
Tier-code: An XOR-based RAID-6 Code with
Improved Write and Degraded-mode Read

Performance

Bingzhe Li†, Meng Yang∗, Soheil Mohajer†, Weikang Qian∗, David J. Lilja†
†Department of Electrical and Computer Engineering, University of Minnesota, U.S.A.

∗University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, China
Email: †{lixx1743, soheil, lilja}@umn.edu, ∗{yangm.meng, qianwk}@sjtu.edu.cn

Abstract—The RAID-6 configuration is more tolerant of disk
failures than other RAID levels because of its ability to tolerate
two disk failures. However, previous RAID-6 codes suffer from
two major overheads - the time of encoding or decoding processes
plus the need to access multiple blocks when updating parities or
recovering failed blocks. For example, the PS and Reed-Solomon
codes do not have optimal computation complexity, while P-code,
X-code and RDP-code must access multiple blocks to update
parities during write operations. This work proposes a new XOR-
based RAID-6 code, called Tier-code, which not only achieves
the optimal parity computation complexity, but also increases
the write and degraded-mode read performance compared to
previous codes. It uses two tiers of coding, one at the block level
and the other at the chunk level. Experimental results of software
testing, simulation and ASIC synthesis for this new hierarchical
code demonstrate that Tier-code can outperform the previous
RAID-6 codes in both write performance and degraded-mode
read performance while maintaining the optimal computation
complexity in both hardware and software implementations.

I. INTRODUCTION

The new storage systems often have to deal with multiple
disk failures. With steadily increasing the storage capacity
of disks [1][2], disk failures have remained a significant
concern [3]. Therefore, as demand for storage continues to
grow, large storage systems often have to deal with multiple
simultaneous disk failures. In order to tolerate failures, people
use the Redundant Array of Independent Disks [4] (RAID)
configuration to build fast and reliable disk systems. However,
by evaluating the degrade-mode RAID systems [5][6], the
performance of those RAID system are degraded significantly
and thus the performance of those RAID systems becomes a
critical issue with increasing the requirement of the high-speed
systems.

Previously, the most popular RAID-6 uses the Reed-
Solomon code [7]. However, it encounters very high overhead
from the parity computation. Later, an new code called Cauchy
Reed-Solomon (CRS) [8] improved the parity computation by
converting multiplication to XOR operations. However, there
still has been significant opportunity to reach the optimal com-
putation complexity that has the minimum number of XORs
for parity updates. Regarding the reduction of the overhead
from the parity computation, several previous codes achieve

the optimal computation complexity including X-code [9], P-
code [10], B-code [11], EVENODD code [12], and RDP-
code [13]. All of these codes use the minimum number of
XORs in their encoding processes. However, those codes need
to update more parities to achieve the optimal computation
complexity because they use scattered layouts.

In addition, a degraded mode read operation can be re-
garded as the inverse operation of a write operation, whose
performance is related to the decoding complexity and the
number of read operations for recovering failed data blocks.
Similar to the write operation, none of the previous codes
can keep both the optimal decoding computation complexity
and the minimum number of extra reads. Therefore, there
is an opportunity to improve the write and degraded mode
read performance while maintaining the optimal computation
complexity and the minimum number of operations.

In this paper, we propose a new XOR-based RAID-6 code
called Tier-code, which has optimal computation complexity
and the minimum number of operations compared to the
previous codes. The main characteristic of this code is to
use two tiers of labeling, block-level labeling and chunk-level
labeling, to compute parities. By using tier-labeling, the code
produces better write performance and degraded mode read
performance than previous codes while still maintaining fault-
free read performance [9][10][14][13][15][16][17]. To evaluate
the write and degraded mode read performance, we compare
those codes from two aspects, parity computation complexity
and I/O performance. Real system testing and VLSI imple-
mentation are employed to indicate the parity computation
complexity. The DiskSim simulator is used to demonstrate the
I/O performance of systems implemented with different codes.

This paper is organized as follows: Section II discusses
the background and related work. Section III introduces Tier-
code’s construction and reconstruction algorithms. The write
and degraded mode read performance analysis is discussed in
Section IV. Section V presents the experimental methodology
and results. Finally, the conclusion is presented in Section VI.

II. BACKGROUND AND RELATED WORK

A. Terms and Notations

To give a better understanding of the whole paper, we first
summarize the terms and notations that will be used frequently
throughout this paper.978-1-5386-8367-5/18/$31.00 ©2018 IEEE

• Update Complexity [18] is the number of parity
blocks that need to be accessed when one data block
is updated.

• Computational Complexity [18] corresponds to the
operations that calculate the parities in a RAID sys-
tems. If a RAID code uses minimum number of
XORs to compute parities, it is regarded as having
the optimal computational complexity. Compared to
XOR operations, the multiplication in the Galois field
(GF) is much more expensive.

• Storage Efficiency is the ratio between the total useful
data size and the raw size. In RAID-6 systems, the
optimal storage efficiency is (M-2)/M, where M is the
number of disks.

• Multi-block Access Complexity [15] indicates the
average number of parity updates and read operations
when a request accesses multiple data blocks.

• Degraded Mode Read. A RAID system enters de-
graded mode when a failure occurs in one or more
disks. If one request wants to read data blocks includ-
ing failed blocks, the system not only needs to read
non-failed data blocks, but also needs to reconstruct
the failed data blocks by reading other uncorrupted
data and parity blocks. Thus, the system can provide
the host with the requested data blocks correctly
even with failed disks. However, the performance of
degraded mode reads may be much lower than the
performance of normal read operations due to the time
required to access the additional blocks and compute
the desired block.

• Degraded Read Complexity is defined in terms of the
average number of extra read operations for recovering
the failed data blocks in the RAID system during
degraded mode.

