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Abstract—Previous energy-efficient neural network (NN) 
processors suffer from bit errors when operating at lower voltages 
for further power reduction. Stochastic computing (SC) shows 
great potential due to its low hardware cost and high fault 
tolerance. Conventionally, limited by the long latency of 
bitstreams, SC-based NN accelerators adopt a hybrid stochastic-
binary architecture, sacrificing fault tolerance and hardware 
efficiency. This paper proposes a fully SC architecture that 
maximizes fault tolerance while offering excellent energy and area 
efficiency. The fabricated 28nm prototype is the first silicon-
proven SC-based NN processor, realizing an energy efficiency of 
198.9 TOPS/W and an area efficiency of 2630 GOPS/mm2 with an 
accuracy loss reduction of 70%. 
 

Index Terms—stochastic computing (SC), thermometer-coding 
bitstream, low voltage, fault tolerance, bitonic sorting network. 

I. INTRODUCTION 
he development of neural networks (NN) leads to 
complex hardware implementations and higher 
computational requirements. However, the process 

fluctuation increases with the CMOS device shrinking, 
resulting in the increased circuit error rate, which hinders 
further supply voltage and circuit power reduction [1]. A few 
techniques have been proposed in binary architecture to 
alleviate this issue. For example, the Razor system is adopted 
to reduce timing error [2][3]. Recently, stochastic computing 
(SC) has been proposed as a fault-tolerant alternative that uses 
the probability of ‘1’s in a bitstream to represent a value [4], as 
shown in Fig. 1. In contrast to prior techniques, it mitigates the 
impact of bit error regardless of its causes. It is worth noting 
that the widely used serial SC multiplier is just an AND gate. 
Therefore, SC shows excellent potential for NN processors due 
to its low hardware cost of multiplier and good fault tolerance 
[5]-[8]. Those merits are especially attractive to low-precision 
quantization NNs that require simple hardware implementation 
and low fault rate, such as ternary neural networks (TNN). 
Recent research has greatly extended TNN’s capability [9], 
making SC-based TNN processors promising solutions for 
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emerging applications. However, the conventional SC-based 
accumulation and activation functions are inaccurate. To avoid 
accuracy degradation, the prior works adopt accumulator 
parallel counter (APC) or its approximation for addition [5][6] 
and finite state machines (FSMs) or linear approximation units 
for activation functions [7][8]. Those implementations require 
converting bitstream back into binary numbers to maintain the 
high accuracy of cascading operations in NNs, which increases 
the hardware cost and sacrifices the SC’s fault tolerance. 
Besides, the long bitstreams are processed serially, severely 
degrading computation speed. 

To address the issues above, this letter proposes a parallel 
fully SC-based TNN processor with three key contributions: 1) 
a parallel fully SC architecture that purely uses thermometer-
coding bitstream (TCB), eliminating the conversion between 
SC bitstream and binary numbers; 2) a deterministic SC ternary 
multiplier without the randomness error of traditional SC; 3) 
using a bitonic sorting network (BSN), instead of APC and 
FSMs in traditional SC, to implement accurate and energy-
efficient accumulator and activation functions. Combining 
these merits, the proposed SC-based TNN processor achieves 
198.9 TOPS/W energy efficiency and 2630 GOPS/mm2 area 
efficiency. Benefiting from the fault tolerance, the proposed SC 
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Fig. 1. The fault-tolerant stochastic computing coding. 
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Fig. 2. The architectures of (a) hybrid SC-binary design and (b) the proposed 
fully SC-based NN processor. 
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architecture reduces accuracy loss by ~70% compared to the 
binary architecture under the same bit error rate (BER). This 
makes operations under low supply voltages feasible. To the 
best of the authors' knowledge, it is the first silicon-proven SC-
based NN processor. 

