level architecture can easily incorpo-

rate the run-time configurability without incurring much area over-

head, but naturally reach optimal approximation and unbiased error

distribution. Our evaluation shows that the proposed design has

comprehensive advantages over prior multiplier designs and is able

to outperform SOTA design in terms of accuracy, area and delay.

The evaluations also demonstrate its significant energy efficiency

improvement over full-precision multipliers in GPU.

Acknowledgement

This work was supported in part by National Key R&D Program of

China (Grant No. 2018YFE0126300), the NSFC (Grant No.

61974133), and State Key Laboratory of ASIC & System (Grant

No. 2020KF008).

REFERENCES
[1] C. Ji, Y. Li, W. Qiu, U. Awada and K. Li, "Big Data Processing in Cloud Com-

puting Environments," International Symposium on Pervasive Systems, Algo-

rithms and Networks (ISPSAN), pp. 17-23, 2012.

[2] N. Khoshavi, X. Chen, J. Wang and R. F. DeMara, "Read-Tuned STT-RAM and

eDRAM Cache Hierarchies for Throughput and Energy Enhancement," arXiv

preprint arXiv:1607.08086, 2016.

[3] C. Zhuo, S. Luo, H. Gan, J. Hu and Z. Shi, "Noise-Aware DVFS for Efficient

Transitions on Battery-Powered IoT Devices," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), vol. 39, no. 7, pp.

1498-1510, 2020.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Inter-

net of Things: A Survey on Enabling Technologies, Protocols, and Applications,"

IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

[5] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni and J. Henkel, "Invited: Cross-

layer Approximate Computing: From Logic to Architectures," Design Automa-

tion Conference (DAC), pp. 1-6, 2016.

[6] M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar and T. Rosing, "RAP-

IDNN: In-Memory Deep Neural Network Acceleration Framework," arXiv pre-

print arXiv:1806.05794, 2018.

[7] M. Courbariaux, Y. Bengio and J. David, " Training Deep Neural Networks with

Low Precision Multiplications," arXiv preprint arXiv:1412.7024, 2014.

[8] A. Suhre, F. Keskin, T. Ersahin, R. Cetin-Atalay, R. Ansari and A. E. Cetin, "A

Multiplication-Free Framework for Signal Processing and Applications in Bio-

medical Image Analysis," International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 1123-1127, 2013.

[9] M. Imani, S. Patil and T. S. Rosing, "MASC: Ultra-Low Energy Multiple-Access

Single-Charge TCAM for Approximate Computing," Design, Automation & Test

in Europe Conference & Exhibition (DATE), pp. 373-378, 2016.

[10] K. He, A. Gerstlauer and M. Orshansky, "Circuit-Level Timing-Error Ac-

ceptance for Design of Energy-Efficient DCT/IDCT-Based Systems," IEEE

Transactions on Circuits and Systems for Video Technology (TCASVT), vol. 23,

no. 6, pp. 961-974, 2013.

[11] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram and Z. Navabi, "TruncApp:

A Truncation-Based Approximate Divider for Energy Efficient DSP Applica-

tions," Design, Automation & Test in Europe Conference & Exhibition (DATE),

pp. 1635-1638, 2017.

[12] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading Accuracy for Power with an

Underdesigned Multiplier Architecture," International Conference on VLSI De-

sign (ICVLSI), pp. 346-351, 2011.

[13] M. Imani, K. Yeseong and R. Tajana, "Acam: Approximate Computing Based on

Adaptive Associative Memory with Online Learning," International Symposium

on Low Power Electronics and Design (ISLPED), pp. 162-167, 2016.

[14] C. Zhuo, K. Unda, Y. Shi, and W. Shih, "From Layout to System: Early Stage

Power Delivery and Architecture Co-Exploration," IEEE Transactions on Com-

puter-Aided Design of Integrated Circuits and Systems (TCAD), vol. 38, issue 7,

pp. 1291-1304, 2019.

[15] J. Deng, Z. Shi, and C. Zhuo, “Energy Efficient Real-Time UAV Object Detec-

tion on Embedded Platforms,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), 10.1109/TCAD.2019.2957724, 2019.

[16] J. Han and M. Orshansky, "Approximate Computing: An Emerging Paradigm for

Energy-Efficient Design," European Test Symposium (ETS), pp. 1-6, 2013.