• Data Block Labeling and Parity Block Labeling.
The labeling shows the dependency of parity and data
blocks. Parity is computed from those data blocks
that share the same label as the parity’s label. As
seen in Figure 1, the two parity blocks labeled “1”
are computed from the four data blocks labeled “1”.
Block-level labeling and chunk-level labeling are
two-tier labellings. Each block consists of several
chunks.

• A Stripe is a set of data and parity blocks that have
the same label value.

• Read-modify-write [19]. If a write request does not
cover a whole stripe array, RAID systems cannot
simply write the small portion of data to disks. The
systems first must read old data blocks in this stripe,
then obtain new data from the host, and then compute
new parities using those data. After computing the
parities, it can write the new data to target locations
and update the new parities.

B. Background and Related Work

Erasure coding is a popular technique which has been
used in many fields such as network and storage systems.
Recently, new erasure codes are designed for storage systems
to tolerate up to two disk failures. However, those erasure
codes designed for RAID-6 storage systems suffered parity
write and degraded read overhead. Some of RAID-6 codes

are introduced in the following:

Reed-Solomon code [7] is a popular erasure coding
technique using Galois Field arithmetic (GF (2w)) (where w
is the number of columns for the encoding matrix) during
coding and decoding. However, the computation overhead of
Galois Field arithmetic is very expensive.
PS-code [15] is a vertical code that attains optimal multi-block
access complexity based on its labeling algorithm. It improves
write performance when the write operations access multiple
contiguous blocks. However, even though it uses the Cauchy
Reed-Solomon code to compute its parities, PS-code still
suffers low performance on the parity computation.
RDP-code [13] is constructed using prime + 1 columns
and prime − 1 rows, which is similar to EVENODD code
in terms of using the diagonal data blocks to calculate the
second parities. The difference lies in the RDP-code’s ability
to obtain the optimal computational complexity because it
directly XORs all diagonal data blocks instead of introducing
an extra intermediate parameter as used in EVENODD code.
X-code [9] has the p∗p structure, where p is a prime number.
Data blocks are stored in the first p− 2 rows and parities are
stored at last two rows. It uses two diagonals with slope 1
and -1 to compute the first and second row parity. X-code has
the optimal update complexity and computational complexity.
P-code [10] is constructed with a (p− 1)/2 ∗ (p− 1) matrix.
The parity blocks are located at the first row and the data
blocks are located at the remaining (p − 3)/2 rows. A pair
of tuple values (m,n) and integer i are assigned to each
data block and parity, respectively. By following the labeling
rules in P-code, it can achieve the optimal computational
complexity and update complexity.
HV-code [16] is a type of hybrid vertical and horizontal code
that has optimal computational and update complexity. By
using the horizontal chain to compute first parties and the
diagonal chain to compute second parties, it improves I/O
balancing and optimizes the operation of partial stripe writes
to contiguous data elements.

The above codes share a common problem: they are not
able to achieve optimal computation complexity, low multi-
block access complexity, and low degraded read complexity at
the same time. As shown in the following, our new Tier-code
achieves all of these goals.

III. TIER-CODE

A. Tier-code Description

In RAID-6 systems, for each data block write,
at least two parity block updates have to take
place [9][10][20][12][18][16][21]. For such case, the
update complexity [18] indicates the number of parities when
one data block is updated. Additionally, in real systems,
multiple blocks are updated together for each write I/O
request. This scenario is investigated by the multi-block
access complexity [15], which demonstrates one request
that requires multiple block writes. Therefore, two above
complexities can reflect the overhead for write requests in
RAID systems.

Tier-code is a RAID-6 code constructed using M = p+ 1
disks, where p is prime number. The main purpose of Tier-
code is to improve write and degraded mode read performance.

To achieve the best update complexity and multi-block access
complexity, Tier-code uses the contiguous block-level labeling
layout. Moreover, a revised code labeling algorithm is applied
into Tier-code’s chunk-level labeling so that Tier-code has
the optimal computation complexity by using the minimum
number of XORs to compute the parities. The chunk-level
labeling may use the codes such as RDP-code, P-code and
other and then most of the array codes, especially for the
strong systematic ones, will have similar performance. In this
paper, we use revised RDP-code as an example for chunk-level
labeling. Compared to XORs, some previous works like RS-
code using multiplication over GF to compute parities faces
significant overhead on the parity computation time. Therefore,
by using the two-tiered labeling algorithms, Tier-code can
achieve better write and degraded mode read performance. In
addition, the storage efficiency of Tier-code is the same as
other codes, which is (M − 2)/M . The labeling and encoding
algorithms are described in the following paragraphs.

Tier-code’s encoding algorithm can be divided into three
primary steps – block-level labeling, chunk-level labeling and
construction. Each block consists of (M−2) chunks. Figure 1
and Figure 2 give two examples of block-level labeling and
chunk-level labeling.

1) Block-level Labeling: In the block-level labeling, we
assume that the block matrix has the size of M∗M/2 including
both data blocks and parity blocks as seen in Figure 1. i
(0 < i ≤ M/2) and j (0 < j ≤ M) are the row number
and the disk number, respectively. Dij is the value of the data
block located at the ith row and the jth disk, and Cij is its
corresponding data block’s label value. First, we assign integer
labels to each data block where the label Cij can be obtained
from Eq. 1.

Cij = b
i ∗M + j − 3

M − 2
c (1)

To compute the parity in the block level, the parity row is
labeled using Eq. 2. Pj is the parity’s label value (0 < Pj ≤
M/2), j (0 < j ≤M) is the disk number (or column index).

Pj = b
M − j + 2

2
c (2)

As shown in Figure 1, with an example using M = 6 disks,
label values of the data and parity blocks are distributed across
all disks, which are computed from Eq. 2.

Fig. 1. An example of the Tier-code with number of disks M=6. The labels
of the parity row are calculated in Eq. 2. As an illustration, the two parity
blocks P5 and P6 labeled “1” are computed from four data blocks labeled
“1”.

