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Computations based on stochastic bit streams have several advantages compared to deterministic binary
radix computations, including low power consumption, low hardware cost, high fault tolerance, and skew
tolerance. To take advantage of this computing technique, previous work proposed a combinational logic-
based reconfigurable architecture to perform complex arithmetic operations on stochastic streams of bits.
The long execution time and the cost of converting between binary and stochastic representations, however,
make the stochastic architectures less energy efficient than the deterministic binary implementations. This
article introduces a methodology for synthesizing a given target function stochastically using finite-state
machines (FSMs), and enhances and extends the reconfigurable architecture using sequential logic. Com-
pared to the previous approach, the proposed reconfigurable architecture can save hardware area and energy
consumption by up to 30% and 40%, respectively, while achieving a higher processing speed. Both stochastic
reconfigurable architectures are much more tolerant of soft errors (bit flips) than the deterministic binary
radix implementations, and their fault tolerance scales gracefully to very large numbers of errors.
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1. INTRODUCTION

In stochastic computing (SC), a numeric value is represented by a bit stream consisting
of zeros and ones. The positions of zeros and ones are random. The numeric value to
be represented determines the probability of ones in the bit stream [Gaines 1969; Qian
et al. 2011; Alaghi and Hayes 2013]. For example, “0.4” could be represented by the bit
stream “00101”. This bit stream has 5 bits, and the probability of each bit being one is
0.4. Note that the number of ones in the bit stream is determined by the length of the
bit stream and the value it represents, but the positions of the ones are random. We
can use a random number generator, such as the one shown in Figure 1, to convert the
numeric value to the stochastic bit stream. The circuit consists of a linear feedback shift
register (LFSR) and a comparator. If we want to represent x (0 ≤ x ≤ 1) with an L-bit
stochastic bit stream, we can set the LFSR to generate random numbers in the range
[0, L), and set the constant value to L · x. Based on this configuration, the probability
of each bit being one in the generated stochastic bit stream is x. Compared to the
conventional binary radix-based deterministic computing, SC has several advantages,
including low hardware cost, low power consumption, inherent fault tolerance, and
skew tolerance.

Stochastic computing can implement the same type of computation using much sim-
pler logic than the conventional deterministic method. This computing technique dates
back to the 1960s. In an early set of papers, researchers proposed designs that used
combinational logic to implement basic arithmetic operations, such as addition and
multiplication, on stochastic bit streams [Gaines 1969]. Gaines [1969] further de-
scribed ADDIE (ADaptive Digital Element), a sequential counter-based automaton
for implementing arbitrary functions. In the ADDIE, however, the state of the counter
is controlled in a closed-loop fashion. The problem is that ADDIE requires that the
output of the counter be converted into a stochastic pulse stream in order to implement
the closed-loop feedback. This requirement makes the system inefficient and requires
substantial amounts of hardware.

In 2001, the implementations of some sophisticated functions using sequential logic,
such as the exponentiation and hyperbolic tangent functions, were proposed [Brown
and Card 2001a]. Figure 2 shows a few examples. In Figure 2(a), multiplication can
be implemented using a single AND gate. If two input bit streams x1 and x2 are
stochastically independent, we will have Py = Px1 · Px2, where Px1, Px2, and Py are
the probability of ones in the bit streams x1, x2, and y, respectively. In Figure 2(b),
the multiply-accumulate operation, or scaled addition, can be implemented using a
single multiplexer (MUX). Based on the logic function of the MUX, we can prove that
Py = Ps · Px1 + (1 − Ps) · Px2 [Li et al. 2014a].

Figure 2(c) shows that SC can use a single finite-state machine (FSM) to implement
complex functions, such as the hyperbolic tangent and exponentiation functions, by
using different state transition diagram configurations [Brown and Card 2001a]. More
specifically, Figure 3 shows the state transition diagram of the FSM for implementing
the stochastic hyperbolic tangent function in Equation (1), and Figure 4 gives the
corresponding state transition diagram for the stochastic exponentiation function in
Equation (2). In both state transition diagrams, the FSM has N states from S0 to SN−1.
The input of this FSM is x, and the output is y. In fact, the only difference between
these two FSMs is the output configuration. For the stochastic exponentiation function,
we set y = 1 when the current sate is Si, 0 ≤ i < N −G (0 < G � N). Otherwise, we set
it to 0. For the stochastic hyperbolic tangent function, we set y = 1 when the current
state is between S0 and SN/2. A detailed analysis about why the FSMs can implement
the corresponding functions can be found in Li et al. [2014b].
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Fig. 1. Binary radix encoding to stochastic bit stream encoding converter. The comparator outputs a one if
the random number generated by the linear feedback shift register (LFSR) is less than the constant value;
it outputs a zero otherwise.

Fig. 2. Examples of SC elements. (a) Multiplication can be implemented using a single AND gate. The
probability of ones in the output bit stream is the product of the probabilities of ones in the input bit streams:
Py = Px1 × Px2. (b) Multiply-accumulate operation, or scaled addition, can be implemented using a MUX:
Py = Ps · Px1+(1−Ps) · Px2. (c) The hyperbolic tangent function (Equation (1)) and the exponentiation function
(Equation (2)) can be implemented using a single FSM. The state transition diagram of the corresponding
FSM is shown in Figures 3 and 4.

Fig. 3. State transition diagram of the FSM for implementing the hyperbolic tangent function in Equa-
tion (1). The FSM has N states (S0, S1, . . . , SN−1). The input of this FSM is x, and the output is y [Brown
and Card 2001a].

Fig. 4. State transition diagram of the FSM for implementing the exponentiation function in Equation (2).
Its state transition diagram is the same as in Figure 3, only the output configuration differs [Brown and
Card 2001a].

Py = eN·(Px−0.5)

eN·(Px−0.5) + e−N·(Px−0.5)
. (1)

Py =
{

e−2G(2Px−1), 0.5 ≤ Px ≤ 1,
1, 0 ≤ Px < 0.5. (2)

Stochastic computing consumes less power than conventional deterministic comput-
ing for computations such as image processing that do not require very high resolutions
and can tolerate small degrees of inaccuracies [Alaghi et al. 2013]. This reduction is
because its circuit structure is much simpler, and the current that is needed to drive
the circuit in SC is much smaller, than what is required in the conventional deter-
ministic implementation. Thanks to the recent advances of the rechargeable battery
and solar power technology [Palacı́n 2009; Price et al. 2002], it is possible to power
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SC circuits using a small solar cell in an embedded system without recharging by an
external power supply. An important point, however, is that SC systems have a higher
latency than binary implementations and so consume more energy, particularly when
we factor in the energy consumption of the binary-stochastic converters [Alaghi et al.
2013; Kim et al. 2016; Najafi et al. 2017; Najafi and Lilja 2017].

SC can tolerate errors due to circuit noise or bit flips. It has been shown that SC can
tolerate substantially more errors than conventional deterministic computing for dig-
ital image processing applications [Li et al. 2014a; Najafi and Salehi 2016; Qian et al.
2011]. For example, if 10% of the bits were flipped during computation, the output
image of the SC circuit is still visually indistinguishable from the correct result. Fu-
ture device technologies, such as nanoscale CMOS transistors, are expected to become
even more sensitive to environmental noise and to process, voltage, and thermal varia-
tions [Ramanarayanan et al. 2009; Wang et al. 2011]. Thus, SC is extremely appealing
for future device technologies. Recently, tolerance of variations in the arrival time of
the computational units’ inputs has been shown to be another advantage of SC [Najafi
et al. 2016]. Stochastic computing has also been applied to communications problems
such as implementing low-density parity-check (LDPC) decoders [Tehrani et al. 2008],
to control systems to implement proportional-integral (PI) controllers [Zhang and Li
2008], and also to artificial neural networks (ANN) and deep neural networks (DNN)
for hardware-efficient implementations of complicated logic functions [Brown and Card
2001b; Kim et al. 2016; Li et al. 2016; Ardakani et al. 2015; Liu et al. 2016; Li et al. 2016].

A major challenge in SC is that the functions that can be implemented using the
basic logic gates are very limited. As a result, most applications in ANNs, data min-
ing, and digital signal processing cannot benefit from this computing technique. To
solve this issue, Qian et al. [2011] proposed a combinational logic-based reconfigurable
architecture, which can implement arbitrary single-input functions by changing its
input parameters based on the theory of Bernstein polynomials [Lorentz 1953]. In
fact, both combinational logic and sequential logic, as shown in Figure 2, can be used
to construct functions in SC. When the function is relatively simple, such as multi-
plication and addition, the combinational logic-based implementation requires fewer
hardware resources than the sequential logic-based implementation. When the func-
tion is relatively complex, however, such as the exponentiation, the hyperbolic tangent,
or high-order polynomial functions, the sequential logic-based implementation is more
efficient since it requires fewer logic gates while producing more accurate results. Fur-
thermore, as we will show in this work, sequential logic-based implementations can be
used to implement multi-input functions at very low cost.

