
Case Studies of Logical Computation
on Stochastic Bit Streams

Peng Li1, Weikang Qian2, David J. Lilja1, Kia Bazargan1, and Marc D. Riedel1

1 Electrical and Computer Engineering, University of Minnesota, MN, USA, 55455,
{lipeng, lilja, kia, mriedel}@umn.edu,

2 University of Michigan-Shanghai Jiao Tong University Joint Institute, China, 200241,
qianwk@sjtu.edu.cn.

Abstract. Most digital systems operate on a positional representation of data,
such as binary radix. An alternative is to operate on random bit streams where the
signal value is encoded by the probability of obtaining a one versus a zero. This
representation is much less compact than binary radix. However, complex opera-
tions can be performed with very simple logic. Furthermore, since the represen-
tation is uniform, with all bits weighted equally, it is highly tolerant of soft errors
(i.e., bit flips). Both combinational and sequential constructs have been proposed
for operating on stochastic bit streams. Prior work has shown that combinational
logic can implement multiplication and scaled addition effectively; linear finite-
state machines (FSMs) can implement complex functions such as exponentiation
and tanh effectively. Building on these prior results, this paper presents case stud-
ies of useful circuit constructs implement with the paradigm of logical computa-
tion on stochastic bit streams. Specifically, it describes finite state machine im-
plementations of functions such as edge detection and median filter-based noise
reduction.

1 Introduction

In a paradigm advocated by Gaines [1], logical computation is performed on stochastic
bit streams: each real-valued number x (0 ≤ x ≤ 1) is represented by a sequence of
random bits, each of which has probability x of being one and probability 1−x of being
zero. Compared to a binary radix representation, a stochastic representation is not very
compact. However, it leads to remarkably simple hardware for complex functions; also
it provides very high tolerance to soft errors.

There are two possible coding formats: a unipolar format and a bipolar format [1].
These two coding formats are the same in essence, and can coexist in a single system.
In the unipolar coding format, a real number x in the unit interval (i.e., 0 ≤ x ≤ 1)
corresponds to a bit stream X(t) of length L, where t = 1, 2, ..., L. The probability that
each bit in the stream is one is P (X = 1) = x. For example, the value x = 0.3 could be
represented by a random stream of bits such as 0100010100, where 30% of the bits are
“1” and the remainder are “0.” In the bipolar coding format, the range of a real number
x is extended to−1 ≤ x ≤ 1. However, the probability that each bit in the stream is one
is P (X = 1) = x+1

2 . The trade-off between these two coding formats is that the bipolar
format can deal with negative numbers directly while, given the same bit stream length,

II

L, the precision of the unipolar format is twice that of the bipolar format. (Unless stated
otherwise, our examples will use the unipolar format.)

The synthesis strategy is to cast logical computations as arithmetic operations in
the probabilistic domain and implement these directly as stochastic operations on data-
paths. Two simple arithmetic operations – multiplication and scaled addition – are il-
lustrated in Figure 1.

���

��
��

�
�����������

�����������

�����������

�	

�	

�	

��

��

��

�

�

�

�

��� ���

�	

�����������

�����������

�	

�����������

�	

�����������

�	

Fig. 1. Stochastic implementation of arithmetic operations: (a) Multiplication; (b) Scaled addi-
tion.

– Multiplication. Consider a two-input AND gate, shown in Figure 1(a). Suppose
that its inputs are two independent bit streams X1 and X2. Its output is a bit stream
Y , where

y = P (Y = 1) = P (X1 = 1 and X2 = 1)

= P (X1 = 1)P (X2 = 1) = x1x2.

Thus, the AND gate computes the product of the two input probability values.

– Scaled Addition. Consider a two-input multiplexer, shown in Figure 1(b). Sup-
pose that its inputs are two independent stochastic bit streams X1 and X2 and its
selecting input is a stochastic bit stream S. Its output is a bit stream Y , where

y = P (Y = 1)

= P (S = 1)P (X1 = 1) + P (S = 0)P (X2 = 1)

= sx1 + (1− s)x2.

(Note that throughout the paper, multiplication and addition represent arithmetic
operations, not Boolean AND and OR.) Thus, the multiplexer computes the scaled
addition of the two input probability values.