Fig. 2. An example of Tier-code with the number of disks M = 6. Suppose
the blocks ‘A’, ‘B’, ‘C’, ‘D’, ‘P’ and ‘Q’ are from the same stripe with the
label value ‘1’. The first four blocks are data blocks. The blocks ‘P’ and ‘Q’
are parities. The labeling tuples are assigned to the blocks. The first element
of the tuple is used for the parity block ‘P’ computation. The second element
of the tuple is used for the parity block ‘Q’ computation. The other block-level
stripes need to follow the same process of the tuple labeling to compute the
parity values.

2) Chunk-level labeling: After the block-level labeling,
each block-level stripe needs to be addressed by the chunk-
level labeling. First, we focus on one block-level stripe because
all block-level stripes share the same chunk-level labeling
algorithm.

The chunk-level labeling has two steps. The first step of
the chunk-level labeling is to split each block of the selected
block-level stripe into (M − 2) chunks. Then, the second step
is to assign a label tuple to the (M − 2) chunks. The labeling
algorithm is shown in Eq. 3.

Tij = (i, j%(M − 1) + i)) (3)

where, Tij is the labeling tuple of the ith chunk of the jth

block and M is the number of disks. The first element of Tij

is the labeling for computing parity P (i, j ≥ 0). The second
element is the labeling for computing parity Q.

Figure 2 shows a tuple labeling example with M = 6. The
blocks from the same block-level stripe with the label value
‘1’ in Figure 1 are split into smaller size of chunks and then
they are given chunk-level tuple labels. Finally, the rest of the
block-level stripes in one matrix need to be labeled using the
chunk-level labeling by following the above steps.

3) Construction: After the chunk labeling process, the
algorithm starts to compute parities. For the parity block P,
each chunk of the parity P is computed by XORing all the

data chunks whose first values of the tuple are equal to the
first element of the parity P’s chunk (We call the stripe as
P stripe). After computing the parity Ps of all chunks, the
parity P computation is done for this chunk-level stripe. The
parity Q that are computed from second elements of tuples
follows a similar process (We call the stripe as Q stripe). Two
computation examples for the parities P and Q are given in
Eq. 4 and Eq. 5 based on the layout shown in Figure 2.

P1 = A1 ⊕B1 ⊕ C1 ⊕D1

P2 = A2 ⊕B2 ⊕ C2 ⊕D2

P3 = A3 ⊕B3 ⊕ C3 ⊕D3

P4 = A4 ⊕B4 ⊕ C4 ⊕D4

(4)


Q1 = A1 ⊕ C4 ⊕D3 ⊕ P2

Q2 = A2 ⊕B1 ⊕D4 ⊕ P3

Q3 = A3 ⊕B2 ⊕ C1 ⊕ P4

Q4 = A4 ⊕B3 ⊕ C2 ⊕D1

(5)

The construction for the selected block-level stripe is done after
finishing computation of the parities. Then, another block-level
stripe is selected for its construction following exactly the same
process above until all of the block-level stripes have been
constructed.

B. Reconstruction of Tier-code

In Figure 1, we can see that, in the block-level labeling,
the parity P and parity Q are computed from the same data
blocks because both of them share the same labeling algorithm.
However, in the chunk-level labeling, the parity P and parity
Q are calculated from different chunks based on the first
element and second element of the chunk-level labeling tuples,
respectively.

In the block-level labeling, each block label value is unique
in one disk. Also, each block label value is distributed across
all the disks. Consequently, every stripe has M blocks covers M
disks. In other words, each disk contains only one block from
each stripe. Moreover, each stripe has the same construction
process. Therefore, we only need to consider one block-level
stripe reconstruction process and the rest of the stripes use
exactly same process for the reconstruction process.

For a block-level stripe, according to the chunk labeling
algorithm shown in Figure 2, the first elements of the chunks’
tuples are the same for the chunks located in the same row. For
the second element of tuples, each block contains M−2 chunks
with M −2 different values. Additionally, any two blocks that
keep M − 2 chunks with M − 2 different second labeling
values have at least two different second labeling values. In
other words, there are two different second labeling values
in two blocks. The two unique second labeling values are
the starting points for recovering failed blocks. An example
of two failed blocks is given in Figure 3. Block B contains
the second labeling ‘1’, ‘2’, ‘3’ and ‘4’ in its chunks’ tuples.
Block C contains the second labeling ‘0’, ‘2’, ‘3’ and ‘4’ in
its chunks’ tuples. Therefore, the labeling ‘0’ and ‘1’ are two
unique values in the block B and C labellings. So, the two
chunks holding the unique second values are the starting points
of the reconstruction process. As seen in Figure 3, the two
chunks are marked with 1© as the first reconstruction step.

Fig. 3. An example with block B and C failed for M = 6. The left part
of the figure shows the recovery steps following the ordinal number. The first
step is to recover the left top chunk and right bottom chunk because both
chunks are the only failed chunks in their Q stripes. Once they are recovered,
the second step is to recover the failed chunks from their P stripe. Then, the
next step is to recover the Q stripe again and then P stripe until all chunks
are recovered.

TABLE I. ONE POSSIBLE BLOCK SIZE LIST FOR THE DIFFERENT
NUMBERS OF DISKS

Disk# Block size(KB) Chunk size(KB)
6 64 16
8 48 8
12 40 4
14 72 6
18 64 4
20 72 4
24 88 4
30 112 4
32 120 4
38 144 4
42 160 4
...

Then, the chunks locating at the same row with the starting
point chunks can be recovered from the first labeling values.
After that, we always can find one or two failed chunks that
have the unique second labeling value among the rest of the
failed chunks. The reconstruction follows the above process
until all of the chunks are recovered. Figure 3 gives an example
of the recovery process with M = 6 for one block-level stripe.
Once one block-level stripe is recovered, the failed data blocks
in other block-level stripes can be recovered using the same
steps.