In our previous work, we provided a deep analysis of the existing FSM-based SC
elements and implemented several digital image processing algorithms using these
computing elements as case studies [Li et al. 2014a, 2014b]. This article makes the
following contributions over our previous work: (1) we introduce new synthesis methods
that can implement arbitrary target functions using different FSM structures in SC;
(2) we enhance and extend the reconfigurable architecture using sequential logic to
produce an architecture that consumes less hardware area and consumes less energy,
while achieving a higher working frequency and the same level of fault tolerance;
(3) we study the tradeoffs among the precision of the input parameter values, the
hardware silicon area, the critical path latency, the power consumption, the energy
dissipation, and the approximation error of the reconfigurable architecture; and (4) we
conduct additional experiments for fault tolerance, including injecting soft errors in
the internal architecture.

The remainder of the article is organized as follows. Section 2 reviews the combi-
national logic-based reconfigurable architecture proposed by Qian et al. [2011] and
other related work in SC. Section 3 demonstrates the FSM-based reconfigurable
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Fig. 5. The combinational logic-based reconfigurable SC architecture [Qian et al. 2011].

architecture. Section 4 introduces the synthesis methodology for generating functions
using different FSMs. Section 5 shows the experimental results. Conclusions are drawn
in Section 6.

2. RELATED WORK

Qian et al. [2011] proposed the combinational logic-based reconfigurable architecture
for performing polynomial computations on stochastic bit streams. This architecture,
as shown in Figure 5, is composed of three parts: the Randomizer, the ReSC Unit, and
the De-Randomizer. The inputs are X and Z0, Z1, . . . ,Zn, where n is the highest degree
of a polynomial this architecture can compute, and the output is Y . These values are
represented using binary radix. The architecture is reconfigurable in the sense that it
can be used to compute different functions Y = f (X) by setting appropriate values for
the coefficients Zi (0 ≤ i ≤ n) [Qian et al. 2011].

Their Randomizer uses a group of circuits shown in Figure 1 to convert constant
numerical values to stochastic bit streams. In Figure 5, if the degree of the target
polynomial is n, the Randomizer needs to use n pairs of LFSRs and comparators to
convert X into n independent stochastic bit streams xk (1 ≤ k ≤ n), and another n + 1
pairs of LFSRs and comparators to convert Zi into stochastic bit streams zi (0 ≤ i ≤ n).

The De-Randomizer is implemented using a counter, which converts the resulting
bit stream into a binary radix encoded value.

The ReSC Unit, which processes the stochastic bit streams, is the core of the archi-
tecture. It is a generalized multiplexing circuit that implements a Bernstein polyno-
mial [Lorentz 1953] with coefficients in the unit interval. This circuit can be used to
approximate arbitrary continuous functions. For example, the polynomial

f (X) = 1
4

+ 9
8

X − 15
8

X2 + 5
4

X3 (3)

can be converted into a Bernstein polynomial of degree 3:

f (X) = 2
8

B0,3(X) + 5
8

B1,3(X) + 3
8

B2,3(X) + 6
8

B3,3(X). (4)

An illustration of how Equation (4) is implemented by the ReSC Unit is shown in
Figure 6.

The ReSC Unit consists of an adder block and a multiplexer block. The output of
the adder is connected to the select bits of the multiplexer block. At every clock cycle,
if the number of ones in the input set {x1, . . . , xn} equals i (0 ≤ i ≤ n), then the
output of the multiplexer y is set to zi. The output of the circuit is a stochastic bit
stream y in which the probability of a bit being one equals the Bernstein polynomial
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Fig. 6. ReSC Unit implementing the Bernstein polynomial f (X) = 2
8 B0,3(X) + 5

8 B1,3(X) + 3
8 B2,3(X) +

6
8 B3,3(X) at X = 0.5. Independent stochastic bit streams x1, x2, and x3 encode the value X = 0.5. Independent
stochastic bit streams z0, z1, z2, and z3 encode the corresponding Bernstein coefficients.

B(t) = ∑n
i=0 Zi Bi,n(t) evaluated at t = X. The details of this Bernstein polynomial-based

synthesis method can be found in Qian et al. [2011]. It can be seen from Figure 5 that
the entire architecture consists of (2n+ 1) LFSRs, (2n+ 1) comparators, an n-bit adder,
an (n + 1)-channel multiplexer, and a counter, where n is the highest degree of the
polynomial that this architecture can compute.

One of the advantages of the combinational logic-based reconfigurable architecture
is that it can implement any function in the stochastic domain, as long as the function
can be converted into a Bernstein polynomial. For example, the exponentiation and
hyperbolic tangent functions, which were previously implemented by the FSM, can
also be implemented using this architecture. However, compared to the FSM-based
implementation, this architecture consumes more hardware resources. This is because
in the FSM-based implementation, we only need a single LFSR to convert the input
variable x into a stochastic bit stream. However, in the combinational logic-based
reconfigurable architecture proposed in Qian et al. [2011], we will need n LFSRs to
convert the input variable x to n independent stochastic bit streams, where n is the
degree of the Bernstein polynomial.

Recently, Ding et al. [2014] showed that the multiple constant input probabilities of
the MUX-based design do not have to be independent. Based on this observation, they
proposed a method to generate multiple correlated probabilities for the MUX-based
SC architecture. This method can efficiently reduce the resources required to gener-
ate stochastic bit streams. However, it only works for generating constant probability
values for the MUX inputs. As a result, it is not reconfigurable.

Inspired by the approach proposed in Ding et al. [2014] and similar to the technique
described in Ichihara et al. [2014], in this article we optimize the Randomizer unit of
the combinational logic-based reconfigurable architecture by sharing a single LFSR,
instead of using (n+1) LFSRs, to generate all of the coefficient input probabilities. Since
the stochastic bit streams corresponding to the Bernstein coefficient inputs of the MUX
are correlation insensitive, we can use a single LFSR to convert Zi into stochastic bit
streams zi (0 ≤ i ≤ n). Obviously, we still need to use (n + 1) comparators to compare
the randomly generated number with the Zi constant inputs.

As a further optimization we use only one pair of LFSR-comparators instead of n
pairs to generate the n independent stochastic bit streams corresponding to the input
value, X. The single LFSR-comparator generates the first bit stream and the remaining
n − 1 streams are generated by shifting the first generated stochastic bit stream for
one or a few bits using D-type flip-flops. This optimization saves (n− 1) pairs of LFSR-
comparators at the cost of a slight accuracy loss due to introducing a small amount of
correlation between the X streams. By applying these architecture optimizations, the
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Fig. 7. The optimized ReSC architecture. Only one LFSR is used to convert the Zi inputs into stochastic
streams and (n−1) LFSRs have been replaced with (n−1) D-flip flops to generate the independent stochastic
bit stream corresponding to input value X. Correspondingly, the number of comparators decreases from
(2n + 1) to (n + 2). Note that a further optimization could be using an LFSR and a comparator right after
the MUX to generate a stochastic stream only for the selected Zi input. This would save (n− 1) comparators
and so reduce the hardware cost and power consumption. However, due to using a more complex MUX, this
optimization would lead to a higher critical path and a higher area-delay product.

number of LFSRs required in the ReSC architecture decreases from (2n + 1) to only two
and the number of comparators decreases from (2n+ 1) to (n+ 2). Thus, our optimized
architecture consists of two LFSRs, (n − 1) D-flip-flops, (n + 2) comparators, an n-bit
adder, an (n + 1)-channel multiplexer, and a counter. Figure 7 shows the optimized
ReSC architecture.

Saraf et al. [2013] also proposed an FSM-based synthesis method for SC. However,
that method is completely different from the method introduced by this article. Their
method first converts a target function into a corresponding Taylor series, and then con-
structs the FSM using the Taylor series. The approximation errors with this approach
depend on two factors. One is how close the original target function is to its Taylor
series. The other is how close the Taylor series is to the FSM implementation. Even if
this method can obtain a perfect match between the Taylor series and the FSM imple-
mentation, the approximation error between the original target function and its Taylor
series can be large. Additionally, only single-input functions and one-dimensional FSM
topologies were discussed in Saraf et al. [2013].

