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Abstract—Stochastic computation is a non-conventional computation
paradigm, which uses digital circuits to operate on stochastic bit streams.
Although it has advantages such as strong fault tolerance and low
hardware cost, its drawback is its long computation time. In this work, we
target at stochastic computation used in binary classification applications,
such as image segmentation and pattern classification, and propose a
novel accelerating module. We study how the design parameters affect
the error rate and computation time. We further propose how to find
the optimal design parameters. A case study on an image segmentation
algorithm shows the effectiveness of our proposed solution.

Index Terms—stochastic computation, acceleration, error rate

I. INTRODUCTION

As CMOS devices scale into the nanometer regime, they become

more and more susceptible to process, voltage, and thermal varia-

tions [3]. Furthermore, soft error can result in transient malfunction

of circuits [14]. Circuit designers are now faced with the challenge

of how to design reliable circuits from unreliable devices.

Stochastic computation, a method to perform computation using

digital circuits that operate on stochastic bit streams, is highly tolerant

of bit flip errors and hence, offers a solution to the reliability

problem [9]. In stochastic computation, conventional digital circuits

are still used to process digital signals. However, the way to encode

a value through zeros and ones is different from conventional binary

radix encoding. Here, a real value x in the unit interval is represented

by a stream of random bits X1, X2, . . . , Xl ∈ {0, 1}, with each Xi

having probability x of being a one and probability (1−x) of being

a zero, i.e., P (Xi = 1) = x and P (Xi = 0) = 1− x. For example,

both the streams A and B in Fig. 1 represent the value 4/8.

Stochastic computation has strong tolerance to bit-flip errors,

because a bit flip occurring anywhere in a stream only slightly

changes the value encoded by the stream. In contrast, for the binary

radix encoding, bit flips occurring at the most significant bits can

cause a large error in the value. With stochastic encoding, many

complex arithmetic operations, such as multiplication, division, and

square root operation, can be implemented with very simple digital

circuits [4], [7], [12]. For example, Fig. 1 shows that a single AND

gate can perform multiplication: the probability of obtaining a one

in the output stream equals the product of probabilities of obtaining

ones in the two input streams. In contrast, conventional multiplier

operating on binary radix needs a very complex logic design [10].

Due to its low hardware cost, stochastic computation has been used

in some hardware-demanding applications, such as real-time image

processing [1], low-density parity-check decoding [11], and artificial

neural networks [5].

The major drawback of stochastic computation lies in its ineffi-

ciency in encoding: to encode a value with a precision of 1
2n

, a

bit stream of length 2n is required. Traditionally, the value encoded

by a stochastic bit stream is obtained by counting the total number

of ones in the entire bit stream; this leads to a long computation
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Fig. 1: An AND gate performs multiplication on values encoded by
stochastic bit streams.

time. However, in some binary classification applications, such as

image segmentation [8] and pattern classification [2], what we are

interested in is whether the final result is larger than a threshold. If

we apply stochastic computation to realize these applications, then

we do not need to find the exact probability of a one in a stochastic bit

stream; we only need to know whether that probability is larger than

a threshold x or not. In this case, we actually do not need to examine

the entire sequence to reach a conclusion; sometimes, examining a

partial segment is enough. For example, suppose that we want to

determine whether the value encoded by a stochastic bit stream is

larger than the threshold 0.5. If we find that the first 10 bits of the

stream contain 9 ones, then it is highly likely that the probability of

a one in the entire stream is larger than 0.5. Then, we can reach a

conclusion in a much shorter time than the traditional approach of

counting the entire sequence.

In this work, we apply the above idea and propose a novel module

to accelerate the stochastic computation used in binary classification

applications. It divides a stochastic bit stream into a number of

segments of the same length and checks each segment one by one to

infer whether the probability of a one in the entire stream is above

or below 0.5. Although the basic idea is simple, the challenging

part is how to choose the design parameters including the segment

length and the threshold value. These two parameters will affect the

error rate and the computation time of the whole system. We give a

rigorous mathematical analysis of how the design parameters affect

the error rate and the computation time. It turns out that there is a

trade-off between the error rate and the computation time. We further

formulate an optimization problem and propose a way to find the

optimal design parameters.