The chunk-level labeling algorithm is similar to the RDP-
code and the correctness of RDP-code has previously been
proven [13]. Thus, the Tier-code can recover at most two failed
blocks in each block-level stripe. The block-level labeling
ensures that each block-level stripe gets distributed across all
disks. According to Eq. 1 and Eq. 2, one label value is evenly
distributed across all disks for data blocks and parity blocks.
Therefore, each block-level stripe can have at most two failed
blocks when two disks fail. So, the Tier-code algorithm can
tolerate up to two disk failures.

However, there are two limitations in Tier-code. The first
one is that the number of disks must be one plus a prime
number, greater than three. Second, since the chunk size is
computed by Eq. 6, the block size must be divisible by the
number of disks. Table I provides one solution for the block
and chunk sizes for different numbers of disks.

Sizeblock = (M − 2) ∗ Sizechunk (6)

IV. WRITE AND DEGRADED MODE READ PERFORMANCE
ANALYSIS

In this section, we analyze the performance of the RAID
system to determine major factors which have influence on a
complete RAID write operation and a degraded mode read
operation. According to the major factors, we explain the
reason why Tier-code has better performance on those factors
than the previous codes.

A. Performance Analysis for RAID Systems

The write operation in a RAID-6 system consists of the
following four major operations:

1) Reading the existing blocks (data blocks or parity
blocks).

2) Computing parities with new data.
3) Writing data blocks.
4) Writing parity blocks.

First, the cost of operation #3 above is the same for all RAID-
6 systems because the number of the data blocks written is
the same for all systems employing RAID-6 codes with a
same write request. Second, the overheads of operations #1
and #4 are determined by the number of parities written and
the number of existing block reads, respectively. Thus, RAID-
6 codes have different overheads of operations #1 and #4
caused by their labeling algorithms. Third, the overhead of #2
indicates the parity computation complexity. The computation
complexity is varied in RAID-6 codes based on the number
and types of operations for computing parties. Therefore, it is
important to note that the performance of a complete write is
primarily dependent on operations #1, #2 and #4. The effect
of these operations is discussed in depth below.

For the operation #2, there is no doubt that the optimal
operation for computing parities is the XOR operation and
the minimum number of XOR operations for one parity
computation with M disks is M − 3 for RAID-6 systems.
Therefore, to pursue the optimal computation complexity, some
previous codes [9][10][12][18][21] use different data layouts.

For the operations #1 and #4, two metrics can be used to
evaluate their overhead. The first one, update complexity [10],
is the average number of updated parity blocks that are
associated with a data block. The second one, multi-block
access complexity [15], is defined in terms of the number of
parity updates and read operations when a request needs to
access multiple data blocks. The first metric applies to the
scenario with only one data block update. The second metric
reflects real life applications because it considers multi-block
writes.

In the degraded mode read, if the data blocks are ac-
cessed by a request without containing any failed blocks, the
degraded mode read request is the same as a normal read
request. Otherwise, extra reads are required for recovering
failed blocks. These extra reads are similar to the reads
generated from a write operation for parity updates. Both of
them need to read all of the available blocks in the same
stripe. Thus, two operations primarily affect the degraded mode
read performance – the extra non-failed block reads aiming to
recover the failed blocks, and the decoding algorithm. The
optimal decoding complexity is M − 3 XOR operations for

one block recovery with M disks, which is exactly the same
as the encoding algorithm. For the extra non-failed block reads,
we proposed a metric called degraded read complexity to
indicate the overhead of reading non-failed blocks. Figure 4
provides an example to show the comparison of number of
extra reads with two failed disks between different codes. In
this example, Tier-code needs the minimum number of reads
to recover the blocks from disk#3 and disk#5 compared to
previous works. In the following subsections, we use analytical
models to conclude that Tier-code has better performance
than previous codes over all above factors. The results in
Section V validate the conclusions according to the software
and hardware implementation, and simulation results.

B. Encoding and Decoding Complexity

To compute parities (operation #2), there are three major
types of codes used in RAID-6 systems, Reed-Solomon codes,
optimized Cauchy Reed-Solomon code (CRS) [8][22][15]
and XOR-based codes. First, the Reed-Solomon code is the
most popular code used in practical RAID-6 systems like
mdadm [23]. It uses Galois Field arithmetic to compute the
second parities. Second, the CRS codes like PS-code optimized
Reed-Solomon codes by reducing the encoding and decoding
complexity. They convert the operations over GF (2w) to
XORs by converting distribution matrices to binary matrices.
Third, the XOR-based codes do not have distribution ma-
trices and directly use XORs to compute parities according
to labeling algorithms. The XOR-based codes includes P-
code, X-code, RDP-code, HV-code, etc. and our Tier-code
belongs to the XOR-based codes as well. To investigate their
encoding and decoding complexity, we calculated the number
of operations and the type of operations during encoding and
decoding processes as seen in Table II and Table III.

In terms of the encoding process, the number of XOR
operations is (M − 3) ∗ 2 for the XOR-based codes. The
number of XORs needed for the Cauchy Reed-Solomon codes
are obtained from the Jerasure simulator [24]. RS-code faces
extra multiplication operations during its encoding process.
Therefore, Tier-code (XOR-based codes) require the least
XORs in Table II. Tier-code requires about 1.5 times fewer
XORs than PS-code. Compared to RS-code, Tier-code has no
multiplications though they share the same number of XORs.
For the decoding process, Tier-code has exactly the same
number of XORs as its encoding process. For the decoding
process of the CRS codes, it needs to calculate the inverse
distribution matrix and then convert multiplications to XORs
according to the inverse distribution matrix [25]. Since the
inverse distribution matrices are different for different failed
disk cases, Table III shows the average number of XORs for
all possible failed cases. The RS-code has the normal decoding
process as the common RAID-6 [26]. As the results shown
in Table III, Tier-code has about 2.4 times fewer XORs than
PS-code and has substantially fewer XORs and look-up tables
(LUTs) than RS-code. In summary, Tier-code theoretically has
much better performance than Cauchy RS-code and RS-code
on the encoding and decoding processes.