Although the results reported in Saraf et al. [2013] show that their method is able
to implement some single-input functions using fewer states than previous methods,
decreasing the number of states does not necessarily reduce the hardware resources.
For example, they implement single-input functions such as cos(x), sin(x), tanh(x),
exp(-x), log(1+x), and x3 using FSMs with five to 19 states. An FSM with N states
requires �log2N� flip-flops. Thus, three to five flip-flops are required for implementing
those functions. The method that we will introduce in this article not only is able to
synthesize multi-input functions accurately but it can also implement most functions
using only an 8-state FSM. Thus, only three flip-flops will be sufficient.

In a more recent work, Saraf and Bazargan [2016] present stochastic implementa-
tions of single-input polynomial functions using sequential logic. They use a stochastic
integrator to generate Bernstein basis polynomials and then, similar to the ReSC ar-
chitecture, they form a linear combination of the Bernstein basis polynomials with the
Bernstein coefficients using a multiplexer. The inputs to the multiplexer are random
bit streams representing the Bernstein coefficients, while the multiplexer select input
is driven by the up/down control of the counter of the stochastic integrator. Unlike the
combinational ReSC implementation that relies on multiple independent random bit
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Fig. 8. An FSM-based reconfigurable stochastic architecture. The inputs are X and Zi (0 ≤ i ≤ N − 1).
The output is Y . These values are represented using a binary radix. The multiplexer is an M-bit N-to-1
multiplexer, where M is the number of bits of the binary radix representation of Zi .

streams, their work requires a single random bit stream as the input variable. While
the critical path delay is less than that of the ReSC architecture, the fault tolerance
of this sequential implementation is slightly lower due to the correlation between suc-
cessive counter states of the stochastic integrator. The presence of memory elements
also increases the area of their sequential implementation in comparison to the ReSC
architecture.

In our previous work [Li et al. 2014b], we provided in-depth analysis of existing FSM-
based SC elements and explained how they work. We also implemented several digital
image processing algorithms using these computing elements to demonstrate how we
can utilize them in real applications [Li et al. 2014a]. In this article, we introduce
synthesis methods that can implement an arbitrary target function in the stochastic
domain using FSMs. Inspired by the combinational logic-based reconfigurable architec-
ture and the hardware-saving feature of the FSM-based SC elements, we also propose
a reconfigurable architecture using sequential logic, which can significantly reduce the
circuit complexity for the Randomizer. In the following sections, we will discuss the
details of the proposed architecture and the corresponding synthesis methods.

3. FSM-BASED RECONFIGURABLE ARCHITECTURE

3.1. Single-Input FSM-Based Reconfigurable Architecture

Inspired by the hyperbolic tangent and exponentiation functions developed by Brown
and Card [2001a], we found that these functions can be implemented using a generic
reconfigurable architecture [Li et al. 2012]. In Section 1, we introduced the state tran-
sition diagram of both FSMs. Because the only difference between Figures 3 and 4
is the output configuration of the FSM, we can implement these functions using the
generic FSM-based reconfigurable architecture shown in Figure 8. This architecture
implements state machines that are similar in topology to the FSM shown in Figures 3
and 4, but they are more general in the sense that the output of each state is the state
number. The architecture is composed of three parts: the Randomizer, the FSM, and
the De-Randomizer.

The Randomizer has the same function as shown in Figure 5. It converts the numeri-
cal values X and Zi to the corresponding stochastic bit streams. However, it takes much
less hardware than the combinational implementation. As we described in Section 2,
the original Randomizer proposed in Qian et al. [2011] uses (2n+1) pairs of LFSRs and
comparators in total (n for X, (n+1) for Zi, as shown in Figure 5), where n is the degree
of the target polynomial. The optimized Randomizer shown in Figure 7 saves some
hardware resources by using two LFSRs instead of (n+ 1) and decreasing the number
of comparators to (n + 2). However, it is still more expensive than the Randomizer
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Fig. 9. The state transition diagram of an N-state Type-1 FSM. This FSM is used in the reconfigurable
architecture shown in Figure 8. The input of this FSM is x, and the numbers on each arrow represent the
transition condition. This FSM has �log2 N� outputs, encoding a value in the binary radix. In the figure, the
number below each state Si (0 ≤ i ≤ N − 1) represents the output of the FSM when the current state is Si .

shown in Figure 8. In the proposed architecture, the Randomizer uses only two LFSRs,
two comparators, and an M-bit N-channel multiplexer, where M is the number of bits
of the binary radix representation of Zi.1

The De-Randomizer is implemented using a binary counter, which converts the re-
sulting output bit stream into a binary value. This is the same as the original one
shown in Figure 5.

The state transition diagram of the FSM is shown in Figure 9. In the remainder
of the article, we call this FSM the Type-1 FSM. If the current state of the Type-1
FSM is Si, the output is y = i, 0 ≤ i ≤ N − 1. Note that if the current state of this
FSM is Si, then the MUX in the Randomizer will connect its ith data input (i.e., Zi) to
the output of the MUX and will generate the corresponding bit using the LFSR and
the comparator. This implementation essentially has the same behavior as the circuit
shown in Figure 5, which needs n + 1 LFSRs and n + 1 comparators to generate n + 1
different stochastic bit streams for the constant values Z0, Z1, . . . , Zn, respectively. We
notice that at each clock cycle one of these random input bits to the MUX in the ReSC
Unit will be selected as the output of the circuit. One way to implement this function
is to choose the probability of the output bit being one using the current state number.
This is equivalent to choosing the constant value in the Randomizer according to the
current state number.

The architecture in Figure 8 is reconfigurable in the sense that it can be used to
compute different functions Y = f (X) by setting appropriate values for the constants
Zi (0 ≤ i ≤ N − 1). For example, if we set Zi = 1 when i ≥ N/2, and Zi = 0 otherwise,
it will implement the hyperbolic tangent function in Equation (1). If we set Zi = 1
when i < N − G, and Zi = 0 otherwise, it will implement the exponentiation function
in Equation (2). In the next section, we will introduce a synthesis method that can
compute the parameter values Zi (0 ≤ i ≤ N − 1) for a given target function Y = f (X).

3.2. Multiple-Input FSM-Based Reconfigurable Architecture

Note that the architecture in Figure 8 can only implement target functions with a
single-input variable. When the target functions have two input variables, we can
change the architecture into a two-input FSM, as shown in Figure 10. The state tran-
sition diagrams of the FSM can be implemented in different ways. Figures 11 and 12
are two different state transition diagrams of a two-input FSM that can compute the
target function Y = f (X1, X2). In the remainder of this article, we call the FSM in
Figure 11 the Type-2A FSM, and the one in Figure 12 the Type-2B FSM. There are
tradeoffs between the different state transition diagrams since, for a given function,
each architecture would present a different approximation error, number of states, and
hardware resource usage. We will discuss the details in the following sections.

In fact, we can generalize the architecture to implement target functions with any
number of input variables. Figure 13 shows an implementation of the target function

1In the combinational architecture in Figure 5, the multiplexer is a single-bit n-to-1 multiplexer, where n is
the degree of the target polynomial.
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Fig. 10. The FSM-based reconfigurable stochastic architecture for implementing target functions with two
input variables: Y = f (X1, X2).

Fig. 11. The state transition diagram of an N-state Type-2A FSM. It has two inputs x1 and x2. The numbers
on each arrow represent the transition condition, with the first corresponding to the input x1 and the second
to the input x2. This FSM has �log2 N� outputs, encoding a value in the binary radix. In the figure, the
number below each state Si (0 ≤ i ≤ N − 1) represents the output of the FSM when the current state is Si .

Fig. 12. The state transition diagram of an N-state Type-2B FSM that also has two inputs x1 and x2. The
numbers on each arrow represent the transition condition, with the first corresponding to the input x1 and
the second corresponding to the input x2. This FSM has �log2 N� outputs, encoding a value in the binary
radix. In the figure, the number below each state Si (0 ≤ i ≤ N − 1) represents the output of the FSM when
the current state is Si . Compared to the Type-2A FSM, this FSM has a two-dimensional mesh structure.
Because N is normally a power of two, we set L to 2�0.5×log2 N�.

Y = f (X1, X2, . . . , Xk) with a k-input FSM. As the number of input variables becomes
larger, we will have more flexibility to design the state transition diagram of the FSM.
Figure 14 shows an example of an FSM with three inputs. Note that neither the topology
nor the state transition conditions for the three-input FSM are fixed. Although this
example used a mesh topology like the Type-2B FSM, we can also implement it using
the linear topology like Type 1 and 2A FSM, or a cube topology. The state transition
conditions for the same FSM topology can have different combinations, as long as the
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Fig. 13. The FSM-based reconfigurable stochastic architecture for implementing target functions with
multiple-input variables: Y = f (X1, X2, . . . , Xk).

