
Quantified Satisfiability-based Simultaneous Selection of Multiple Local
Approximate Changes under Maximum Error Bound

Chenfei Lou1, Weihua Xiao1, and Weikang Qian1,2

1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
2MoE Key Laboratory of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China

Emails: {cf_lou, 019370910014, qianwk}@sjtu.edu.cn

Abstract—Approximate computing is an emerging low-power design
technique for error-tolerant applications. One key enabling technique for
approximate circuit design is approximate logic synthesis (ALS). Many
ALS methods are based on a scheme that iteratively selects one single
local approximate change (LAC) in each round until the error bound is
reached. However, this scheme fails to consider the joint effect of multiple
LACs whose induced errors may counteract with each other when applied
simultaneously. In this work, we propose a method to select multiple
LAC candidates in a single round under a given bound on maximum
error distance (MaxED). It first builds a miter by adding a multiplexer
into the network for each LAC candidate in the network. Then, a
quantified satisfiability problem is formulated on the miter and solved
to obtain a maximal set of LACs that can be applied simultaneously.
The experimental results show that under the normalized MaxED bound
of 1%, our method reduces the circuit area by up to 39%, which is
20% higher than the area reduction achieved by a baseline method that
iteratively selects one single LAC per round.

Index Terms—approximate computing, approximate logic synthesis,
satisfiability, quantified satisfiability, maximum error distance

I. INTRODUCTION

The scaling in CMOS transistor size [1] has greatly increased the
power density of VLSI circuits. Meanwhile, some complex circuits
still occupy a large area. Thus, it is desirable to decrease both the
power consumption and the area of a circuit. It is noteworthy that
exact correctness is not always required for many applications like
data mining, machine learning, and image processing [2]. Under such
circumstances, approximate computing, an emerging technique that
exploits the error tolerance in some applications to decrease the area
and power consumption, is attracting more attention [3].

One key enabling technique for approximate circuit design is ap-
proximate logic synthesis (ALS) [4]–[16], which aims at automatically
optimizing a circuit under given error constraints. Many ALS methods
are based on iterative applications of local approximate changes
(LACs) [4]–[9]. In these methods, many LACs are identified in each
round, then a figure-of-merit (FoM) is evaluated for each of them,
and finally the one with the highest FoM is chosen and applied.
The iteration repeats until the accumulated error reaches the error
threshold. Such ALS schemes, though simple to implement, have
one obvious shortcoming: each round only selects one LAC to be
applied, which fails to exploit the opportunity that applying multiple
LACs simultaneously can lead to a better approximation, since errors
from different LACs can possibly counteract with each other.

In this work, for error specification as the maximum error distance
(MaxED), we propose a new ALS method to overcome the above
shortcoming. It can take into account an arbitrary number of LAC
candidates in a single round, and select a maximal subset of those
candidates, such that by applying them, the resulting MaxED is
strictly below a given error bound. With this method, we achieve
simultaneous selection of multiple LACs by considering their joint ef-
fect. The proposed method first builds a miter by adding a multiplexer
(MUX) into the network for each LAC candidate in the network.
Then, a quantified satisfiability (QSAT) problem is formulated on

This work is supported by the National Key R&D Program of China
under Grant 2020YFB2205501. Corresponding author: Weikang Qian.

the miter and solved to yield a maximal set of LACs that are
simultaneously applicable. According to the experimental results, our
method reduces the circuit area by up to 39% for the normalized
MaxED bound of 1%, which is 20% higher than the area reduction
achieved by a baseline method that iteratively selects one single LAC
per round.

The rest of the paper is organized as follows. Section II provides the
preliminaries. Section III presents the proposed method. Section IV
shows the experimental results. Section V concludes the paper.

II. PRELIMINARIES

A. Terminologies on Circuits and Boolean Functions

A combinational circuit is usually represented by a directed acyclic
graph (DAG). Primary inputs (PIs) and primary outputs (POs) of a
circuit are the nodes in the DAG with zero in-degree and out-degree,
respectively. The level of a node is the length of the longest possible
path from a PI to that node. If a node A is the direct input of another
node B, A is called a fanin of B, and B is called a fanout of A. If
there exists a directed path from a node C to another node D, then
C is called a transitive fanin (TFI) of D. The TFI cone of a node
N , denoted as TFI(N), is the set of all TFIs of N and N itself.
The maximum fanout-free cone (MFFC) of a node E, denoted by
MFFC(E), is the maximum set of nodes such that E ∈ MFFC(E),
and for all F 6= E, F ∈ MFFC(E) if and only if all the fanouts of
F are also in MFFC(E) [17].