The proposed accelerating module is applied to a stochastic imple-

mentation of a kernel density estimation-based image segmentation

algorithm [9]. Experimental results showed that compared with the

original system proposed in [9], the system with the accelerating

module achieves 4.86× speedup with area overhead less than 1.01%
and error rate less than 0.4%.



II. THE ACCELERATING MODULE

In this section, we show the accelerating module. It consists of a

pre-processing block, which transforms the comparison threshold to

the value 0.5, and a main block, which accelerates the comparison

of a probability against the threshold 0.5.

A. Threshold Conversion Block

The accelerating module has a pre-processing part that converts

the threshold to be compared against from an arbitrary value x to

the value 0.5. The circuit is shown in Fig. 2. Its logic function is

C = (S ∧A)∨ (S ∧B), where ∧ and ∨ represent logical AND and

OR, respectively.
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Fig. 2: A circuit for threshold conversion in stochastic computation.

If A, B, C, and S are stochastic bit streams and PA, PB , PC ,

and PS are their corresponding probabilities of ones, we have PC =
PS · PA + (1− PS) · (1− PB).

If we want to compare against the threshold x, then we let S be

a stochastic bit stream with probability 0.5 to have a one and B be

a stochastic stream with probability x to have a one. Then we have

PC = 0.5 · (PA + 1− x) = 0.5 + 0.5 · (PA − x).

Based on the above equation, we can see that in order to check

whether the probability of a one in A is larger than a threshold x, we

only need to check whether the probability of a one in C is larger

than 0.5.

B. Main Block of the Accelerating Module

The main block of the accelerating module checks whether the

probability of a one in the entire stream is above or below 0.5.

It splits the entire stochastic bit stream into d non-overlapping and

consecutive segments of length n, where d = � l
n
�. It checks these d

segments one by one. To increase the confidence, a threshold m > n
2

is chosen. If in one segment, the number of ones (zeros) is at least m,

then the module will infer that the probability of a one in the entire

bit stream is above (below) 0.5 and the whole stochastic computing

system will stop. If the module cannot make any inference from the

current segment, it will check the next segment. If the module has

examined all the d segments but fails to make any inference, it will

derive the result based on the ratio of ones in the entire bit stream.

In order to further reduce the computation time, we apply an early

termination strategy. In checking each segment, the module does not

have to check all the n bits to make an inference. If the module finds

that the number of ones (zeros) has reached m, it can immediately

stop and infer that the probability of a one in the entire bit stream is

above (below) 0.5.

C. Error Rate

In this section, we analyze the error rate of a stochastic computing

system that uses the accelerating module. Assume the length of the

entire stochastic bit stream is l and the stream is X1, X2, . . . , Xl.

Furthermore, assume that the sequence is a Bernoulli sequence,

i.e., Xi’s are independent and identical Bernoulli random variables.

Assume P (Xi = 1) = p, for all i = 1, . . . , l.

We focus on the error due to a wrong inference from any segment.

First, we consider the case where the true probability p > 0.5. The

module makes a wrong inference, i.e., p < 0.5, based on one of the

segments if and only if there are at least m zeros in that segment,

which is equivalent to the situation that there are at most n−m ones

in the segment. Therefore, the probability that a wrong inference is

made based on a segment is

pe =

n−m∑
i=0

(
n

i

)
pi(1− p)n−i. (1)

The module fails to make any inference from a segment if and

only if the number of ones in the segment is between n−m+1 and

m− 1. Its probability is

pf =

m−1∑
i=n−m+1

(
n

i

)
pi(1− p)n−i. (2)

Now we consider the event that the wrong inference is made from

the i-th segment (1 ≤ i ≤ d). In this case, the module fails to

make any inference from the previous i−1 segments. Therefore, the

probability that the wrong inference is made from the i-th segment

is pep
i−1
f . Given this, the probability that the module makes a wrong

inference from any segment is

pe ·
d−1∑
i=0

pif . (3)

It can be shown that when 0.5 ≤ p ≤ 1, Eq. (3) decreases with p.