In the decades since Gaines’ original work, there have been numerous papers dis-
cussing the paradigm. Most notable has been the work by Brown and Card [2]. They
demonstrated efficient constructs for a wide variety of basic functions, including mul-
tiplication, squaring, addition, subtraction, and division. Further, they provided elegant
constructs for complex functions such as tanh, linear gain, and exponentiation.3 They

3 Such functions were of interest to the artificial neural networks community. The tanh func-
tion, in particular, performs a non-linear, sigmoidal mapping; this is used to model activation
function of a neuron.

III

used combinational logic to implement simple functions such as multiplication and
scaled addition; the used sequential logic in the form of linear finite-state machines
(FSMs) to implement complex functions such as tanh.

More recently, Qian et al. presented a general synthesis method for logical compu-
tation on stochastic bit streams [3][4][5]. They showed that combinational logic can be
synthesized to implement arbitrary polynomial functions, provided that such polynomi-
als map the unit interval onto the unit interval. Their method is based on novel math-
ematics for manipulating polynomials in a form called Bernstein polynomials. In [4]
Qian et al. showed how to convert a general power-form polynomial into a Bernstein
polynomial with coefficients in the unit interval. In [3] they showed how to realize such
a polynomial with a form of “generalized multiplexing.” In [5], they demonstrated a re-
configurable architecture for computation on stochastic bit streams. They analyzed cost
as well as the sources of error: approximation, quantization, and random fluctuations;
also they studied the effectiveness of the architecture on a collection of benchmarks for
image processing. Li and Lilja demonstrated a stochastic implementation of a kernel
density estimation-based image segmentation algorithm [6].

After an introduction to the concepts and a review of implementations of functions
such as tanh and exponentiation, this paper presents case studies of useful circuit con-
structs implemented with the paradigm of logical computation on stochastic bit streams.
Specifically, it describe finite state machine implementations of functions for image pro-
cessing such as edge detection and median filter-based noise reduction.

1.1 Stochastic Exponentiation Function

When operating on stochastic bit streams, combinational logic can only implement
polynomial functions of a specific form – namely those that map the unit interval to
the unit interval [4]. Non-polynomial functions can be approximated by combinational
logic, for instance with MacLaurin expansions [3]. However, highly non-linear func-
tions such as exponentiation and tanh cannot be approximated effectively with this
approach. This limitation stems from the fact combinational logic can only implement
scaled addition in the stochastic paradigm. The implementation of polynomials with co-
efficients not in the unit interval is sometimes not possible and is generally not straight-
forward [5].

Gaines [1] described the use of an ADaptive DIgital Element (ADDIE) for gen-
eration of arbitrary functions. The ADDIE is based on a saturating counter, that is, a
counter which will not increment beyond its maximum state value or decrement be-
low its minimum state value. In the ADDIE, the state of the counter is controlled in a
closed loop fashion. The problem is that ADDIE requires that the output of the counter
to be converted into a stochastic bit stream in order to implement the closed loop feed-
back [1]. This is potentially inefficient and hardware intensive.

In 2001, Brown and Card [2] presented the stochastic exponentiation (SExp) func-
tion, with the state transition diagram shown in Figure 2. This configuration approxi-
mates an exponentiation function stochastically as follows,

y ≈

{
e−2Gx, 0 ≤ x ≤ 1,
1, −1 ≤ x < 0,

(1)

IV

S0 SN-G-1 SN-G SN-1

……
……
……

X

X’

X’ X

X’

X

X’

X

X’

X

S1

X

X’

SN-2
X’

X……
……
……

X

X’

Y=0Y=1

Fig. 2. State transition diagram of the FSM-based stochastic exponentiation function.

where x is the bipolar encoding of the input bit stream X and y is the unipolar encoding
of the output bit stream Y .

The FSM shown in Figure 2 is similar to Gaines’ ADDIE. The difference is that this
linear FSM does not use a closed loop [1][2]; accordingly this construct is much more
efficient.

1.2 Scaled Subtraction

The scaled subtraction can be implemented with a MUX and a NOT gate, as shown in
Fig. 3.