Fig. 14. The state transition diagram of a 16-state FSM that has three inputs x1, x2, and x3. The numbers
on each arrow represent the transition condition, with the first corresponding to the input x1, the second
to x2, and the third to x3. The output of this FSM is the current state number encoded in the binary radix.
This FSM can be used to synthesize a three-input variable target function. Similar to the two-input FSM,
the topology and state transition condition of the three-input FSM are not fixed.

probability transition functions can be derived for each individual state. The details
about how to derive such probability transition functions will be introduced in Section 4.

4. FSM-BASED SYNTHESIS METHOD

4.1. Synthesis Method for Single-Input FSMs

To develop the FSM-based synthesis approach, we first study the state transition
diagram of the Type-1 FSM. The basic form of the FSM is a set of states S0 → SN−1
arranged linearly like a saturating counter. The FSM has N states in total. The input
to the state machine is x and it can take on two values: “0” and “1.” The output, y, is
the current state number of the FSM.

If input x is a Bernoulli random bit sequence, in which each random bit is independent
and has the same probability of being a one, then the state transition process of the
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FSM can be modeled as a time-homogeneous Markov chain that is irreducible and
aperiodic [Markov 1971]. Based on the theory of Markov chains, the FSM has an
equilibrium state distribution.

We define the probability that each bit in the input stream x is one to be Px, and
the probability that the current state is Si (0 ≤ i ≤ N − 1) in the equilibrium (or the
probability that the current output is i) to be Pi. Intuitively, Pi is a function of Px. In
the following, we derive a closed-form expression for Pi in terms of Px. This expression
is used to synthesize a given target function f (Px).

Based on the theory of Markov chains [Markov 1971], in equilibrium, the probabil-
ity of transitioning from the state Si−1 to its next state Si equals the probability of
transitioning from the state Si to the state Si−1. Thus, we have

Pi · (1 − Px) = Pi−1 · Px. (5)

Because all of the individual state probabilities Pi must sum to unity, we have

N−1∑
i=0

Pi = 1. (6)

Based on Equations (5) and (6), we obtain

Pi =
( Px

1−Px
)i

∑N−1
k=0 ( Px

1−Px
)k

. (7)

Equation (7) is the closed-form expression for Pi in terms of Px. In order to synthesize
a target function f (Px) exactly using the FSM, we just need to find a group of weights
Zi (0 ≤ Zi ≤ 1, and 0 ≤ i ≤ N − 1), so that

f (Px) =
N−1∑
i=0

Zi · Pi. (8)

Note that we can implement this equation using the architecture in Figure 8. The
weights (Z0, Z1, . . . , ZN−1) are the data inputs to the MUX. The selection input of the
MUX is the output y of the FSM. It can be seen that the data input channel is selected
by the current state number at each clock cycle. In other words, the output of the MUX
is Z = Zi when y = i. Note that z (the input of the De-Randomizer) is a stochastic bit
stream that is converted from the output Z of the MUX. If we define the probability of
ones in the bit stream z to be Pz, we have

Pz =
N−1∑
i=0

P(z = 1 | Zi is selected) · P(y = i)

=
N−1∑
i=0

P(zi) · Pi =
N−1∑
i=0

Zi · Pi,

(9)

where P(zi) is the probability of ones in the bit stream that would have been generated
by the constant value Zi directly. Note that P(zi) = Zi.

Next we show how to compute Zi in Equation (9) to synthesize the target function
f (Px). We define the mean square error ε as

ε =
∫ 1

0

(
f (Px) − Pz

)2 · d(Px). (10)
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The synthesis goal is to compute Zi to minimize ε [Li et al. 2012]. By expanding
Equation (10), we can rewrite ε as

ε =
∫ 1

0
f (Px)2 · d(Px) − 2

∫ 1

0
f (Px) · Pz · d(Px) +

∫ 1

0
P2

z · d(Px).

The first term
∫ 1

0 f (Px)2 · d(Px) is a constant because f (Px) is given. Thus, minimizing
ε is equivalent to minimizing the following objective function ϕ:

ϕ =
∫ 1

0
P2

z · d(Px) − 2
∫ 1

0
f (Px) · Pz · d(Px). (11)

We define a vector b, a vector c, and a matrix H as follows:

b = [Z0, Z1, . . . , ZN−1]T ,

c =

⎡
⎢⎢⎢⎢⎣

− ∫ 1
0 f (Px) · P0 · d(Px)

− ∫ 1
0 f (Px) · P1 · d(Px)

...
− ∫ 1

0 f (Px) · PN−1 · d(Px)

⎤
⎥⎥⎥⎥⎦,

H = [H0, H1, . . . , HN−1]T ,

where Pi (0 ≤ i ≤ N − 1) in vector c is defined by Equation (7) and Hi (0 ≤ i ≤ N − 1)
in matrix H is a row vector defined as follows:

Hi =

⎡
⎢⎢⎢⎢⎣

∫ 1
0 Pi · P0 · d(Px)∫ 1
0 Pi · P1 · d(Px)

...∫ 1
0 Pi · PN−1 · d(Px)

⎤
⎥⎥⎥⎥⎦

T

.

Referring to the expression of Pz in Equation (9), note that

bT Hb =
∫ 1

0
P2

z · d(Px),

cT b = −
∫ 1

0
f (Px) · Pz · d(Px).

Thus, the objective function ϕ in Equation (11) can be rewritten as

ϕ = bT Hb + 2cT b. (12)

We notice that computing Zi (i.e., the vector b) to minimize ϕ in the form of Equa-
tion 12 is a typical constrained quadratic programming problem. This is because Pi
is a function of Px (Equation (7)). The integral of Pi on Px is a constant, as are the
vector c and the matrix H. Based on Equation (12), the solution of Zi (i.e., the vector b)
can be obtained using standard techniques [Golub and Van Loan 1996]. Based on this
synthesis approach, if we set the target function to the hyperbolic tangent function in
Equation (1) or to the other functions, we will get exactly the same results proposed by
prior work [Brown and Card 2001a; Li et al. 2014b].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 13, No. 4, Article 57, Publication date: June 2017.



57:14 M. H. Najafi et al.

4.2. Two-Input FSM Analysis

The aforementioned synthesis approach also works for other FSMs, as long as their
state transition processes can be modeled as time-homogeneous Markov chains [Li
et al. 2012]. For example, both the Type 2A and 2B FSMs can be modeled as time-
homogeneous Markov chains if their inputs are Bernoulli random bit sequences. The
key here is to derive the closed-form expression of Pi, which is the probability that the
current state is Si (0 ≤ i ≤ N − 1) in equilibrium.

For the Type-2A FSM, if the current state of the FSM is Si (0 ≤ i ≤ N − 1), the next
state of the FSM will be

• Si+1 if x1 = 1 and 0 ≤ i ≤ N
2 − 1;

• Si−1 if (x1, x2) = (0, 1) and 1 ≤ i ≤ N
2 − 1;

• Si+1 if (x1, x2) = (1, 1) and N
2 ≤ i ≤ N − 2;

• Si−1 if x1 = 0 and N
2 ≤ i ≤ N − 1; and

• Si in any other cases.

If the inputs x1 and x2 are stochastic bit streams with fixed probabilities, then the ran-
dom state transition will eventually reach an equilibrium state, where the probability
of transitioning from state Si to its adjacent state Si+1 will equal the probability of
transitioning from state Si+1 to state Si. Thus, we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pi · Px1 = Pi+1 · (1 − Px1 ) · Px2 , 0 ≤ i ≤ N
2 − 2,

Pi= N
2 −1 · Px1 = Pi= N

2
· (1 − Px1 ),

Pi · Px1 · Px2 = Pi+1 · (1 − Px1 ),
N
2 ≤ i ≤ N − 2,

(13)

where Px1 and Px2 are the probabilities of ones in the input x1 and x2, respectively. Note
that state probabilities Pi must sum to unity over all Si (similar to Equation (6)), and
we have

Pi =

⎧⎪⎪⎨
⎪⎪⎩

(
Px1

1−Px1
)i ·P−i

x2

α
, 0 ≤ i ≤ N

2 − 1,

(
Px1

1−Px1
)i ·Pi+1−N

x2

α
, N

2 ≤ i ≤ N − 1,

(14)

where α = ∑ N
2 −1

i=0 ( Px1
1−Px1

)i · P−i
x2

+ ∑N−1
i= N

2
( Px1

1−Px1
)i · Pi+1−N

x2
.