A literal is either a variable or its negation. A Boolean expression
is called a conjunctive normal form (CNF) if it is a sum of products of
literals. For instance, the Boolean expression (c+ ā+ b̄)(c̄+a)(c̄+b)
is a CNF.

B. Satisfiability and Quantified Satisfiability

Satisfiability (SAT) problem is an important problem in computer
science, which can be stated as follows: given a Boolean function
F (x1, . . . , xn), tell whether there exists an assignment on x1, . . . , xn
such that F yields 1 under the assignment. If yes, return SAT together
with a satisfying assignment; otherwise, return unSAT. SAT technique
has been widely used in electronic design automation [18]. Such an
application typically requires a transformation from a circuit to a
CNF, which can be realized by Tseitin transformation [19].

An extension of SAT, quantified satisfiability (QSAT), aims at
solving whether a prenex CNF (PCNF) is satisfiable [20]. A PCNF
can be expressed as ψ = Π.Φ, where Φ is a CNF expression, and
Π = Q1X1 · · ·QnXn consists of multiple quantifiers Qi. Each quan-
tifier Qi is either an existential quantifier ∃ or a universal quantifier
∀, and binds to a set of variables Xi. The mutual intersection of the
sets Xi is empty, while their union contains all the variables that
appear in CNF Φ. Without loss of generality, we only consider the
case where universal and existential quantifiers appear alternately in
a PCNF. For instance, the following expression is a PCNF:

ψ = ∃a ∀b, c ∃d (a+ c)(a+ b̄+ d).

For a PCNF ψ = Q1X1 · · ·QnXnΦ(X1 ∪ · · · ∪Xn), its solution
is meaningful only if the outermost quantifier Q1 is an existential

quantifier ∃. In this case, the solution for this PCNF is an assignment
for the variables in X1 such that under this assignment, the PCNF is
satisfiable.

To solve QSAT problems, Lonsing and Egly proposed a method
called QCDCL [20]. The corresponding C library depqbf is made
open-source, which is used in our work.

III. PROPOSED METHOD

Our method builds a miter with all the LAC candidates and then
formulates and solves QSAT problems on the miter to determine a
maximal subset of LACs that can be applied simultaneously. The
procedure in one iteration can be summarized as the 4 steps below:

1) Obtain all the LAC candidates in the current network.
2) Copy the network and add a MUX for each LAC candidate,

whose selection signal controls whether the LAC candidate is
applied. The obtained network is called a MUXed network.

3) Build a miter between the original network and the MUXed
network, and use QSAT and binary search to determine a
maximal set of LACs that can be applied simultaneously under
the error bound.

4) Apply the set of LACs determined by the previous step to
generate an approximate network.

After the above 4 steps, we obtain an approximate network. As the
network changes, it brings new opportunities to extract new LACs
that can further reduce the area. Thus, the above iteration of 4 steps
is repeated until there is no more improvement to the network area.

In the following, we elaborate the above 4 steps in Sections III-A–
III-D, respectively. Note that we use a special type of LAC called
SASIMI LAC [5] as an example to show how our method works.
However, our method also works for other types of LACs.

A. Obtaining SASIMI LAC Candidates

We apply SASIMI method to select LAC candidates [5]. SASIMI
identifies pairs of nodes in a network that have a high probability
to give equal outputs under the same assignments of PIs [5]. Then,
for each identified pair, we can substitute one node in the pair by
the other to reduce the circuit area, while the error induced by the
substitution is expected to be small due to the similarity of the
outputs of the two nodes. In each node pair, the node at a lower
level is called the substituting signal (SS), while the other is called
the target signal (TS). Note that we require SS to have a lower
level because it avoids forming a combinational loop after TS is
substituted by SS. Once the substitution is applied, the nodes in the
set (MFFC(TS)− TFI(SS)) can be deleted, leading to an area save of
Area (MFFC(TS)− TFI(SS)). The original SASIMI method selects
the TS-SS pair with the highest FoM in each iteration. In our case,
we modify it so that a set of TS-SS pairs are selected. The TS nodes
in these pairs range over all the nodes in the network, and each
corresponding SS node is the one that yields the highest FoM with
its TS node. Algorithm 1 shows the procedure to obtain the set of
TS-SS pairs, or the SASIMI LAC candidates. As it shows, TS node
is traversed through all the nodes in the network (Line 3), while in
each iteration where TS node is fixed, one SS node with the highest
FoM is identified (Lines 5–11). Then, this pair of TS and SS nodes
is added into the candidate LAC set (Line 12).