MUX

1

0

0,1,0,0,1,0,0,0
A

B

a:-4/8

1,0,1,1,0,1,0,0

b:0

S
1,1,0,0,0,1,1,0

s:4/8

C
0,1,0,0,1,0,0,1

c:-2/8

Fig. 3. Scaled subtraction with the bipolar coding. Here the inputs are a = −4/8 and b = 0. The
scaling factor is s = 4/8. The output is 4/8× (−4/8) + (1− 4/8)× 0 = −2/8, as expected.

The scaled subtraction only works for bipolar coding, since subtraction can result
negative output value and the unipolar coding format cannot represent negative values.
Similar to the case of scaled addition with the bipolar coding, the stochastic bit streams
A, B, and C use the bipolar coding format and the stochastic bit stream S uses the
unipolar coding format, i.e.,

a = 2P (A = 1)− 1,

b = 2P (B = 1)− 1,

s = P (S = 1),

c = 2P (C = 1)− 1.

V

Based on the logic function of the circuit, we have

P (C = 1) = P (S = 1) · P (A = 1)

+ P (S = 0) · P (B = 0),

i.e.,
c+ 1

2
= s · a+ 1

2
+ (1− s) · 1− b

2
.

Thus, we have c = s ·a− (1− s) · b. It can be seen that, with the bipolar coding format,
the computation performed by a MUX and a NOT gate is the scaled subtraction of the
two input values a and b, with a scaling factor of s for a and 1− s for b.

1.3 Stochastic Tanh Function

S0 SN/2-1 SN/2 SN-1

……
……
……

X

X’

X’ X

X’

X

X’

X

X’

X

S1

X

X’

SN-2
X’

X……
……
……

X

X’

Y=1Y=0

Fig. 4. State transition diagram of the FSM implementing the stochastic tanh function.

The stochastic tanh function is also developed by Brown and Card [2]. The state
transition diagram of the FSM implementing this function is shown in Fig. 4. If x and y
are the bipolar coding of the bit streams X and Y , respectively, i.e., x = 2PX − 1 and
y = 2PY − 1, Brown and Card proposed that the relationship between x and y was,

y =
e

N
2 x − e−

N
2 x

e
N
2 x + e−

N
2 x

. (2)

The corresponding proof can be found in [7]. In addition, Li and Lilja [7] proposed
to use this function to implement a stochastic comparator. Indeed, the stochastic tanh
function approximates a threshold function as follows if N approaches infinity,

lim
N→∞

PY =

0, 0 ≤ PX < 0.5,
0.5, PX = 0.5,
1, 0.5 < PX ≤ 1.

The stochastic comparator is built based on the stochastic tanh function and the
scaled subtraction as shown in Fig. 5. PS = 0.5 in the selection bit S of the MUX
stands for a stochastic bit stream in which half of its bits are ones. Note that the input
of the stochastic tanh function is the output of the scaled subtraction. Based on this
relationship, the function of the circuit shown in Fig. 5 is:

VI

Stochastic
tanh function

tanh

A

MUX

S (Ps=0.5)

B

1

0

YX

Fig. 5. The stochastic comparator.

if (PA < PB) then PY ≈ 0; else PY ≈ 1,

where PA, PB , and PY are the probabilities of ones in the stochastic bit streams A, B,
and Y .

1.4 Stochastic Absolute Value Function

S0 SN/2-1 SN-1

X

X’

X’ X

X’

X

X’

X

X’

X
X

X’
X’

X
X

X’
Y=1

SN/2

Y=1

S1 SN-2

Y=0 Y=0 Y=0 Y=0

……
……
……

……
……
……

S2

X

X’

Y=1

X

X’

SN-3

Y=1

Fig. 6. State transition diagram of the FSM implementing the stochastic absolute value function.

Li and Lilja [7] also developed a stochastic absolute value function. The state tran-
sition diagram is shown in Fig. 6. The output Y of this state machine is only deter-
mined by the current state Si (0 ≤ i ≤ N − 1). If 0 ≤ i < N/2 and i is even, or
N/2 ≤ i ≤ N − 1 and i is odd, Y = 1; else Y = 0. The approximate function is,

y = |x|, (3)

where x and y are the bipolar coding of PX and PY . The proof of this function can be
found in Li and Lilja [7].