[17] M. Imani, A. Rahimi and T. S. Rosing, "Resistive Configurable Associative

Memory for Approximate Computing," Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 1327-1332, 2016.

[18] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan,

"Quality Programmable Vector Processors for Approximate Computing," Inter-

national Symposium on Microarchitecture (MICRO), pp. 1-12, 2013.

[19] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy, "IMPACT:

IMPrecise Adders for Low-Power Approximate Computing," International Sym-

posium on Low Power Electronics and Design (ISLPED), pp. 409-414, 2011.

[20] M. S. Razlighi, M. Imani, F. Koushanfar and T. Rosing, "LookNN: Neural Net-

work with No Multiplication," Design, Automation & Test in Europe Conference

& Exhibition (DATE), pp. 1775-1780, 2017.

[21] M. Imani, M. Masich, D. Peroni, P. Wang and T. Rosing, "CANNA: Neural Net-

work Acceleration Using Configurable Approximation on GPGPU," Asia and

South Pacific Design Automation Conference (ASPDAC), pp. 682-689, 2018.

[22] Jian Liang, R. Tessier and O. Mencer, "Floating Point Unit Generation and Eval-

uation for FPGAs," International Symposium on Field-Programmable Custom

Computing Machines (ISFPCCM), pp. 185-194, 2003.

[23] R. K. Yu and G. B. Zyner, "167 MHz Radix-4 Floating Point Multiplier," Inter-

national Symposium on Computer Arithmetic (ISCA), pp. 149-154, 1995.

[24] Gokul Govindu, L. Zhuo, S. Choi and V. Prasanna, "Analysis of High-Perfor-

mance Floating-Point Arithmetic on FPGAs," International Parallel and Distrib-

uted Processing Symposium (IPDPS), pp. 149-, 2004.

[25] V. Camus, J. Schlachter, C. Enz, M. Gautschi and F. K. Gurkaynak, "Approxi-

mate 32-Bit Floating-Point Unit Design with 53% Power-Area Product Reduc-

tion," European Solid-State Circuits Conference (ESSCIRC), pp. 465-468, 2016.

[26] M. Imani, R. Garcia, S. Gupta, and T. Rosing, "RMAC: Runtime Configurable

Floating Point Multiplier for Approximate Computing," International Sympo-

sium on Low Power Electronics and Design (ISLPED), no. 12, pp. 1–6, 2018.

[27] M. Imani, D. Peroni and T. Rosing, "CFPU: Configurable Floating Point Multi-

plier for Energy-Efficient Computing," Design Automation Conference (DAC),

pp. 1-6, 2017.

[28] S. Hashemi, R. I. Bahar and S. Reda, "DRUM: A Dynamic Range Unbiased Mul-

tiplier for Approximate Applications," International Conference on Computer-

Aided Design (ICCAD), pp. 418-425, 2015.

[29] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park and N. S. Kim, "Energy-

Efficient Approximate Multiplication for Digital Signal Processing and Classifi-

cation Applications," IEEE Transactions on Very Large Scale Integration (TVLSI)

Systems, vol. 23, no. 6, pp. 1180-1184, 2015.

[30] M. Imani et al., "ApproxLP: Approximate Multiplication with Linearization and

Iterative Error Control," Design Automation Conference (DAC), pp. 1-6, 2019.

[31] IEEE Standard for Floating-Point Arithmetic, IEEE standard 754-2008, pp. 1-70,

2008.

[32] C. Liu, J. Han and F. Lombardi, "A Low-Power, High-Performance Approxi-

mate Multiplier with Configurable Partial Error Recovery," Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 1-4, 2014.

[33] K. Bhardwaj, P. S. Mane and J. Henkel, "Power- and Area-Efficient Approximate

Wallace Tree Multiplier for Error-Resilient Systems," International Symposium

on Quality Electronic Design (ISQED), pp. 263-269, 2014.

[34] C. Lin and I. Lin, "High Accuracy Approximate Multiplier with Error Correc-

tion," International Conference on Computer Design (ICCD), pp. 33-38, 2013.

[35] S. E. Ahmed, S. Kadam and M. B. Srinivas, "An Iterative Logarithmic Multiplier

with Improved Precision," International Symposium on Computer Arithmetic

(ARITH), pp. 104-111, 2016.