For the Type-2B FSM, if the current state is Si (0 ≤ i ≤ N − 1), its next state will be

• Si+1, if (x1, x2) = (1, 1) and i �= kL − 1 (k is an integer, and kL ≤ N);
• Si−1, if (x1, x2) = (0, 0) and i �= kL;
• Si+L, if (x1, x2) = (1, 0) and i < N − L; and
• Si−L, if (x1, x2) = (0, 1) and i ≥ L.

If the inputs x1 and x2 are stochastic bit streams with fixed probabilities, then the
random state transition will eventually reach an equilibrium state. The probability of
transitioning from state Si to its horizontal adjacent state Si−1 equals the probability
of transitioning from the state Si−1 to the state Si. Thus, we have

Pi · (1 − Px1 ) · (1 − Px2 ) = Pi−1 · Px1 · Px2 . (15)

In addition, the probability of transitioning from state Si to its vertical adjacent state,
Si−L, equals the probability of transitioning from the state Si−L to the state Si:

Pi · (1 − Px1 ) · Px2 = Pi−L · Px1 · (1 − Px2 ). (16)
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Because all the individual state probabilities Pi must add up to unity, we have

Pi = at · bs

∑L−1
u=0

∑ N
L −1
v=0 au · bv

, (17)

where s = 	 i
L
 and t = i modulo L (i.e., i = s · L + t), and a and b are

a = Px1

1 − Px1

· Px2

1 − Px2

, b = Px1

1 − Px1

· 1 − Px2

Px2

.

Equations (14) and (17) are the closed-form expressions for Pi for the Type 2A and 2B
FSMs, respectively. Based on these expressions, we can convert the synthesis problem
into a typical constrained quadratic programming problem using a similar approach in-
troduced in Section 4.1. Then, we can compute the weights Zi in Figure 10 to implement
the target function.

Note that we can also use the two-input FSMs for synthesizing target functions
with one input variable. In fact, for certain single-input functions, it is not possible2 to
synthesize them using the Type-1 FSM. To synthesize single-input functions with the
two-input FSM, we just need to set one of the inputs as the weight. For example, if the
FSM has two inputs x1 and x2, and the target function has a single-input variable x,
we can set x1 = x, and find the best constant probability to use for x2. As a result, the
synthesis goal would be to compute Zi and Px2 to minimize the mean square error ε,
which has been defined in Equation (10). Note that if Px2 is set to a constant, Zi can be
obtained using the same synthesis method introduced in Section 4.1. To compute Px2 ,
we use an iterative approach. More specifically, we first set Px2 to 0.001 and compute
the corresponding Zi and ε. Next, we set Px2 to 0.002 and compute the corresponding
Zi and ε, and so on. Finally, we set Px2 to 1 and compute the corresponding Zi and ε.
The granularity of Px2 is determined by how many bits we are going to use to represent
a value stochastically. In most applications, we use 1,024 bits. Thus, the granularity
is set to 1

1024 . Among these 1,000 results of ε, we select the minimum one, and the
corresponding Px2 and Zi.

4.3. Synthesis of Multi-Input FSMs

The previous synthesis method can also be extended to other multiple-input FSMs. The
key here is to construct the state transition diagram so that we can derive the closed-
form expression of Pi by using the time-homogeneous Markov chain model when the
inputs are stochastic bit streams. For example, we can write the following equations
for the state transition diagram in Figure 14, which is a three-input FSM:

Pi · (1 − Px1 ) · (1 − Px2 ) · (1 − Px3 ) = Pi−1 · Px1 · Px2 · Px3 . (18)

Pi · (1 − Px1 ) · Px2 · (1 − Px3 ) = Pi−4 · Px1 · (1 − Px2 ) · Px3 . (19)

15∑
i=0

Pi = 1. (20)

2The mean square error is greater than 10−3 even in the optimal solution.
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Table I. The Values of Zi (0 ≤ i ≤ 7) for Synthesizing Different Target Functions Using Different FSM-Based
Reconfigurable Architectures

Equation (1) Z0 = 0 Z1 = 0 Z2 = 0 Z3 = 0 Z4 = 1 Z5 = 1 Z6 = 1 Z7 = 1
Equation (2) Z0 = 1 Z1 = 1 Z2 = 1 Z3 = 1 Z4 = 1 Z5 = 1 Z6 = 0 Z7 = 0
Equation (21) Z0 = 1 Z1 = 0 Z2 = 1 Z3 = 0 Z4 = 0 Z5 = 1 Z6 = 0 Z7 = 1
Equation (22) Z0 = 1 Z1 = 1 Z2 = 1 Z3 = 1 Z4 = 0 Z5 = 0 Z6 = 0 Z7 = 0
Note: The stochastic hyperbolic tangent function (Equation (1)), the stochastic exponentiation function
(Equation (2) with G = 2), and the stochastic absolute value function (Equation (21)) are implemented
using the Type-1 FSM-based architecture. The stochastic linear gain function (Equation (22)) is imple-
mented using the Type-2A FSM-based architecture.

By using the previous equations, we are able to derive a closed-form expression of Pi
in terms of Px1 , Px2 , and Px3 . Consider constants a and b:

a = Px1

1 − Px1

· Px2

1 − Px2

· Px3

1 − Px3

= Pi

Pi−1
,

b = Px1

1 − Px1

· 1 − Px2

Px2

· Px3

1 − Px3

= Pi

Pi−4
.

Based on Equations (18), (19), and (20), we have
15∑

i=0

Pi = P15 + · · · + P0 = P15 ·
(

1 + 1
a

+ 1
a2 + 1

a3 + 1
b

+ 1
ab

+ 1
a2b

+ 1
a3b

+ · · · + 1
a3b3

)
= 1

P15 = a3.b3

∑3
u=0

∑3
v=0 au · bv

⇒ Pi = at.bs

∑3
u=0

∑3
v=0 au · bv

, where s = ⌊ i
4

⌋
, t = i modulo 4.

Then we can use Pi to synthesize the three-input target function f (Px1 , Px2 , Px3 ). Note
that the expression we found for the 16-state three-input FSM can be easily extended
to any N-state multi-input FSM as long as a similar mesh structure is used to construct
the FSM.

4.4. Examples

Prior works have proposed some FSM-based SC elements, such as the stochastic hy-
perbolic tangent function in Equation (1), the stochastic exponentiation function in
Equation (2), the stochastic absolute value function in Equation (21), and the stochas-
tic linear gain function in Equation (22) [Brown and Card 2001a; Li et al. 2014b]:

f (Px) = |Px − 0.5| + 0.5. (21)

f (Px1 , Px2 ) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ Px1 ≤ Px2
1+Px2

,
1+Px2
1−Px2

· Px1 − Px2
1−Px2

,
Px2

1+Px2
≤ Px1 ≤ 1

1+Px2
,

1, 1
1+Px2

≤ Px1 ≤ 1.

(22)

All these computing elements can be implemented using the proposed FSM-based
reconfigurable architecture and our synthesis method. We can use the single-input
Type-1 FSM-based reconfigurable architecture to implement the stochastic exponenti-
ation function, the stochastic hyperbolic tangent function, and the stochastic absolute
value function. Because the stochastic linear gain function has two inputs, we imple-
ment this function using the two-input Type-2A FSM-based reconfigurable architec-
ture. Table I gives the values of Zi in the corresponding architecture for implementing
different target functions. In these examples, we assume the FSM has eight states.
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Table II. The Values of Px2 and Zi for the Type-2A FSM-Based Reconfigurable Architecture When Synthesizing
the Gaussian Distribution Function in Equation (23) with δ = 2 and μ = 0 (These Values Are Computed Using

an 8-State Type-2A FSM)

Px2 = 0.563

Z0 = 0.11 Z1 = 0.64 Z2 = 0.98 Z3 = 0.87 Z4 = 0.87 Z5 = 0.98 Z6 = 0.64 Z7 = 0.11

Table III. The Values of Px2 and Zi for the Type-2B FSM-Based Reconfigurable Architecture When
Synthesizing the Gaussian Distribution Function in Equation (23) with δ = 2 and μ = 0 (These

Values Are Computed Using a 16-State Type-2B FSM)

Px2 = 0.4

Z0 = 0.11 Z1 = 0 Z2 = 1 Z3 = 0.66 Z4 = 0.8 Z5 = 1 Z6 = 1 Z7 = 1
Z8 = 1 Z9 = 1 Z10 = 1 Z11 = 0 Z12 = 1 Z13 = 1 Z14 = 0.8 Z15 = 0.11

Fig. 15. (Left) In this simulation, we use four different precisions of Zi in Table II to compare the approxi-
mation error with the target Gaussian distribution function (Equation (23)). The FSM is implemented using
eight states. (Right) In this simulation, we use four different precisions of Zi in Table III to compare the ap-
proximation error with the target Gaussian distribution function (Equation (23)). The FSM is implemented
using 16 states.