II. PROPOSED ARCHITECTURE 
When operating under low supply voltages, NN processors 

suffer from bit errors, such as processing element (PE) 
calculation errors and SRAM read errors. As shown in Fig. 1, 
the SC bitstream has good fault tolerance for bit errors, while 
the binary number is vulnerable due to the weighted bits. 
However, the hybrid SC-binary NN processor needs to convert 
the bitstream back to binary numbers, as shown in Fig. 2(a). 
Thus, SRAM read errors and calculation errors still appear in 
weighted binary numbers, weakening the fault tolerance. To 
address such challenges, the proposed SC-based architecture, as 
shown in Fig. 2(b), uses TCB exclusively for multiplication, 
accumulation, activation functions, and storage. Fig. 3(a) shows 
the forms of TCB. It only needs two bits to accurately represent 
the ternary value in TNN, with the same coding efficiency as 
binary code. Therefore, the cost of storing TCBs in SRAM is 
the same as storing conventional binary complement numbers. 

Given the ternary TCB representation, we can obtain the 
implementation of each arithmetic unit in the PE. Fig. 3(b) is 
the truth table for the ideal ternary multiplication. Based on this, 
we derive a deterministic multiplier, requiring only five gates 
to realize multiplication in one cycle, as shown in Fig. 3(c). 

Then, we employ BSN to implement accurate accumulation 
and activation functions simultaneously. BSN is a parallel 

sorting network designed to sort all inputs so that the output is 
also in TCB form, i.e., all the ‘1’s before all the ‘0’s. The arrow 
in the BSN is a comparator consisting of an AND gate and an 
OR gate, divided into two types: ascending and descending 
units. The arrows recursively construct the BSN according to 
Batcher’s bitonic sorting algorithm [10]. In a 2N-bit BSN, as 
shown in Fig. 4(a), the two N-bit sub-BSNs first convert half of 
the input sequence into a monotonic sequence. The two 
monotonic sequences are joined at the end to form a bitonic 
sequence, which is then merged into the final 2N-bit TCB. Fig. 
4(a) illustrates an 8-bit BSN with four inputs: 0, 1, -1, and 1. 
The two sub-BSNs produce a bitonic sequence of (11100011), 
and the output is an 8-bit bipolar TCB (11111000) with a value 
of 1/4. Although the hardware cost of the BSN-based parallel 
accumulator grows with input data, it can be relieved by 
processing the accumulation in steps. 

The BSN does not change the number of ‘1’s overall input 
TCBs. However, by sorting all the bits, a single output bit of the 
sorting network directly represents the comparison of the 
accumulation result with a certain value. For example, as shown 
in Fig. 4(a), if the sixth bit Y[2] of the sorting result is 0, it means 
that the output is less than 1/2 (11111100), i.e., Y[2] = bool(x≥
1/2). Therefore, the selective interconnection system [11] can 
implement the desired activation function by setting the 
parameter R for different output bits. Here, we adopt a two-step 
function as the activation function for the ternary activation 
quantization, as shown in Fig. 4(b). In this case, the parameter 
R for the activation function in each convolutional layer is 
determined by the trained weights α. The R of the five on-chip 
layers in Fig. 6 are 3, 8, 8, 7, and 6, respectively. 

In addition to implementing arithmetic logic functions, SC-
based PEs are fault-tolerant. As the voltage decreases, PE 
calculation errors and SRAM read errors are more likely to 
occur, leading to the increased total BER. In this proposed SC 
architecture, the bit errors are primarily reflected as fluctuation in 
the number of ‘1’s in the TCB after BSN. It can also be regarded 
as a forward or backward shift of the transition point between ‘1’s 
and ‘0’s, as shown in Fig. 4(c). If the shift of the transition point 
does not pass through the selected bit, the effect of the bit errors is 
eliminated. Only a large number of bit errors moving the transition 
point past both selected bits can cause an error of +2 or -2. This 
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Fig. 5. (a) Overall architecture of the SC-based TNN processor; (b) The 
schematic and working mode of PEs. 
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Fig. 4. (a) The BSN-based SC accumulation; (b) SC activation function based
on the selective interconnect system; (c) The fault tolerance of PE. 
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demonstrates the fault tolerance of PE. 
The proposed PE uses deterministic multipliers, BSN, and 

the selective interconnect system to implement multiply-
accumulate (MAC) and activation functions. The whole process 
is performed in parallel and completely adopts the SC 
bitstreams without conversion to binary numbers, which fully 
exploits the high fault tolerance of SC. Moreover, the PEs are 
completely accurate without any random fluctuations. 