2 Case Studies

In this section, we demonstrate circuit constructs for common image processing tasks
as case studies illustrating our method: image edge detection and median filter-based
noise reduction [8].

VII

2.1 Edge Detection

Classical methods of edge detection involve convolving the image with an operator (a
2-D filter), which is constructed to be sensitive to large gradients in the image while
returning values of zero in uniform regions [8]. There are an extremely large number
of edge detection operators available, each designed to be sensitive to certain types of
edges. Most of these operators can be efficiently implemented by the SCEs introduced
in this paper. Here we consider only Robert’s cross operator as shown in Fig. 7 as an
example [8].

-1

+1 0

0

0 +1

-1 0

GX GY

Fig. 7. Robert’s cross operator for edge detection.

This operator consists of a pair of 2×2 convolution kernels. One kernel is simply the
other rotated by 90◦. An approximate magnitude is computed using: G = |GX |+ |GY |,
i.e.,

si,j =
1

2
(|ri,j − ri+1,j+1|+ |ri,j+1 − ri+1,j |),

where ri,j is the pixel value at location (i, j) of the original image and si,j is the pixel
value at location (i, j) of the processed image. Note that the coefficient 1

2 is used to
scale si,j to [0, 255], which is the range of the grayscale pixel value.

MUX
100.5

MUX
100.5

MUX

Pri, j+1

1 0 0.5

Pri+1, jPri+1, j+1Pri, j

Psi, j

|X| |X|

Fig. 8. The stochastic implementation of the Robert’s cross operator based edge detection.

VIII

The stochastic implementation of this algorithm is shown in Fig. 8. Pri,j is the
probability of ones in the stochastic bit stream which is converted from ri,j , i.e., Pri,j =
ri,j
256 . So are Pri+1,j , Pri,j+1 , and Pri+1,j+1 . Suppose that under the bipolar encoding, the
values represented by the stochastic bit streams Pri,j , Pri+1,j , Pri,j+1 , Pri+1,j+1 , and
Psi,j are ari,j , ari+1,j

, ari,j+1
, ari+1,j+1

, and asi,j , respectively. Then, based on the
circuit, we have

asi,j =
1

4
(|ari,j − ari+1,j+1

|+ |ari,j+1
− ari+1,j

|).

Because asi,j = 2Psi,j −1 and ari,j = 2Pri,j −1 (ari+1,j
, ari,j+1

, ari+1,j+1
are defined

in the same way), we have

Psi,j =
1

4

(∣∣Pri,j − Pri+1,j+1

∣∣+ ∣∣Pri,j+1 − Pri+1,j

∣∣)+ 1

2

=
si,j
512

+
1

2
.

Thus, by counting the number of ones in the output bit stream, we can convert it back
to si,j .

2.2 Noise Reduction Based on The Median Filter

The median filter replaces each pixel with the median of neighboring pixels. It is quite
popular because, for certain types of random noise (such as salt-and-pepper noise), it
provides excellent noise-reduction capabilities, with considerably less blurring than the
linear smoothing filters of the similar size [8]. A hardware implementation of a 3 × 3
median filter based on a sorting network is shown in Fig. 9. Its basic unit is used to sort
two inputs in ascending order. It can be implemented by a comparator in a conventional
deterministic implementation.

Input 1

Output

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Input 8

Input 9

Fig. 9. Hardware implementation of the 3× 3 median filter based on a sorting network.

IX

tanh

PA

MUX

0.5

PB

MUX1
0 1

min(PA, PB)
1

0 MUX2
1 0

max(PA, PB)

PS

Fig. 10. The stochastic implementation of the basic sorting unit.

The stochastic implementation of this basic unit can be implemented by the stochas-
tic comparator introduced in Section 1.3 with a few modifications. The circuit shown in
Fig. 10 has the following functions:

– if PA > PB , PS ≈ 1, the probability of ones in the output of “MUX1” is PB ,
which is the minimum of (PA, PB), and the probability of ones in the output
of “MUX2” is PA, which is the maximum of (PA, PB);

– if PA < PB , PS ≈ 0, the probability of ones in the output of “MUX1” is PA,
which is the minimum of (PA, PB), and the probability of ones in the output
of “MUX2” is PB , which is the maximum of (PA, PB);

– if PA = PB , PS ≈ 0.5, both the probabilities of ones in the outputs of MUX1
and MUX2 should be very close to PA+PB

2 = PA = PB .