C. Complexity Evaluation for Write

For the operations #1 and #4 for writes, we use the multi-
block access complexity to evaluate the write performance.

Fig. 4. An example of a degraded mode read request of three blocks for different codes with failed disk#3 and disk#5. RDP-code, P-code, and HV-code need
6, 8 and 9 extra reads, respectively. However, Tier-code only needs 3 extra reads.

TABLE II. COMPARISON OF THE AVERAGE NUMBER OF OPERATIONS
BETWEEN DIFFERENT CODES DURING ENCODING.

disk# Operation Tier-code PS-code RS-code
(XOR) (CRS) (RS)

6 ⊕ 6 9.5 6
× 0 0 4

8 ⊕ 10 15 10
× 0 0 6

12 ⊕ 18 27.25 18
× 0 0 10

14 ⊕ 22 32.75 22
× 0 0 12

18 ⊕ 30 52.8 30
× 0 0 16

20 ⊕ 34 58.8 34
× 0 0 18

30 ⊕ 54 96.4 54
× 0 0 28

32 ⊕ 58 104.2 58
× 0 0 30

TABLE III. COMPARISON OF THE AVERAGE NUMBER OF
OPERATIONS BETWEEN DIFFERENT CODES DURING DECODING.

disk# Operation Tier-code PS-code RS-code
(XOR) (CRS) (RS)

6 ⊕ 6 16.5833 12
LUTs 0 0 11.67

8 ⊕ 10 24.6667 15.6
LUTs 0 0 13.40

12 ⊕ 18 42.1889 23.33
LUTs 0 0 17.22

14 ⊕ 22 51.0379 27.27
LUTs 0 0 19.19

18 ⊕ 30 73.7667 35.20
LUTs 0 0 23.13

20 ⊕ 34 83.2484 39.18
LUTs 0 0 25.12

30 ⊕ 54 130.4378 59.11
LUTs 0 0 35.07

32 ⊕ 58 139.9115 63.10
LUTs 0 0 37.07

Note: Look-up tables (LUTs) are the operations to compute the inverse matrix
multiplication. # of LUTs provides how many look-up-table operations are executed.

The complexity indicates the average number of operations
with varying the write request sizes. It is defined in Eq. 7.

Avewrite = (
∑M∗(M−2)

i=1 ReqWi)/(M ∗ (M − 2))

Averead = (
∑M∗(M−2)

i=1 ReqRi)/(M ∗ (M − 2))

Ave = Avewrite +Averead

(7)

where ReqWi is the number of parity updates with I/O request
size of i, ReqRi is the number of reads with I/O request size
of i, and Ave is the average number of operations for M disks.

Different numbers of disks are investigated for the degraded
read complexity. Figure 5 compares Tier-code with previous
codes in terms of the multi-block access complexity and Tier-

Fig. 5. The average number of operations for the multi-block access
complexity with M=6.

(a) Parity updates (b) Reads

Fig. 6. Multi-block access complexity for different numbers of disks.

code achieves the minimum number of parity updates and reads
when varying the I/O request sizes for 6 disks. Moreover, Tier-
code, RS-code and PS-code obtain the similar results because
they use contiguous layouts. In addition, more investigations
have been done with varying the number of disks. Figure 6a
shows the average number of parity updates for different
numbers of disks. Tier-code requires the fewest parity updates
with the different number of disks. Additionally, as seen in
Figure 6b, Tier-code requires much fewer reads than the others.
Furthermore, the difference between Tier-code and the other
codes becomes even larger when increasing the number of
disks. In summary, Tier-code has the best multi-block access
complexity and comes out ahead in operations #1 and #4
described in Section IV-A compared to the other codes.

D. Complexity Evaluation for Degraded Mode Read

As discussed in Section IV-A, the two major operations
determine the performance of degraded mode read, the decod-
ing algorithm and the extra non-failed block reads to recover
the failed blocks. We have discussed the decoding algorithm
in Section IV-B. In this section, we focus on the number of
extra reads to recover failed blocks.

A new metric called the degraded read complexity is
proposed in this paper to compare the degraded mode read per-
formance by counting extra read operations. In our evaluation
of the degraded read complexity, we assume the location of the
first block of each read operation follows a uniform distribution
across all data blocks, 1 to M ∗ (M −2), in one matrix. Thus,
the probability of each block being the starting point of a read
is the same. For I/O request sizes, we only focus on the range
from one block to M∗(M−2) blocks because all matrix arrays
have the same label layout and the degraded mode reads will
be repeated after the I/O request size is larger than M∗(M−2).
Moreover, we consider all possible combinations of two failed
disks. For the degraded read complexity, we calculate the
average number of the extra reads for recovering the failed data
blocks. This ensures that the degraded read complexity reflects
the code’s degraded mode read performance accurately after
considering all combinations of two failed disks, different I/O
request sizes and different request start points. The degraded
read complexity is calculated from Eq. 8.

d =

∑M−1
f1=1

∑M
f2=f1+1

∑M∗(M−2)
i=1

∑M∗(M−2)
j=1 Rf1f2ij

M3 ∗ (M − 2)2 ∗ (M − 1)/2
(8)

where d is the degraded read complexity, f1 is the first failed
disk number, f2 is the second failed disk number, i is the
starting point of the requests varying from 1 to M ∗ (M − 2),
j is the I/O request size, and Rf1f2ij is the total number of
extra reads for recovering the failed data blocks when the I/O
request size is j starting from the ith block with failed disk
#f1 and failed disk #f2.