In our implementation, we use a batch error estimation tech-
nique [21] to accelerate the estimation of Pdiff.

B. Building MUXed Network for All the LAC Candidates

After obtaining the set of LACs, we regard them only as candidates
and do not apply them (i.e., substitute each TS by the corresponding
SS) immediately. Instead, for each LAC, we insert a MUX to control
whether the LAC is applied by the following procedure:

Algorithm 1: Obtain SASIMI LAC candidates.
input : a given circuit Ckt.
output: the set LAC_set containing all the SASIMI LAC

candidates from Ckt.
1 LAC_set = ∅;
2 Signals = a list of all signals in Ckt in a topological order;
3 foreach TS in Signals do
4 max_FoM = 0; SS_best = null;
5 foreach SS in Signals do
6 if SS.Level > TS.Level then continue;
7 Pdiff = Probability of TS 6= SS;
8 if Pdiff > 0.5 then SS = SS;
9 FoM =

Area(MFFC(TS)−TFI(SS))
max(Pdiff,1−Pdiff)

;
10 if FoM > max_FoM then
11 SS_best = SS; max_FoM = FoM;

12 LAC_set.append(<SS_best, TS>);

13 return LAC_set;

1) Connect TS and SS to the 0-input and the 1-input of a MUX,
respectively.

2) Add a new PI and connect it to the selection input of the MUX.
3) Connect all the original fanouts of TS to the output of the MUX.
4) Delete all the connections between TS and its original fanouts.

Fig. 1. Building a MUXed network based on the LAC candidates.

Fig. 1 shows the difference before and after inserting a MUX. As
illustrated, when the selection signal is set to 0, the signal TS is still
fed to all of its original fanouts, so the local function is unchanged.
However, when the selection signal is set to 1, the signal SS becomes
the fanin for all the original fanouts of TS, which is equivalent to
substituting TS by SS. To sum up, whether a SASIMI LAC is applied
is simply controlled by the corresponding selection signal.

This operation is applied to all the candidate LACs. The obtained
network is called a MUXed network. Suppose that there are m LACs
in total. Then, the MUXed network has m additional PIs, each
determining the application of a LAC. These m PIs are called LAC
controlling PIs (LCPIs). By controlling LCPIs, we can model the
circuit function resulting from any combination of the LACs.

C. Finding a Maximal LAC Set

With the obtained MUXed network, we now find a maximal set
of LAC candidates that can be applied simultaneously, while still
satisfying the error bound. To achieve this goal, we first build a
miter between the original network and the MUXed network (see
Section III-C1) and then add a sorting network to control the number
of applied LACs (see Section III-C2). Finally, we solve for a maximal
set of LACs using binary search algorithm and QSAT technique on
the miter (see Section III-C3).

1) Error Distance Miter and QSAT Formulation: we build an error
distance miter, as shown in Fig. 2. It consists of the original network,
the MUXed network, a subtractor that calculates the absolute differ-
ence between the outputs of the original network and the MUXed
network, and a comparator to determine whether the difference is
smaller than a user-specified threshold T .

Fig. 2. The error distance miter.

Then, we apply Tseitin transformation to get the CNF correspond-
ing to the error distance miter. Let the consequent CNF be Φ. To
ensure that the error distance is always smaller than the threshold,
we need to find an assignment of the LCPIs such that under all
assignments of PIs, Φ is always SAT.

Note that the CNF Φ contains a set of variables other than the PIs
and the LCPIs, which we denote as V . Thus, the problem we face
is exactly a QSAT problem of the following PCNF

∃LCPI ∀PI ∃V Φ.

If the QSAT problem is unSAT, then there is no combination of
LACs that can be applied to meet the error threshold. Otherwise,
each solution of the QSAT problem gives an assignment of LCPIs
that corresponds to a valid approximation to the original network. For
example, suppose m = 3 and a solution is LCPI1 = 1, LCPI2 = 0,
and LCPI3 = 1, Then, a corresponding approximate circuit can be
obtained by applying LAC1 and LAC3 but ignoring LAC2. We define
satisfying LAC set as a set of LACs that can be applied to meet the
error threshold. For the example above, the corresponding satisfying
LAC set is {LAC1, LAC3}.