We can also use the two-input FSMs to synthesize single-input functions. This
method is normally adopted when the target functions are hard to synthesize using
the single-input FSM. For example, the target function in Equation (23) is a Gaussian
distribution function:

f (Px) = 1

δ
√

2π
e− (2Px−1−μ)2

2δ2 , (0 ≤ Px ≤ 1). (23)

Although it has only one input, we are not able to synthesize it using the single-input
FSM. In this case, we can use the two-input FSM. If we assume in Equation (23) that
δ = 2 and μ = 0, Table II gives the synthesis results when using an 8-State Type-2A
FSM, and Table III gives the synthesis results when using a 16-state Type-2B FSM. In
both implementations, we set the value of Px2 to a constant.

We noticed that the values of Zi listed in Tables II and III contain not only zero and
one but also fractional values. If we store these values with high precision, such as
an 8-bit register, they will consume a significant amount of hardware resources in the
multiplexer part of the architecture. On the other hand, if we reduce the precision of
these values, it may increase the approximation error. Thus, it is interesting to study
the tradeoffs between the approximation error and the precision of Zi. In Figure 15,
we use simulations to compare the approximation error between the target function
and the corresponding FSM-based implementations using different precisions of Zi.
Table IV summarizes the results. It can be seen that we can get an acceptable result
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Table IV. The Mean Square Error of the FSM-Based Architecture for
Implementing the Gaussian Distribution Target Function (Equation (23))

When Using Different Precisions for Zi (the Mean Square Error Is Computed
Using Equation (10))

FSM Precision of Zi Mean Square Error
8-State 8-bit 1.17 × 10−5

(Table II) 3-bit 1.41 × 10−4

2-bit 2.70 × 10−3

1-bit 6.80 × 10−3

16-State 8-bit 5.78 × 10−5

(Table III) 3-bit 7.02 × 10−4

2-bit 5.80 × 10−3

1-bit 1.80 × 10−3

Table V. The Values of Px2 and Zi for the Type-2A FSM-Based Reconfigurable Architecture When
Synthesizing the High-Order Polynomial Function in Equation (24) (These Values Are Computed

Using an 8-State Type-2A FSM)

Px2 = 0.188

Z0 = 0 Z1 = 0.036 Z2 = 0.019 Z3 = 0.04 Z4 = 0.204 Z5 = 0.811 Z6 = 0.113 Z7 = 0.999

Table VI. The Values of Px2 and Zi for the Type-2B FSM-Based Reconfigurable Architecture
When Synthesizing the High-Order Polynomial Function in Equation (24) (These Values Are Computed

Using a 16-State Type-2B FSM)

Px2 = 0.828

Z0 = 0 Z1 = 0 Z2 = 0 Z3 = 0.018 Z4 = 1 Z5 = 0.169 Z6 = 1 Z7 = 0.907
Z8 = 0 Z9 = 1 Z10 = 0 Z11 = 0 Z12 = 1 Z13 = 1 Z14 = 1 Z15 = 1

(mean square error of less than 10−3) even by storing Zi with 3 bits of precision. If the
application itself can tolerate some errors, it is possible to store Zi using only a single
bit.

Another example showing the versatility of our FSM-based method is the high-
order polynomial in Equation (24), which was used in low-density parity-check decod-
ing [Richardson et al. 2001]. This function cannot be synthesized using the single-input
FSM. However, if we use the two-input FSM, we can synthesize this function using ei-
ther of the state transition diagrams with the corresponding values shown in Tables V
and VI:

f (Px) = 0.1575Px + 0.3429P2
x + 0.0363P5

x + 0.059P6
x

+ 0.279P8
x + 0.1253P9

x , (0 ≤ Px ≤ 1).
(24)

We also study the tradeoffs between the approximation error and the precision of Zi
in this example. The results are shown in Figure 16. We used simulations to compare
the approximation error between the target function and the corresponding FSM-based
implementations using different precisions of Zi. Table VII summarizes the results. It
can be seen that if we use the Type-2A FSM, we can get an acceptable result with a
mean square error of less than 10−3 by storing Zi with only two bits. If we use the
Type-2B FSM, the mean square error is less than 10−4 even if Zi is stored using only
a single bit.

In the next section, we will show the hardware area, the critical path latency, the
power consumption, and the energy consumption of the FSM-based reconfigurable
architecture using different precisions of Zi.
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Fig. 16. (Left) In this simulation, we use four different precisions of Zi in Table V to compare the approxima-
tion error with the target polynomial function (Equation (24)). The FSM is implemented using eight states.
(Right) In this simulation, we use four different precisions of Zi in Table VI to compare the approximation
error with the target polynomial function (Equation (24)). The FSM is implemented using 16 states.

Table VII. The Mean Square Error of the FSM-Based Architecture for Implementing
the Polynomial Target Function (Equation (24)) When Using Different

Precisions for Zi (the Mean Square Error Is Computed Using Equation (10))

FSM Precision of Zi Mean Square Error
8-State 8-bit 1.13 × 10−7

(Table V) 3-bit 3.25 × 10−4

2-bit 3.20 × 10−4

1-bit 3.60 × 10−3

16-State 8-bit 4.72 × 10−7

(Table VI) 3-bit 6.70 × 10−5

2-bit 6.56 × 10−5

1-bit 6.95 × 10−5

5. EXPERIMENTAL RESULTS

In this section, we will first present a few examples on the proposed synthesis
method and then discuss the tradeoffs among the precision of Zi, the approximation
error, and the hardware area. We further compare the hardware area, energy consump-
tion, and fault tolerance of the proposed FSM-based reconfigurable architecture with
the combinational logic-based ReSC architecture [Qian et al. 2011] and the optimized
ReSC architecture presented in Figure 7.

5.1. Hardware Area and Energy Consumption Comparison

This section compares the hardware area, the maximum working frequency, the power
consumption, and the energy dissipation of the three architectures. We implement
the discussed architectures using Verilog HDL and evaluate the hardware area using
the FreePDK45 CMOS standard cell library [Stine et al. 2007]. The Synopsys Design
Compiler vH2013.12 was used to synthesize the designs. Table VIII shows the hardware
area of the basic modules in the three reconfigurable architectures.

As discussed in Section 3, the reconfigurable architectures have several basic mod-
ules in common, such as the LFSR and the comparator. In our experiments, we use
1,024 (i.e., 210) bits to represent a numerical value stochastically, so the bit width of
these two components is 10. The hardware area of the original combinational logic-
based reconfigurable ReSC and the optimized ReSC depends on the degree of the
polynomial. For a polynomial of degree of n, the original ReSC needs (2n + 1) LFSRs,
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Table VIII. Hardware Silicon Area (μm2) of the Basic Modules

Single-bit multiplexer with different number of inputs
Number of inputs 4 5 6 7 8 9 16 32
Hardware area 16.43 21.59 30.97 37.07 41.76 46.92 78.37 155.33

Single-bit adder with different number of inputs
Number of inputs 3 4 5 6 7 8
Hardware area 8.91 24.87 25.81 34.72 35.66 59.6

10-bit LFSR
Hardware area 194.29

Comparator with different precisions
Number of bits 1 2 3 6 8 10
Hardware area 3.28 14.07 21.11 48.80 71.33 89.16

Single-bit FSM (Figure 9)
Number of states 8 16 32
Hardware area 75.55 114.50 168.47

2-bit FSM (Figure 11)
Number of states 8 16 32
Hardware area 114.50 172.70 277.35

2-bit FSM (Figure 12)
Number of states 8 16 32
Hardware area 81.18 109.34 150.64

Table IX. Hardware Area (μm2) of the Combinational Logic-Based ReSC Reconfigurable
Architecture and the FSM-Based Reconfigurable Architecture

Degree n 3 4 5 6 7 8
Original ReSC (10-bit Zi) 2,036.3 2,543.1 3,044.3 3,579.4 4,048.7 4,547.5

Optimized ReSC (10-bit Zi) 1,106.6 1,213.6 1,306.5 1,431.8 1,578.7 1,672.6
Optimized ReSC (8-bit Zi) 993.0 1,100.0 1,175.6 1,297.6 1,381.1 1,452.0
Optimized ReSC (6-bit Zi) 923.1 1,012.3 1,047.9 1,115.1 1,245.5 1,269.5

1-bit Zi 2-bit Zi 3-bit Zi 8-bit Zi

8-state 16-state 8-state 16-state 8-state 16-state 8-state 16-state
Type-1 FSM 636.8 749.9 709.1 864.9 787.5 960.2 1,109.0 1,485.3
Type-2A FSM 801.1 888.4 845.2 1,045.6 936.7 1,140.4 1,248.8 1,636.9
Type-2B FSM 739.6 840.5 820.8 966.8 899.2 1,083.1 1,205.6 1,570.3

(2n + 1) comparators, an n-input adder, and an (n + 1)-channel multiplexer, while the
optimized ReSC needs two LFSRs, (n + 2) comparators, (n − 1) D-flip-flops, an n-input
adder, and an (n + 1)-channel multiplexer. Table IX shows the hardware area of these
architectures with different polynomial degrees (n = 3, 4, . . . , 8). Clearly, for all poly-
nomial degrees, the hardware cost of the optimized ReSC is much less than the cost of
the original ReSC.