The degraded read complexity metric in Eq. 8 is useful in
comparing real systems since it analyzes the degraded mode
read operation from several aspects, including number of disk
failures, I/O request sizes, and request localities. Figure 4 is
an example of the degraded mode read of three blocks. In this
example, Rf1f2ij = 3 for Tier-code with f1 = 3, f2 = 5,
i = 9, and j = 3. This example shows that Tier-code needs
three extra reads during the degraded mode read when the I/O
request starts from the 9th block with a size of 3 blocks when
disks #3 and #5 are failed.

As seen in Figure 7, Tier-code always has the lowest
average number of extra reads compared to the previous RAID-
6 codes. This is because Tier-code uses a contiguous labeling
strategy on the block-level labeling, which is the same reason
that Tier-code attains better write performance than previous
codes. In terms of the degraded read complexity, Tier-code has
23.3% to 40.9% fewer extra reads on average than previous
codes. Considering the conclusion from Section IV-B, Tier-
code achieves the best performance for both factors in the
degraded mode read.

In summary, Table IV indicates the comparison between
different RAID-6 codes. For the parity computation complex-
ity, Tier-code achieves the minimum number of XORs for
computing parities. For the write and degraded mode read
complexities, Tier-code obtains the minimum average number
of operations because of its contiguous layout. Therefore, it
shows that Tier-code theoretically achieves the best results on
all metrics. In next section, we validate the conclusion of those
RAID-6 codes through real systems tests and simulations.

Fig. 7. Degraded read complexity for different numbers of disks showing
that Tier-code has the minimum average number of extra reads.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results from
two perspectives – computation complexity evaluation and I/O
performance simulation – to validate that Tier-code has better
performance than other codes. For the computation complexity,
we used two methods, software testing and ASIC design, to
measure the computation performance and hardware overhead
of different encoding and decoding algorithms. For the overall
I/O performance, we employed the DiskSim simulator [27] to
measure the write and degraded mode read performance.

A. Computation Complexity Comparison

We begin by comparing the computation complexity
amongst different codes using two methods, software testing
and ASIC design synthesis. The software testing results pro-
vide a straightforward comparison between Tier-code (XOR-
based code), PS-code (Cauchy Reed-Solomon code) and Reed-
Solomon code in terms of the encoding and decoding through-
puts. The ASIC design synthesis shows the hardware cost of
different codes when performing those encoding and decod-
ing in the hardware implementation such as RAID hardware
controllers.

In the software testing, we performed encoding and de-
coding processes in the real system. The 64-bit system has 4
Intel Core i7-4790 CPUs with 3.60 GHZ. It has 4GB RAM
size. For the test process, we used total 1GB data to perform
encoding and decoding and the type of data is char. The PS-
code and RS-code are performed in GF(16). For encoding,
the testing results are shown in Figure 8. Tier-code is always
better than PS-code and RS-code with varying the number of
disks. Tier-code has around 1.2GB/s encoding speed which is
about 1.4 times better than PS-code and about 5 times better
than RS-code. In Table II, Tier-code has about 1.5 times fewer
XOR operations than PS-code. Therefore, the software test
results match the theoretical performance estimation well. For
decoding, in the software test, suppose there are two disks
failed. Similar to encoding, the number of disks is varied from
6 to 14. As seen in Figure 9, Tier-code has similar decoding
speed as its encoding speed because their numbers of XORs
are exactly the same with each other. However, PS-code only
attains about 500MB/s decoding throughput and RS-code has
only about 120MB/s decoding speed. Tier-code has about 2.5
times and 10 times faster decoding speed than PS-code and
RS-code for all disk number cases, respectively. Considering
the I/O performance of modern disks, current HDDs can reach

TABLE IV. COMPARISON OF RAID-6 CODES.

Codes Parity update Multi-block access Degraded read Computation Disk
complexity complexity complexity complexity number

Tier-code 2 updates Low cost Low cost Optimal p+1
RDP-code [13] more than 2 updates High cost High cost Optimal p+1
PS-code [15] 2 updates Low cost Low cost Not optimal Any
RS-code [7] 2 updates Low cost Low cost Not optimal Any

HV-code [16] 2 updates High cost High cost Optimal p-1
X-code [9] 2 updates High cost High cost Optimal p
P-code [10] 2 updates High cost High cost Optimal p-1

Fig. 8. Software measurement results for the encoding process with different
numbers of disks.

Fig. 9. Software measurement results for the decoding process with different
numbers of disks. The recovery process is only for the case when disks #1
and #3 have failed.

over 150MB/s throughput and modern SSDs like Intel 3D
Xpoint [28] even reach to over 2GB/s throughput. Therefore,
the high speed of encoding and decoding in Tier-code will
significantly improve performance of current RAID systems.

Additionally, we also explored the hardware implemen-
tation for those three types of codes. We used the design
compiler to synthesize the three codes with FreePDK 45nm
library [29]. The hardware ASIC design is different from the
software implementation. For the hardware implementation,
all operations can be performed in parallel, thus it becomes
a trade-off between the hardware costs and encoding/decoding
performance. In our implementation, we used 4 bits to express
the data from each disk. To achieve a wider datapath or higher
throughput, we can directly duplicate the circuits. As seen
the encoding results in Table V, Tier-code has a little better
results than PS-code in terms of area and power. The reason
is that the parallelism in hardware implementation relieve the

TABLE V. SYNTHESIS RESULTS FOR THE ENCODING

of Area Power Frequency Energy
disks (um2) (mW) (GHz) (fJ)

6 175.5 0.023 2.99 7.6
Tier- 8 369.3 0.046 2.41 19.1
code 12 981.3 0.13 1.76 73.3

(XOR) 14 1380.7 0.18 1.72 102.6
6 182.6 0.023 2.46 9.5

PS- 8 380.8 0.049 1.77 27.8
code 12 1033.6 0.14 1.30 105.2

(CRS) 14 1396.6 0.19 1.15 163.8
6 1796.5 0.11 1.06 99.3

RS- 8 4022.4 0.23 0.97 240.4
code 12 11143 0.58 0.82 709.1
(RS) 14 16035 0.92 0.82 1115.8