Therefore, it attains maximum when p = 0.5. Substituting p = 0.5
into Eq. (3) and simplifying it, we can obtain the maximum as

emax =
1− (

1− 0.5n−1 ∑n−m
i=0

(
n
i

))d
2

. (4)

We can similarly obtain the probability that the module makes a

wrong inference from any segment when the true probability p < 0.5.

It turns out that when 0 ≤ p ≤ 0.5, that probability attains maximum

when p = 0.5 and the maximum is of the same form as Eq. (4). Thus,

for any 0 ≤ p ≤ 1, the maximal error rate is given by Eq. (4), which

is determined by the segment length n and the threshold m.

D. Computation Time

In this section, we analyze the computation time of a system that

uses the accelerating module. The computation time is proportional

to the number of bits T checked. Thus, we take T as a measure

of the computation time. Since T is a random variable, we will

analyze the mean computation time E[T ]. In order to obtain E[T ],
we will first obtain E[T |p], the mean computation time given that

the probability of a one in the stream is p. For this purpose, we first

analyze the probability distribution of the random variable T under

the assumption that the probability of a one in the stream is p.

Based on the behavior of the module, it is not hard to see that the

possible values of T are of the form (i − 1)n + j (1 ≤ i ≤ d and

m ≤ j ≤ n) or l.
First consider the event that T = (i− 1)n+ j, for any 1 ≤ i ≤ d

and m ≤ j ≤ n. This event means that the module stops computation

at the j-th bit in the i-th segment. It occurs if and only if both of the

following two events occur:

Event 1: The module fails to make any inference from the previous

i− 1 segments.

Event 2: There are at least m ones or zeros in the i-th segment

and the earliest time that the number of ones or zeros in the i-th
segment reaches m is the j-th bit of the i-th segment.



The probability that Event 1 occurs is pi−1
f . Now we consider when

Event 2 happens. It happens either 1) X(i−1)n+j = 1 and there are

exactly (m− 1) ones in the first (j − 1) bits of the i-th segment, or

2) X(i−1)n+j = 0 and there are exactly (m − 1) zeros in the first

(j−1) bits of the i-th segment. Therefore, the probability that Event

2 occurs (denoted as Pseg(j)) is

Pseg(j) = p ·
(

j − 1

m− 1

)
pm−1(1− p)j−m

+ (1− p) ·
(

j − 1

m− 1

)
(1− p)m−1pj−m

=

(
j − 1

m− 1

)[
pm(1− p)j−m + (1− p)mpj−m

]
.

Since all the bits in the stochastic bit stream are independent, we

have the probability P (T = (i− 1)n+ j) = pi−1
f Pseg(j).

Now consider the event that T = l. It occurs only when the module

cannot infer from any of the d segments. Then, it has to check the

entire bit stream to obtain a result. The probability is P (T = l) = pdf .

Therefore, the conditional mean computation time of the system is

E[T |p] = lpdf +
d∑

i=1

n∑
j=m

((i− 1)n+ j)pi−1
f Pseg(j).

Simplifying the above equation, we finally obtain

E[T |p] = (npf +A+B)
1− pdf
1− pf

+ (l − nd)pdf , (5)

where

A =
m

p
· PB(X ≤ n−m|n+ 1, 1− p),

B =
m

1− p
· PB(X ≤ n−m|n+ 1, p),

and PB(X ≤ k|n, p) denotes the CDF of the binomial distribution.

Given E[T |p] and the probability density function of the proba-

bility p, f(p), we can obtain the mean computation time E[T ] as

E[T ] = E[E[T |p]] =
∫ 1

0

E[T |p]f(p)dp. (6)

E. Parameter Selection

Two important design parameters of the accelerating module are

the segment length n and the threshold m. Given n and the length l
of the entire bit stream, the number of segments d can be determined

as d =
⌊

l
n

⌋
. Thus, d is not treated as a design parameter.