Note that we can also reduce the precision of the parameters of the optimized ReSC
to reduce its hardware area. However, the area saved by this approach is very limited
because the hardware area of the MUX and the LFSR, which is used in generating the n
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independent X bit streams, are independent of the precision. As shown in Figure 7, the
MUX has (n+1) channels. The bit width of each channel of the MUX is 1 independent of
the precision of the parameter Zi. Additionally, in our experiments, we set the stochastic
bit stream length to 1,024, and it will need at least a 10-bit LFSR to generate the input
X bit stream without correlation. The hardware area of the LFSR and the comparators
that are used in converting Zi can only be reduced if we use a lower precision of Zi. Our
simulations showed that we require at least 6-bit precision of Zi to synthesize most
target functions with a mean square error of less than 10−3 with the ReSC architecture.
The hardware silicon area of the optimized ReSC with 10-, 8-, and 6-bit precision for
Zi is also presented in Table IX.

The hardware area of the proposed FSM-based reconfigurable architecture is inde-
pendent of the degree of the target polynomial. It depends on the type of the FSM,
the number of states in the FSM, and the precision of Zi. Note that the FSM-based
architecture requires fewer LFSRs and comparators than the original ReSC. It also re-
quires no D-flip-flop and requires fewer comparators compared to the optimized ReSC.
The single-input FSM-based architecture requires only two LFSRs and comparators.
The two-input FSM-based configurations require three LFSRs and comparators. Note
that, in the two-input FSMs, the LFSR that is used to generate the stochastic stream
corresponding to the second input, X2, can be saved by sharing and circular shifting of
the output of the LFSR that is used in converting the first input, X1. The circular shift-
ing can reduce the correlation between the generated streams with no extra hardware
overhead [Ichihara et al. 2014].

Table IX shows the hardware area of different configurations of the FSM-based
reconfigurable architecture. It can be seen that when the number of states and the
precision of Zi are the same, the single-input Type-1 FSM requires the least silicon
area, and the Type-2B FSM takes less silicon area than the Type-2A FSM. We found
that most target functions can be synthesized with a mean square error of less than 10−3

using the 8-state Type-2B FSM with 3-bit precision for Zi. The hardware area of this
configuration is even smaller than the smallest area of the optimized combinational
logic-based ReSC architecture for computing polynomials with a degree of 3, and it
can save up to 30% of the hardware area for polynomials with a degree of 8. When the
complexity of the target function increases, the FSM-based solution can offer significant
hardware area benefits. If the applications themselves can tolerate a larger margin of
error, we can further reduce the hardware area by using a lower precision of Zi and the
single-input FSM.

For both the combinational logic-based architecture and the proposed FSM-based
architecture, the throughputs, which are the number of bits that can be processed per
clock cycle, are exactly the same. Both architectures generate a single bit per clock
cycle, and the De-Randomizer, which is simply a counter, will wait for 2L clock cycles to
generate the final results, where L is the number of bits that represent a deterministic
value. The total latency for processing each input is determined by multiplying the
number of clock cycles by the latency of the critical path (the path in the entire design
with the maximum delay) in each architecture. Since we process each input value for
1,024 cycles, the latency of one clock cycle, or the delay of the critical path, determines
the processing speed. Table X shows the critical path delay for different configurations
of the ReSC and the proposed FSM-based reconfigurable architectures. As can be seen
in this table, all FSM-based architectures with low precision of Zi (1, 2, and 3 bits) have
a lower critical path latency than the optimized ReSC with 6-bit precision of Zi. This
means that for the same accuracy level, that is, an MSE less than 10−3, the proposed
FSM-based reconfigurable architectures is faster than the ReSC architectures.

We can evaluate the energy consumption using the product of the processing time
and the total (dynamic plus static) power consumption. All of the power values can be
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Table X. Critical Path Delay (ns) of the ReSC (Original and Optimized) and the Proposed
FSM-Based Reconfigurable Architectures

Degree n 3 4 5 6 7 8
Original ReSC (10-bit Zi) 0.637 0.664 0.750 0.801 0.832 0.860

Optimized ReSC (10-bit Zi) 0.600 0.656 0.701 0.730 0.749 0.772
Optimized ReSC (8-bit Zi) 0.600 0640 0.700 0.721 0.749 0.775
Optimized ReSC (6-bit Zi) 0.626 0.651 0.678 0.730 0.753 0.768

1-bit Zi 2-bit Zi 3-bit Zi 8-bit Zi

8-state 16-state 8-state 16-state 8-state 16-state 8-state 16-state
Type-1 FSM 0.446 0.475 0.470 0.538 0.560 0.581 0.610 0.660
Type-2A FSM 0.475 0.497 0.511 0.530 0.548 0.592 0.615 0.715
Type-2B FSM 0.448 0.482 0.490 0.554 0.559 0.589 0.619 0.669

Table XI. Total Power Consumption (mW) (Dynamic + Static) at the Maximum Working
Frequency of the ReSC (Original and Optimized) and the Proposed FSM-Based

Reconfigurable Architectures

Degree n 3 4 5 6 7 8
Original ReSC (10-bit Zi) 4.987 6.048 6.041 7.037 7.392 8.722

Optimized ReSC (10-bit Zi) 2.295 2.259 2.361 2.300 2.564 2.420
Optimized ReSC (8-bit Zi) 2.119 2.097 2.161 2.095 2.30 2.373
Optimized ReSC (6-bit Zi) 1.682 1.680 1.829 1.713 1.870 1.923

1-bit Zi 2-bit Zi 3-bit Zi 8-bit Zi

8-state 16-state 8-state 16-state 8-state 16-state 8-state 16-state
Type-1 FSM 2.051 1.982 2.025 1.845 1.792 1.787 2.153 2.072
Type-2A FSM 2.074 2.087 1.948 1.976 1.936 1.910 2.187 2.027
Type-2B FSM 2.120 2.093 1.970 1.817 1.845 1.804 2.148 2.053

extracted from the synthesis results. The static power or leakage is directly propor-
tional to the hardware area and so an architecture with a lower hardware cost will
have lower leakage power. Dynamic power, on the other hand, is an increasing function
of the working frequency. Since the maximum working frequency is inversely propor-
tional to the critical path latency, the architectures have different maximum working
frequencies and so different processing times. Thus, the total energy consumption
(power × time) is a better metric than the power consumption to compare the cost of
the different architectures.

The total power consumption and the energy consumption at the maximum working
frequency of each architecture are shown in Table XI and XII, respectively. As can be
seen in these tables, the total power consumption of the proposed FSM-based reconfig-
urable architectures is of the same order or, in a few cases, even more than the power
consumption of the optimized ReSC architecture with the minimum precision of Zi.
However, due to a lower critical path latency, and thus a shorter processing time, up to
a 40% savings in the total energy consumption is observed when using the FSM-based
architectures with 1- to 3-bit precisions instead of the low precision optimized ReSC
architectures.