TABLE VI. SYNTHESIS RESULTS FOR THE DECODING

of Area Power Frequency Energy
disks (um2) (mW) (GHz) (fJ)

6 173.6 0.029 3.20 9.0
Tier- 8 370.3 0.056 2.67 20.9
code 12 980.4 0.14 1.74 81.8

(XOR) 14 138.2 0.19 1.63 117.3
6 214.0 0.033 1.27 26.4

PS- 8 455.5 0.072 1.11 64.6
code 12 1132.2 0.16 1.14 143.4

(CRS) 14 1554.3 0.22 1.21 182.8
6 2945.3 0.25 0.38 669.1

RS- 8 5741.4 0.47 0.38 1238.7
code 12 13987 1.04 0.38 2762.2
(RS) 14 19268 1.39 0.38 3707.3

difference between Tier-code and PS-code. Additionally, the
synthesis optimization in design compiler may narrow the
computation gap between two codes. For example, in Eq 9,
there are 6 XORs to compute P and Q. However, in the
hardware implementation, it can reduce to 5 XOR gates by
reusing a0 ⊕ a2 in two equations.

P = a0 ⊕ a1 ⊕ a2 ⊕ a3 = (a0 ⊕ a2)⊕ a1 ⊕ a3
Q = a0 ⊕ a2 ⊕ a4 ⊕ a6 = (a0 ⊕ a2)⊕ a4 ⊕ a6

(9)

In addition, Tier-code is about 21%-47% faster on frequency
and saves 25% - 60% energy compared to PS-code. Compared
to RS-code, Tier-code has much better results in the hard-
ware implementation because RS-code uses the look-up tables
(LUTs) to implement the multiplication over GF(16). For the
decoding results in Table VI, Tier-code derives much lower
hardware cost than PS-code and RS-code. Tier-code attains
18%, 19%, 44% and 133% less hardware costs than PS-code
and 11.78X, 5.66X, 2.14X and 20X less hardware cost than
RS-code in terms of area, power, frequency and energy.

B. DiskSim Simulation Results

This section focuses on the I/O performance. We used
DiskSim [27] simulations to compare the I/O performance of

Fig. 10. Sequential write performance between RAID-6 codes with M=6
while varying I/O request sizes.

Fig. 11. Random write performance between RAID-6 codes with M=6 while
varying I/O request sizes.

the different codes. The encoding and decoding computation
time is integrated in the DiskSim simulation for write and
degraded read performance. Since Tier-code is limited to (a
prime number + 1) disks, and the previous RAID codes also
have limitations on the number of disks they can use, we
choose 6 disks for our experiments. The simulations use 64KB
as the default block size and the total number of disks is 6.
We use 10,000 I/O requests for sequential and random writes
and the I/O request size is varied from 64KB to 2048KB. The
reason for varying the request size is that, if one request size
can completely cover the whole matrix data array (one matrix
data array size is 24*64KB=1536KB for 6 disks), then these
RAID-6 codes would have same the write performance since
they have the same number of data and parity blocks to write.
Thus, if the request is larger than 1563KB, we only need to
focus on the incompletely covered parts of the blocks. So, we
ignore the I/O request sizes larger than 2048KB.

As shown in Figures 10 and 11, Tier-code has the best
write performance compared to the other codes. Tier-code
improves the sequential write performance 20.5%, 14% and
11.5%, and random write performance 15%, 16.3% and 6.8%
on average compared to RDP-code, HV-code and P-code,
respectively. The primary reason for the improved performance
is the smaller number of parity updates and the smaller number
of reads for computing new parities. Compared to PS-code
and RS-code, Tier-code achieves about 3.8% and 38.4% better
write performance. This is because Tier-code has much better
encoding speed than PS-code and RS-code.

To compare the degraded read mode operation of Tier-
code to the other codes, we consider the cases of one and
two disk failures. Even with two disk failures, a RAID-6
system can correctly continue to read data since the system
can use a combination of uncorrupted data and parity blocks

Fig. 12. Sequential read performance in the degraded mode with one disk
failure for RAID-6 with M=6.

Fig. 13. Random read performance in the degraded mode with one disk
failure for RAID-6 with M=6.

Fig. 14. Sequential read performance in the degraded mode with two disk
failures for RAID-6 with M=6.

Fig. 15. Random read performance in the degraded mode with two disk
failures for RAID-6 with M=6.

to recover the failed data blocks in the same stripe. For the
one disk failure case, as shown in Figures 12 and 13, in the
degraded mode, Tier-code on average derives 86.4%, 12.8%,
12.3%, 20.7%, and 84.6% higher performance than HV-code,
PS-code, P-code, RDP-code, and RS-code, respectively. For
the two disk failure case, as shown in Figures 14 and 15,
in the degraded mode, Tier-code on average obtains 117.5%,

23.8%, 15.7%, 46.9%, and 157% performance improvement
compared to HV-code, PS-code, P-code, RDP-code, and RS-
code, respectively. The main reason is that Tier-code reads
fewer data and parity blocks, and takes less decoding time
when recovering the failed blocks. Compared two cases be-
tween one disk and two disk failure, the two disk failure has
larger performance difference between those codes because
two disk failure has higher probabilities to read failed blocks
and also need to read more available blocks to recover them.
Therefore, it enlarges the performance difference and Tier-code
attains larger performance gains on two disk failure conditions
than on the one disk failure conditions compared to previous
RAID-6 codes.