2) Expanded Error Distance Miter with a Sorting Network:
Generally, there exist multiple solutions for QSAT, including a trivial
one with all the LCPI variables assigned to 0 (i.e., no LAC applied).
Therefore, we need to design a mechanism to find the best solution.
Here, we define the best solution as the assignment where the number
of 1s among the LCPI variables is maximized, since a good first-
order measure for the reduced area caused by the approximation is
the number of applied LACs.

To achieve the goal, we add a sorting network to the error distance
miter to sort the LCPIs based on their values. The sorting network
is a component that takes a number of input bits, and outputs them
in a sorted order (i.e., from the smallest to the largest) [22]. The
following equation shows an example of the input and the output of
an 8-bit sorting network:

00101001 −→ 00000111.

As can be seen, if we can find a value i such that the ith output
is 1 but the (i − 1)th output is 0, then the number of 1s among the
input bits is (t− i+ 1), where t is the number of input bits. Readers
interested in the details on sorting networks can refer to [22].

By resorting to the sorting network, we further build an expanded
error distance miter, as shown in Fig. 3, to help find the maximum
number of 1s among the LCPI variables. It is built upon the error
distance miter shown in Fig. 2. We further add an m-bit sorting
network and feed the m LCPIs to the inputs of the sorting network,
so that the m outputs of the sorting network s1, . . . , sm are the sorted
version of the LCPIs. We denote Ntki (1 ≤ i ≤ m) as the network
obtained by adding an AND gate over the output Out of the original
miter and the signal si. We denote Φi as the CNF corresponding to
the network Ntki. Given this setup, if the PCNF ∃LCPI ∀PI ∃V Φi is
SAT, then there exists a satisfying LAC set with at least (m− i+ 1)
LACs.

3) Binary Search for Finding a Maximal Satisfying LAC Set:
With the help of the expanded error distance miter, we can find the
maximum number of 1s in the LCPIs, which leads to a maximal
satisfying LAC set. The idea is to find the least index i0 such that

Fig. 3. The expanded error distance miter.

the PCNF ∃LCPI ∀PI ∃V Φi0 is SAT. To efficiently find the least
index, we apply a binary search algorithm, as shown in Algorithm 2.
In each round, we maintain a search interval [l, r], and solve the
QSAT problem on PCNF ∃LCPI ∀PI ∃V Φi, where i = d l+r

2
e is

the midpoint of the current search interval [l, r]. Then, we update the
search interval based on the QSAT result. If the PCNF is unSAT, it
means i0 > i, so the new search interval is [i + 1, r]. Otherwise,
i0 ≤ i, and the new search interval is set to [l, i − 1]. Note that
the updating mechanism guarantees that all the indices smaller than
l (larger than r) lead to unSAT (SAT). The search stops when l > r.
At this point, (r + 1) has become the least index i0 that makes the
PCNF ∃LCPI ∀PI ∃V Φi0 SAT.

Algorithm 2: Find a maximal satisfying LAC set.
Input: the PCNFs of the expanded error distance miters

{∃LCPI ∀PI ∃V Φk}mk=1.
Output: the assignment assignment for a PCNF that corresponds

to a maximal satisfying LAC set.
1 l = 1; r = m;
2 while l ≤ r do
3 i = d l+r

2
e; pcnf = ∃LCPI ∀PI ∃V Φi;

4 (result, assignment) = QSATsolve(pcnf);
5 if result == unSAT then l = i + 1;
6 else r = i− 1;

7 (result, assignment) = QSATsolve(∃LCPI ∀PI ∃V Φr+1);
8 return assignment;

D. LAC Application

This section shows how to apply the LACs in the obtained maximal
satisfying set to the original network to obtain the approximate
network. It consists of two steps: 1) Connect the output of the SS
to the original fanouts of TS; 2) Delete the redundant nodes in the
set (MFFC(TS)− TFI(SS)).