Based on this circuit, we can implement the sorting network shown in Fig. 9 stochas-
tically.

3 Discussions and Conclusions

The stochastic paradigm offers a novel view of digital computation: instead of trans-
forming definite inputs into definite outputs, circuits transform probability values into
probability values; so, conceptually, real-valued probabilities are both the inputs and the
outputs. The computation has a pseudo analog character, reminiscent of computations
performed by physical systems such as electronics on continuously variable signals
such as voltage. Here the variable signal is the probability of obtaining a one versus a
zero in a stochastic yet digital bit stream. The circuits can be built from ordinary digital
electronics such as CMOS. And yet they computed complex, continuous-valued trans-
fer functions. Prior work has shown constructs for a variety of interesting functions.
Most intriguing among these are the complex functions produced by linear finite-state
machines: exponentiation, tanh, and absolute value.

Because a stochastic representation is uniform, with all bits weighted equally, it is
highly tolerant of soft errors (i.e., bit flips). Computation on stochastic bit streams of-
fers tunable precision: as the length of the stochastic bit stream increases, the precision

X

of the value represented by it also increases. Thus, without hardware redesign, one has
the flexibility to trade off precision and computation time. In contrast, with a conven-
tional binary-radix implementation, when a higher precision is required, the underlying
hardware must be redesigned.

A significant drawback of the paradigm is the long latency of the computations. The
accuracy depends on the length of the bit streams; with long bit streams, each operation
requires many clock cycles to complete. However, potentially the operations could be
performed at a much faster clock rate, mitigating the latency issue.

The accuracy of the computation also depends on the quality of the randomness.
If the stochastic bit streams are not statistically independent, the accuracy will drop.
Furthermore, correlation is an issue in any circuit that has feedback or reconvergent
paths. If the circuit has multiple outputs, these will have correlated probability values.
In future work, we will study how to design circuits with multiple outputs – and so
correlations in space. Also, we will study the impact of feedback – and so correlations
in time.

Also, in future work we will study the dynamic behavior of stochastic constructs.
We have observed that, using bit streams of length L to represent the inputs values, the
output values of FSM-based stochastic constructs are always correct and stable after L
clock cycles, no matter what the initial state. We will justify this claim mathematically.
Finally, we will study a variety of FSM topologies, including 2D and 3D meshes, tori,
and circulant graphs.

Acknowledgment

This work was supported in part by an NSF CAREER Award, No. 0845650.

References

1. Gaines, B.R.: Stochastic computing systems. Advances in Information System Science,
Plenum 2(2) (1969) 37–172

2. Brown, B.D., Card, H.C.: Stochastic neural computation I: Computational elements. IEEE
Transactions on Computers 50(9) (September 2001) 891–905

3. Qian, W., Riedel, M.: The synthesis of robust polynomial arithmetic with stochastic logic. In:
45th ACM/IEEE Design Automation Conference, DAC’08. (2008) 648–653

4. Qian, W., Riedel, M.D., Rosenberg, I.: Uniform approximation and Bernstein polynomials
with coefficients in the unit interval. European Journal of Combinatorics 32 (2011) 448–463

5. Qian, W., Li, X., Riedel, M., Bazargan, K., Lilja, D.: An architecture for fault-tolerant compu-
tation with stochastic logic. IEEE Transactions on Computers 60(1) (January 2010) 93–105

6. Li, P., Lilja, D.J.: A low power fault-tolerance architecture for the kernel density estimation
based image segmentation algorithm. In: IEEE International Conference on Application -
specific Systems, Architectures and Processors, ASAP’11. (2011)

7. Li, P., Lilja, D.J.: Using stochastic computing to implement digital image processing algo-
rithms. In: 29th IEEE International Conference on Computer Design, ICCD’11. (2011)

8. Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edition. Prentice Hall (2008)

	Case Studies of Logical Computation on Stochastic Bit Streams