Fig. 5(a) presents the top-level architecture, consisting of PE 
array, weight single-port SRAM (SPSRAM), input/output dual-
port SRAM (DPSRAM), FIFO, PLL, controller, and max-
pooling unit. Bitstreams and all control signals are transmitted 
through 176 I/O PADs. Fig. 5(b) shows that each ternary PE 
consists of 256 SC multipliers and a 512-bit BSN. Considering 
that the size of BSN is a power of 2, extra energy will be wasted 
if the kernel and BSN do not match. For example, for a 3x3 
kernel with 28 channels, the input is an unsorted 504-bit 
bitstream that can be sorted only after complementing with 8-
bit 0’s, degrading energy efficiency. Therefore, we use a 
convolutional kernel of even-size (2x2) with 64 channels in 
each layer to take full advantage of the 512-bit BSN. Each time, 
one PE reads an input vector and four weight vectors, where 
each vector comprises 64 ternary data, i.e., a 128-bit bitstream. 
Then the multipliers multiply four weight data and one input 
data on 64 channels. After obtaining the 256 ternary products, 
the 512-bit BSN performs accumulation and activation function 
operations to output a 2-bit ternary TCB. The results of 64 PEs, 
also a 128-bit bitstream, are then stored in DPSRAM arrays as 
the input data of the next layer. In this case, we realized this 
fully SC-based end-to-end TNN. 

The TNN structure is modified from LeNet-5 [12], as shown 
in Fig. 6. All convolutional and pooling layers are implemented 
on-chip. All network parameters and image data are pre-stored 
in on-chip SRAM, and the 128 bits in SRAM correspond to the 
ternary data in 64 channels. 

As shown in Fig. 7(a), we leverage the weight stationary data 
flow, which is universally applicable and widely used for 
network models [13]. The weight stationary dataflow is 
designed to minimize the weight access energy. The weight is 
read into the weight FIFO from SRAM at once and stays 
stationary for future access. The input/output FIFO fetches the 
data of all channels of one location in the DPSRAM every clock 
cycle. First, the input data of the first four cycles are sent to the 

PE. And the corresponding convolution is performed. Here, for 
each of the 2x2 activations on the 64 channels, the PE takes one 
cycle to process. Since the following image data overlaps with 
the previously processed data at two locations, it only needs to 
wait for two clock cycles to send the following data, as shown 
in Fig. 7(b). All data reading logics are implemented through 
the control module, which only needs parameters to configure 
the input image size to calculate each step automatically. 

III. MEASUREMENT RESULTS 
The SC-based NN processor prototype is fabricated in a 

28nm CMOS process. It can operate at low voltages thanks to 
fault tolerance. It is measured with the operating frequency 
varying from 25MHz to 200MHz and the supply voltage 
varying from 0.575V to 0.8V. The chip's measured current 
consumption and energy efficiency are shown in Fig. 8. Across 
all frequencies, the lower the supply voltage, the higher the 
energy efficiency. The peak energy efficiency is 198.9 
TOPS/W at 200MHz and 650mV. 

To measure the accuracy, the TNN mentioned in Fig. 6 is 
loaded, and the software classification accuracy of the MNIST 
dataset is 98.28%. Note that both binary complement number and 
TCB use a 2-bit ternary representation. We simulated a binary 
design and compared it with the proposed SC design on the loss of 
classification accuracy under the same BER. Low supply voltages 
cause the increased BER. As shown in Fig. 9(a), when the accuracy 
of binary design is dropped to 85.34%, the accuracy of SC design 
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Fig. 7. (a) The weight stationary dataflow; (b) Convolution kernel calculation. 
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is 94.96%. On average, the proposed design reduces accuracy 
loss by 70% compared to its binary counterpart. It firmly 
demonstrates the excellent fault tolerance of the proposed fully SC-
based NN processor. 