One straightforward but problematic method is to directly execute
the above two steps for each LAC one by one, i.e., delete all the
redundant nodes of the current LAC before the next one is considered.
The problem of the method is that a redundant node for the current
LAC may be the TS node or SS node for a following LAC that has
not been considered yet, and if it is deleted, the LAC afterwards
may become invalid and cannot be applied anymore. We call the
problem the immediate-deletion problem. Fig. 4 shows an example
of the problem, where LAC1 aims at substituting node 3 by node 7,
while LAC2 aims at substituting node 2 by node 4. However, node
4, which is among the redundant nodes for LAC1, is the SS node for
LAC2. Therefore, after LAC1 is applied, LAC2 becomes invalid and
cannot be applied anymore.

Fig. 4. An illustration of the immediate-deletion problem.

To handle the above problem, we propose a post-deletion method
to apply all the LACs. It first performs step 1 only when traversing
through all the LACs in the satisfying LAC set, and after all those
LACs have been traversed, it deletes all the redundant nodes all
together. In this context, a node is regarded as redundant when either
it has no fanouts or all of its fanouts are redundant. Fig. 5 illustrates
an example, where node 2 and node 3 are to be substituted by node 4
and node 7, respectively. We first perform step 1 to all the LACs in the
satisfying LAC set, which results in an intermediate network shown
in the middle of Fig. 5. Then, we delete the redundant nodes, which,
by definition, are nodes 2, 3, and 5. We obtain the final approximate
network as shown in the right of Fig. 5.

Fig. 5. An illustration of the proposed post-deletion method.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results on our method.
To show the advantage of multiple selection, we also implement a
baseline method that selects and applies only one SASIMI LAC per
round. In each round of it, we first use the same method described in
Section III-A to select a set of SASIMI LAC candidates. Then, we
sort the LAC candidates in descending order of the area reduction
that they can bring. After that, we apply the first LAC candidate
that strictly satisfies the MaxED constraint. The above operations
repeat until in one round all the LAC candidates fail to satisfy the
error constraint. We implement both our method and the baseline
method in C++. We use ABC [23] to conduct logic optimization and
technology mapping with the MCNC standard cell library [24]. We
test both methods on 5 different arithmetic circuits, where the first
two are 8-bit adders, the third one is a 4-bit multiplier, and the last
two are taken from the EPFL combinational benchmark suite [25].
Their information is listed in Table I. Since different circuits have
different bit width for the outputs, we use the normalized maximum
error distance (NMaxED) as the error metric, which is defined as:

NMaxED =
max |Outputapprox − Outputexact|

2Output_Bit_Width .

Table I. Arithmetic benchmarks.

Name I/O Gate Count Level Initial Area
RCA_8 17/9 56 18 145
CLA_8 17/9 64 19 198
MUL_4 8/8 85 16 321
int2float 11/7 183 10 398
priority 128/8 453 17 1179

We measured the area reduction percentage of the approximate
circuits over the input exact circuit under different NMaxED thresh-
olds, and the results are shown in Fig. 6, where the results by our
method are shown in solid lines and labeled with letter “m” to denote
“multiple selection”, while those by the baseline method are shown in
dashed lines and labeled with letter “s” to denote “single selection”.
Note that when the areas of the circuits decrease, their delays do not
increase, since SASIMI method guarantees that the selected LACs
never increase the length of the critical path.

As we can see, for all the circuits and under all the error thresholds,
our method outperforms the baseline method. For our method, when

the error threshold is relatively loose (i.e., 12.5%), the area reductions
of all the circuits are more than 60% of the original area. Specially,
the area reduction for the circuit int2float is as high as 80.2%.
In comparison, only two circuits’ area reductions achieved by the
baseline method are over 60.0%, with the largest area reduction
as 69.8%, which is 10.4% lower than our method. For the error
threshold of 25%, the area reductions of all the circuits achieved by
our method are all higher than 65%, with 4 of them higher than 85%,
while for the baseline method, all circuits’ area reductions are lower
than 80.0%. Under the error bound of 1% and 5%, the area reductions
achieved by our method are up to 39% and 65%, respectively, which
are 20% and 8% higher than the largest area reductions achieved by
the baseline method.

Fig. 6. Relative area of the approximate circuits vs. normalized maximum
error distance.

Fig. 7 shows the runtime of our method and the baseline method.
We can see that our method sometimes takes longer time than the
baseline method. This can be attributed to the fact that our method
needs to solve QSAT problems with 3 nested quantifiers, while the
baseline method only needs to solve QSAT problems with 2 nested
quantifiers.

Fig. 7. Runtime vs. normalized maximum error distance.