VI. CONCLUSION

This work proposed a new RAID-6 code called Tier-code
that focuses primarily on improving the write performance
and the degraded mode read performance of redundant arrays
of independent disks. Our new labeling approach reduces the
number of parity updates that need to be written to the disks
and results in optimal parity computation complexity. A new
metric called degraded read complexity demonstrates the extra
number of reads in the degraded-mode read. Different com-
plexity metrics show that Tier-code has the best computation
time, fewer write updates and fewer reads in terms of com-
putation complexity, write performance and degraded-mode
read performance, respectively. In the experimental results, the
analytical model conclusions are validated for computation
time and I/O performance. Computation time is compared
using real system measurement and ASIC synthesis results.
The Disksim simulator is used to validates the overall I/O
performance conclusion. These results show that Tier-code
improves the write and the degraded mode read performance
compared to the previous codes.

VII. ACKNOWLEDGMENT

This work was supported in part by the Center for Research
in Intelligent Storage (CRIS), which is supported by Na-
tional Science Foundation grant no. IIP-1439622 and member
companies. The work of S. Mohajer is supported in part by
the National Science Foundation under Grant CCF-1617884.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] Fenggang Wu, et al. Data management design for interlaced magnetic
recording. In 10th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 18). USENIX Association, 2018.

[2] M. Minglani, et al. Kinetic action: Performance analysis of integrated
key-value storage devices vs. leveldb servers. In 2017 IEEE 23rd In-
ternational Conference on Parallel and Distributed Systems (ICPADS),
pages 501–510, Dec 2017.

[3] Eduardo Pinheiro, et al. Failure trends in a large disk drive population.
In FAST, volume 7, pages 17–23, 2007.

[4] David A. Patterson, et al. A case for redundant arrays of inexpensive
disks (raid). In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’88, pages 109–116,
New York, NY, USA, 1988. ACM.

[5] Bingzhe Li, et al. Tracerar: An i/o performance evaluation tool
for replaying, analyzing, and regenerating traces. In Networking,
Architecture, and Storage (NAS), 2017 International Conference on,
pages 1–10. IEEE, 2017.

[6] J. Axboe. Fio - flexible i/o tester. http://freshmeat.net/projects/fio/.
[7] Irving S Reed et al. Polynomial codes over certain finite fields. Journal

of the Society for Industrial & Applied Mathematics, 8(2):300–304,
1960.

[8] James S Plank et al. Optimizing cauchy reed-solomon codes for fault-
tolerant network storage applications. In Network Computing and
Applications, 2006. NCA 2006. Fifth IEEE International Symposium
on, pages 173–180. IEEE, 2006.

[9] Lihao Xu et al. X-code: Mds array codes with optimal encoding.
Information Theory, IEEE Transactions on, 45(1):272–276, 1999.

[10] Chao Jin, et al. P-code: A new raid-6 code with optimal properties. In
Proceedings of the 23rd international conference on Supercomputing,
pages 360–369. ACM, 2009.

[11] Lihao Xu, et al. Low-density mds codes and factors of complete graphs.
Information Theory, IEEE Transactions on, 45(6):1817–1826, 1999.

[12] Mario Blaum, et al. Evenodd: An efficient scheme for tolerating double
disk failures in raid architectures. Computers, IEEE Transactions on,
44(2):192–202, 1995.

[13] Peter Corbett, et al. Row-diagonal parity for double disk failure
correction. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies, pages 1–14, 2004.

[14] Ping Xie, et al. V 2-code: A new non-mds array code with optimal re-
construction performance for raid-6. In Cluster Computing (CLUSTER),
2013 IEEE International Conference on, pages 1–8. IEEE, 2013.

[15] Bingzhe Li, et al. Ps-code: A new code for improved degraded mode
read and write performance of raid systems. In Networking, Architecture
and Storage (NAS), 2016 IEEE International Conference on, pages 1–
10. IEEE, 2016.

[16] Zhirong Shen et al. Hv code: An all-around mds code to improve
efficiency and reliability of raid-6 systems. In Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP International Confer-
ence on, pages 550–561. IEEE, 2014.

[17] James Lee Hafner. Weaver codes: Highly fault tolerant erasure codes
for storage systems. In FAST, volume 5, pages 16–16, 2005.

[18] Chao Jin, et al. A comprehensive study on raid-6 codes: Horizontal
vs. vertical. In Networking, Architecture and Storage (NAS), 2011 6th
IEEE International Conference on, pages 102–111. IEEE, 2011.

[19] Kumar Chinnaswamy, et al. Read-modify-write operation, April 16
1991. US Patent 5,008,886.

[20] James S Plank. The raid-6 liber8tion code. International Journal of
High Performance Computing Applications, 2009.

[21] Yingxun Fu et al. D-code: An efficient raid-6 code to optimize i/o
loads and read performance. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages 603–612. IEEE,
2015.

[22] Xiaowen Chu, et al. Perasure: a parallel cauchy reed-solomon coding
library for gpus. In Communications (ICC), 2015 IEEE International
Conference on, pages 436–441. IEEE, 2015.

[23] Linux raid. https://raid.wiki.kernel.org/index.php/Linux\ Raid.
[24] James S Plank, et al. Jerasure: A library in c/c++ facilitating erasure

coding for storage applications-version 1.2. Technical report, Technical
Report CS-08-627, University of Tennessee, 2008.

[25] James S Plank, et al. A performance evaluation and examination of
open-source erasure coding libraries for storage. In FAST, volume 9,
pages 253–265, 2009.

[26] H Peter Anvin. The mathematics of raid-6. http://www.dei.unipd.it/
∼capri/LDS/MATERIALE/raid6.pdf.gz.

[27] John S Bucy, et al. The disksim simulation environment version 4.0
reference manual (cmu-pdl-08-101). Parallel Data Laboratory, page 26,
2008.

[28] Intel. Revolutionizing memory and storage. https:
//www.intel.com/content/www/us/en/architecture-and-technology/
intel-optane-technology.html.

[29] James E Stine, et al. Freepdk: An open-source variation-aware design
kit. In Microelectronic Systems Education, 2007. MSE’07. IEEE
International Conference on, pages 173–174. IEEE, 2007.