The proposed PEs have no random fluctuations as in 
conventional SC designs. Thus, the measured classification 
accuracy is 98.28% at the rated voltage of 0.8V, which is consistent 
with the software classification accuracy. Across four operating 
frequencies, we measured the accuracy loss of this prototype when 
reducing supply voltage with different R, as shown in Fig. 9(b). 
The proposed processor can work properly at low voltages. The 
accuracy loss and the minimum support voltage are lower with a 
higher R. The results show that the SC-based NN processor is fault-
tolerant for bit errors caused by decreased voltages. This test also 
illustrates that the fault tolerance increases as R increases. In this 
test, R is manually altered to reveal its relationship with the fault 
tolerance capability. In practice, R does not change during 
inference. This prototype demonstrates robust near-threshold 
computing with less than 1% accuracy loss at 0.575V and 25MHz, 
less than 100mV above the transistor Vth in this process. This 
makes near-threshold operation feasible. 

Fig. 10(a) shows the micrograph of the prototype fabricated in 
the 28nm CMOS process. It occupies an active area of 4.5mm2. 
Since this prototype is the first silicon-proven SC-based NN 
processor, we compare it to the state-of-the-art (SOTA) binary-
based NN processors [14]-[18], as shown in Table I. The fabricated 
SC-based NN processor achieves 198.9 TOPS/W energy 

efficiency at 200MHz and 0.65V, an average of 10.75x (1.16x-to-
17.30x) improvement over SOTA processors. After normalization 
of the process and bit precision, the improvement is 6.65x (1.02x-
to-14.93x). The measured area efficiency considering on-chip 
SRAM is 2630 GOPS/mm², with an average of 4.20x (2.09x-to-
6.76x) improvement over SOTA processors, or an average of 
3.70x (1.60x-to-6.76x) improvement (normalized). 

IV. CONCLUSION 
This letter introduces a parallel, fully SC-based NN processor 

that achieves 198.9 TOPS/W energy efficiency and 2630 
GOPS/mm2 area efficiency. The fabricated 28nm processor is 
the first SC-based silicon prototype. All on-chip operations in 
this design adopt fault-tolerant TCBs, maximizing the fault 
tolerance of SC and demonstrating robust near-threshold 
computing. It realizes SOTA performance and shows the great 
potential for low-cost Internet of Things (IoT) NN processors. 
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TABLE I 
COMPARISON WITH SOTA BINARY-BASED NN PROCESSORS 

ISSCC'18[12] ISSCC'19[13] ISSCC'20[14] JSSC'21[15] ISSCC'21[16] This Work

Process 65nm 8nm 7nm 28nm 28nm 28nm

Architecture Binary Binary Binary Binary Binary SC

Bit Precision 1-16 1-12 8 2-8 8 2

Die Area(mm²) 16 5.5 3.04 5.64 #1.9 4.5

On-chip 
SRAM(KB) 256 1568 2176 416 206 98

Voltage(V) 0.63-1.1 0.5-0.8 0.575-0.825 0.75-1.1 0.6-0.9 0.575-0.8

Frequency
(MHz) 200 67-933 290-880 120-268 100-470 25-200

Power(mW) 3.2-297 39-1553 174-1053 6.75-36 19.4-131.6 4.6-59.8

+Energy 
Efficiency
(TOPS/W)

11.6(4b)
50.69(1b) 11.5(8b) 13.32 (8b) 32.9(8b) 172(2b) 12.1(8b) 198.9(2b)

+Area
Efficiency

(GOPS/mm²)

86(4b)
460(1b)

347(8b)
*1261(8b) 1186(8b) 389(2b)

24.3(8b)
#745.1(8b) 2630(2b)

+ 1 OP = 1 addition or 1 multiplication * 75% weight zeros
# Area excluding SRAM array  

(a) (b)

Technology 
(nm) 28

Size (mm2) 2.00x2.25

SRAM (KB) 98

Voltage (V) 0.575-0.8

Frequency 
(MHz) 25-200

Speed (GOPS) 10084@200MHz

Power (mW)
59.8@200MHz, 0.8V

4.6@25MHz, 0.575V

Data Width (bit) 2

Energy 
Efficiency 
(TOPS/W)

198.9
@200MHz, 0.65V

(0.907uJ/Prediction)

Area efficiency
(GOPS/mm²)

2630
@200MHz, 0.65V

 
Fig. 10. (a) The micrograph; (b) The technical specifications. 
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