V. CONCLUSION

In this work, we propose a novel ALS method that can select
multiple LAC candidates in a single iteration under the MaxED
constraint. It is based on a QSAT formulation on a proposed miter.
The experimental results show that our method reduces the circuit
area by up to 39% under the normalized MaxED bound of 1%.
Meanwhile, our method still has space for further improvement, e.g.,
its scalability. Techniques like partition and error propagation [26]
can be exploited to improve the scalability for our method, which is
left for future research.

REFERENCES

[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol.
530, no. 7589, pp. 144–147, 2016.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in European Test Symposium,
2013, pp. 1–6.

[3] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[4] D. Shin and S. K. Gupta, “A new circuit simplification method for error
tolerant applications,” in Design, Automation and Test in Europe, 2011,
pp. 1–6.

[5] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in Design, Automation and Test in Europe, 2013, pp.
1367–1372.

[6] A. Chandrasekharan, M. Soeken, D. Große, and R. Drechsler,
“Approximation-aware rewriting of AIGs for error tolerant applications,”
in International Conference on Computer-Aided Design, 2016, pp. 83:1–
83:8.

[7] S. Froehlich, D. Große, and R. Drechsler, “Approximate hardware
generation using symbolic computer algebra employing Grobner basis,”
in Design, Automation and Test in Europe, 2018, pp. 889–892.

[8] S. Hashemi, H. Tann, and S. Reda, “BLASYS: approximate logic
synthesis using boolean matrix factorization,” in Design Automation
Conference, 2018, pp. 55:1–55:6.

[9] C. Meng, W. Qian, and A. Mishchenko, “ALSRAC: Approximate
logic synthesis by resubstitution with approximate care set,” in Design
Automation Conference, 2020, pp. 187:1–187:6.

[10] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: Systematic logic synthesis of approximate circuits,”
in Design Automation Conference, 2012, pp. 796–801.

[11] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in International Confer-
ence on Computer-Aided Design, 2014, pp. 504–510.

[12] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate dig-
ital circuits design,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 3, pp. 432–444, 2015.

[13] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in Design Automation
Conference, 2016, pp. 128:1–128:6.

[14] G. Liu and Z. Zhang, “Statistically certified approximate logic synthe-
sis,” in International Conference on Computer-Aided Design, 2017, pp.
344–351.

[15] Z. Zhou, Y. Yao et al., “DALS: Delay-driven approximate logic synthe-
sis,” in International Conference on Computer-Aided Design, 2018, pp.
86:1–86:7.

[16] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel,
“AxLS: A framework for approximate logic synthesis based on netlist
transformations,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 68, no. 8, pp. 2845–2849, 2021.

[17] J. Cong and Y. Ding, “Combinational logic synthesis for LUT based field
programmable gate arrays,” ACM Transactions on Design Automation of
Electronic Systems, vol. 1, no. 2, pp. 145–204, 1996.

[18] J. P. Marques-Silva and K. A. Sakallah, “Boolean satisfiability in
electronic design automation,” in Design Automation Conference, 2000,
pp. 675–680.

[19] G. S. Tseitin, On the complexity of derivation in propositional calculus.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1968, pp. 466–483.

[20] F. Lonsing and U. Egly, “DepQBF 6.0: A search-based QBF solver
beyond traditional QCDCL,” in Automated Deduction, 2017, pp. 371–
384.

[21] S. Su, Y. Wu, and W. Qian, “Efficient batch statistical error estimation for
iterative multi-level approximate logic synthesis,” in Design Automation
Conference, 2018, pp. 54:1–54:6.

[22] K. E. Batcher, “Sorting networks and their applications,” in American
Federation of Information Processing Societies, 1968, pp. 307–314.

[23] A. Mishchenko et al., “ABC: a system for sequential synthesis and
verification, release 90703,” accessed Feb., 2021. [Online]. Available:
http://people.eecs.berkeley.edu/∼alanmi/abc/

[24] A. de Geus, “Logic synthesis and optimization benchmarks for the 1986
design automation conference,” in Design Automation Conference, 1986,
pp. 78–78.

[25] A. T. Calvino et al., “The EPFL combinational bench-
mark suite,” accessed May, 2021. [Online]. Available:
https://github.com/lsils/benchmarks

[26] I. Scarabottolo, G. Ansaloni, G. A. Constantinides, and L. Pozzi, “A
formal framework for maximum error estimation in approximate logic
synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–15, 2021.