According to Eq. (4) and (5), both n and m affect the error rate and

the mean computation time. A design goal of the proposed module is

to minimize the mean computation time while making the error rate

as low as possible. However, there is a trade-off between the error

rate and the mean computation time: decreasing one increases the

other. In order to find the optimal parameters n and m, we formulate

an optimization problem, which takes the maximal error rate, given

by Eq. (4), as a constraint and minimizes the mean computation time,

given by Eq. (6):

Given the length of the entire stochastic bit stream, l, and a limit

on the error rate, ε, find parameters n and m (n
2
< m ≤ n ≤ l)

that minimize the mean computation time E[T ], while satisfying

the constraint that the maximum error rate emax ≤ ε. Here E[T ]
and emax are given by Eq. (6) and (4), respectively.

To solve the above optimization problem, we first consider when n
is fixed, which m will minimize E[T ] while satisfying that emax ≤ ε.
It is not hard to see that when n is fixed, emax given by Eq. (4)

decreases with m for n
2
< m ≤ n. Therefore, given the constraint

emax ≤ ε, there exists a minimal m that satisfies the constraint. On

the other hand, we can prove the following theorem (due to the space

limit, we omit the proof):

Theorem 1
When n is fixed, E[T ] given by Eq. (6) increases with m for n

2
<

m ≤ n. �

Thus, for a fixed n, the m that minimizes E[T ] is the minimal m
that satisfies the constraint emax ≤ ε, which we can obtain easily. In

order to find the minimal E[T ] over all valid combinations of m and

n, we iterate over all 1 ≤ n ≤ l to obtain l minima E[T ]’s, each

corresponding to a fixed n. The global minimum is the smallest one

among these l minima.

III. EXPERIMENTAL RESULTS

In this section, we show the experiment results on the proposed ac-

celerating module. We first show the performance of the accelerating

module. Then, as a case study, we apply the module to a stochastic

implementation of an image segmentation application and show its

real performance.

A. The Speedup with the Accelerating Module

We first studied how the speedup ratios due to the proposed module

change with different bit stream lengths l. Without the module, we

need to count all the l bits to obtain the result. However, with the

module, we can reduce the mean computation time to the minimal

value E[T ]∗ using the optimal n and m. The speedup ratio is

calculated as l/E[T ]∗. We considered different bit stream lengths

l = 128, 256, 512, . . . , 8192. We assumed that the error rate limit is

ε = 0.01. Furthermore, we assumed that f(p) in Eq. (6) is a uniform

distribution in [0, 1]. The minimal mean computation time E[T ]∗ and

the speedup ratio due to the accelerating module for different l’s are

shown in Table I. From the table, we can see that the speedup ratio

increases with l.

TABLE I: The minimal mean computation time E[T ]∗ and the speedup
ratio due to the proposed accelerating module for different bit stream
lengths l.

l 128 256 512 1024 2048 4096 8192
E[T ]∗ 67.4 108.9 173.8 273.3 429.8 673.2 1053

Speedup 1.90 2.35 2.95 3.75 4.76 6.08 7.78

B. Case Study: Accelerating an Stochastic Implementation of an
Image Segmentation Application

In this section, we take the stochastic implementation of the kernel

density estimation (KDE)-based image segmentation algorithm as an

example to demonstrate the effectiveness of the proposed module in

accelerating the computation. KDE-based image segmentation applies

statistical modeling to separate the foreground and background of

an image [6]. It computes a probability density function P (x) of

the pixel’s intensity x based on the previous samples. The pixel is

considered to be a foreground pixel if P (x) is smaller than a threshold

z; otherwise, the pixel is considered to be a background pixel.

Li et al. proposed a stochastic implementation of the KDE-based

image segmentation algorithm [9]. Compared with the conventional



implementation using binary radix encoding, the stochastic imple-

mentation only takes a very small circuit area. However, the stochastic

implementation requires a long computation time.

In this experiment, we applied the proposed module to accelerate

the stochastic implementation of the KDE-based image segmentation

algorithm. We refer to the stochastic implementation proposed in [9]

as the basic system. The accelerating module takes the output

stochastic bit stream of the basic system, which encodes the value

P (x), as input. Once the module has determined whether P (x) is

larger or smaller than the threshold z, it resets the basic system so

that the next pixel will be processed. We used Xilinx ISE Design

Suite [13] for hardware prototyping.

Same as [9], we used a stochastic bit stream of 1024 bits to

represent each value in the stochastic computation. We chose the

limit on the error rate as ε = 0.01. Without knowing the distribution

of the P (x)’s for all the pixels in the image, we assumed that they

are uniformly distributed. The optimal parameters n and m were

obtained by solving the optimization problem. They are n = 104
and m = 68.

We tested the performance of the stochastic implementation with

the accelerating module using a video sequence. The experimental

results showed that the average number of bits that are checked

to process a pixel in the image is 210.5. Since the basic system

needs to check 1024 bits, the speedup ratio is 4.86. If we use

the image segmentation result generated by the conventional KDE-

based algorithm as the golden standard, then there are only 0.347%

pixels that are different. Therefore, using the proposed module, the

computation time is dramatically decreased, while the error rate is

very low.

To visually demonstrate the quality of the result generated by the

accelerated stochastic implementations, we show the output images

generated by the conventional KDE-based algorithm and by the

stochastic implementation with the accelerating module in Fig. 3 (b)

and (c), respectively. We can see that the image generated by the

accelerated stochastic implementation is close to the image generated

by the conventional algorithm.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: Output images generated by the different implementations: (a)
original image; (b) image by the conventional algorithm; (c) image by the
accelerated stochastic implementation; (d) image determined by the first
50 bits. (e) image determined by the first 150 bits. (f) image determined
by the first 250 bits. (g) image determined by the first 350 bits.

To further demonstrate the effectiveness of the proposed technique,

we compared the stochastic implementation that uses the accelerating

module to a simple acceleration strategy, which determines the result

just based on the first k bits of the entire input bit stream. We

applied the simple strategy to the same video sequence as we used

above. Table II lists the speedup ratios and the error rates for

k = 50, 150, 250, 350. In comparison, we also list the speedup ratio

and the error rate of the stochastic implementation that uses the

proposed module. From the table, we can see that the implementation

using the proposed module has the lowest error rate. Furthermore,

both the speedup ratio and the error rate of the implementation

using the proposed module are better than those using the simple

strategy for k = 250 and 350. Fig. 3 (c)–(g) further compare

the output images of the implementation that uses the proposed

module to those generated by the simple acceleration strategy for

k = 50, 150, 250, 350. From those figures, we can see that due to

our sophisticated accelerating approach, the output image is much

clearer than those generated by the simple acceleration strategy.

TABLE II: Performance comparison between the stochastic implemen-
tation using the proposed module and those using a simple acceleration
strategy that determines the result based on the first k bits of the entire
bit stream.

k = 50 k = 150 k = 250 k = 350 proposed
Speedup ratio 20.48 6.83 4.10 2.93 4.86
Error rate (%) 3.85 1.52 0.71 0.50 0.347

Finally, we studied the area overhead of the proposed module. We

synthesized the design using Xilinx ISE Design Suite and obtained

the resource usage from the synthesis report. Table III lists the

resource usages of the basic system from [9] and the stochastic

implementation with the proposed accelerating module. The table

also lists the percentage of overhead, which is caused by including

the accelerating module. From the table, we can see that the additional

resource usage caused by the proposed module is negligible.

TABLE III: The hardware resource usage comparison.

Usage of basic Usage of accelerated Overhead (%)
stoch. impl. stoch. impl.

# Slices 6581 6631 0.76
# Slice Flip Flops 5640 5686 0.82

# LUTs 12230 12354 1.01

IV. CONCLUSION

In this work, we proposed a novel module to accelerate stochastic

computation for binary classification applications. We analyzed the

error rate and computation time of stochastic computing system that

uses the proposed accelerating module. We also proposed how to

find the best design parameters. We applied the proposed modules

to accelerate the stochastic implementation of the KDE-based image

segmentation algorithm. The experimental results showed that the ac-

celerating module can help reduce the computation time dramatically

with only a negligible area overhead and error rate.
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