5.2. Fault Tolerance Comparison

We compare the fault tolerance capabilities of the stochastic computations on polyno-
mial functions when the input data and the internal circuit are corrupted with noise.
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Table XII. Energy Dissipation (pJ) During One Clock Cycle at the Maximum Working
Frequency of the ReSC (Original and Optimized) and the Proposed FSM-Based

Reconfigurable Architectures

Degree n 3 4 5 6 7 8
Original ReSC (10-bit Zi) 3.176 4.015 4.530 5.636 6.150 7.500

Optimized ReSC (10-bit Zi) 1.377 1.481 1.655 1.679 1.920 1.868
Optimized ReSC (8-bit Zi) 1.271 1.342 1.512 1.510 1.737 1.839
Optimized ReSC (6-bit Zi) 1.052 1.093 1.240 1.250 1.408 1.476

1-bit Zi 2-bit Zi 3-bit Zi 8-bit Zi

8-state 16-state 8-state 16-state 8-state 16-state 8-state 16-state
Type-1 FSM 0.914 0.941 0.951 0.992 1.003 1.038 1.313 1.367
Type-2A FSM 0.985 1.037 0.995 1.047 1.060 1.130 1.345 1.449
Type-2B FSM 0.949 1.008 0.965 1.006 1.031 1.062 1.329 1.373

Table XIII. The Sixth-Order Maclaurin Polynomial Approximations Used as the Target Functions

Function Degree of Polynomial Scaling Factor Function Degree of Polynomial Scaling Factor

sin(x) 5 1 tan(x) 5 0.6818
arcsin(x) 5 0.8054 arctan(x) 5 1
sinh(x) 5 0.8511 tanh(x) 5 1

arcsinh(x) 5 1 cos(x) 6 1
cosh(x) 6 0.6481 exp(x) 6 0.3679
ln(x+1) 6 1

5.2.1. Noise in the Input Data. We simulate noise in the input data by independently
flipping the X input bits and the Zi coefficient inputs for a given percentage of the
computing elements. For example, 5% noise in the circuit means that 5% of the total
number of input bits are randomly chosen and flipped. Suppose that the input data of
a deterministic implementation is M = 10 bits. In order to have the same resolution,
the bit stream of a stochastic implementation contains 2M = 1,024 bits. We choose the
error ratio λ of the input data to be 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1, as
measured by the fraction of random bit flips that occur [Qian and Riedel 2008; Qian
et al. 2011].

To measure the impact of this noise, we performed two sets of experiments. In the
first set, we chose the sixth-order Maclaurin polynomial approximation of 11 elemen-
tary functions as the implementation target. We list these 11 functions in Table XIII
together with the degree of the Maclaurin polynomials. Such Maclaurin approxima-
tions are commonly used in numerical evaluations of non-polynomial functions. In the
second experiment, we randomly chose 100 polynomials of degree six. The goal of these
experiments is to demonstrate that the proposed architectures can synthesize a large
range of functions with good fault-tolerance capability.

In the first set of experiments, all of the Maclaurin polynomials evaluate to non-
negative values for 0 ≤ t ≤ 1. However, for some of these, the maximal evaluation
on [0, 1] is greater than 1. Thus, we scale these polynomials by the reciprocal of their
maximum value. The scaling factors that we used are listed in Table XIII.

We evaluated each Maclaurin polynomial on 30 points starting from 1 with an inter-
val of 1

32 : 1, 31
32 , 30

32 , . . . , 3
32 . For each error ratio λ, each Maclaurin polynomial, and each

evaluation point, we simulated both the stochastic and the deterministic implementa-
tions 1,000 times. We averaged the relative errors over all simulations. Finally, for each
error ratio λ, we averaged the relative errors over all polynomials and all evaluation
points.
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Table XIV. Relative Error for the Stochastic and Deterministic Implementations of Polynomial Computation
Versus the Error Ratio λ in the Input Data

Maclaurin Polynomial
Error Deterministic ReSC Type-1 Type-2A Type-2B
Ratio Implementation [Qian et al. 2011] FSM (Figure 9) FSM (Figure 11) FSM (Figure 12)

λ Relative error (%)
0.0 0.00 2.86 0.66 0.44 0.63

0.001 0.88 2.87 0.79 0.55 0.81
0.002 1.70 2.93 0.98 0.71 0.99
0.005 3.91 3.26 1.61 1.32 1.68
0.01 7.67 4.21 2.73 2.38 2.75
0.02 14.6 6.71 4.95 4.49 4.97
0.05 32.7 14.9 11.6 10.6 11.6
0.1 58.6 27.9 21.9 20.3 21.8

Randomly Chosen Polynomial
Error Deterministic ReSC Type-1 Type-2A Type-2B
Ratio Implementation [Qian et al. 2011] FSM (Figure 9) FSM (Figure 11) FSM (Figure 12)

λ Relative error (%)
0.0 0.00 3.67 3.88 0.66 0.88

0.001 1.30 3.69 3.89 0.76 0.90
0.002 2.24 3.74 3.93 0.97 1.07
0.005 4.96 4.03 3.99 1.76 1.91
0.01 9.48 4.88 4.39 3.31 3.85
0.02 18.2 7.20 5.87 6.42 7.49
0.05 42.2 15.5 11.2 15.5 18.3
0.1 79.7 29.5 21.4 29.9 35.6

Note: All three FSMs are implemented using eight states. We set the highest degree to 6 for the combina-
tional logic-based reconfigurable architecture (ReSC).

In the second set of experiments, we randomly chose 100 polynomials of degree six.
We evaluated each on the same 30 points. We performed similar statistics to that in the
first set of experiments. Table XIV shows the average relative error of the stochastic
implementation and the deterministic implementation versus different error ratios, λ,
for both sets of experiments.

When λ = 0, meaning that no noise is injected into the input data, the deterministic
implementation computes without any error. However, due to the inherent variance
in the stochastic input values, all of the different stochastic implementations produce
a small relative error. Compared to the ReSC architecture, the Type-2A and Type-2B
FSM-based architectures produce more accurate results for both the selected Maclaurin
polynomials and the randomly chosen polynomials. The proposed Type-1 FSM-based
architecture, on the other hand, has a higher average relative error for small λ values
when processing randomly chosen polynomials. The reason is the higher approximation
error when the target functions are hard to synthesize using the single-input FSM. With
noise, the relative error of the deterministic implementation increases dramatically as
λ increases. Even for small error rates, all the stochastic implementations perform
much better, and their error tolerance capabilities are almost the same.

It is not surprising that the deterministic implementation is so sensitive to errors,
given that the representation used is binary radix. In a noisy environment, bit flips
afflict all the bits with equal probability. In the worst case, the most significant bit gets
flipped, resulting in relative error of 2M−1/2M = 1/2 on the input value. In contrast, in
a stochastic implementation, the data is represented as the fractional weight on a bit
stream of length 2M. Thus, a single bit flip only changes the input value by 1/2M, which
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Table XV. Relative Error of the Stochastic and Deterministic Implementations of the Maclaurin
Polynomial Computation Versus the Error Ratio, λ, in the Internal Circuit

Maclaurin Polynomial
Error Deterministic Type-1 Type-2A Type-2B
Ratio Implementation FSM (Figure 9) FSM (Figure 11) FSM (Figure 12)

λ Relative Error (%)
0.001 2.52 0.83 0.64 0.78
0.002 4.42 1.07 0.89 0.99
0.005 9.81 1.90 1.71 1.67
0.01 18.5 3.28 3.08 2.77
0.02 32.6 6.01 5.69 4.93
0.05 62.9 13.0 12.3 10.8
0.1 90.1 21.8 20.7 18.6

Note: The FSMs are implemented using eight states. We set the highest degree to 6 for the
deterministic implementation.

Table XVI. Relative Error for the Stochastic and Deterministic Implementations of the Maclaurin
Polynomial Computation Versus the Error Ratio, λ, with Simultaneous Error Injection on Both

the Internal Circuit and the Input Data

Maclaurin Polynomial
Error Deterministic Type-1 Type-2A Type-2B
Ratio Implementation FSM (Figure 9) FSM (Figure 11) FSM (Figure 12)

λ Relative Error (%)
0.001 2.68 1.02 0.82 1.00
0.002 4.83 1.49 1.25 1.41
0.005 11.0 2.99 2.76 2.76
0.01 20.3 5.48 5.10 4.93
0.02 35.8 10.2 9.53 9.17
0.05 67.3 22.1 20.6 20.1
0.1 93.2 36.1 34.1 33.8

Note: The FSMs are implemented using eight states. We set the highest degree to 6 for the
deterministic implementation.

is minuscule in comparison. Furthermore, in stochastic implementations, bit flips can
compensate for each other, which can actually increase the accuracy of the final output.

Another phenomenon noted from Table XIV is that the relative evaluation error of
randomly chosen polynomials computed with deterministic implementation is much
larger than that of the Maclaurin polynomials. This is because the power-form poly-
nomial coefficients of the randomly chosen polynomials are much larger than in the
Maclaurin polynomials. In Table XIII, we listed the 11 elementary functions that are
converted to Maclaurin polynomials for the deterministic implementations and the
Bernstein polynomials for the combinational logic-based stochastic implementations.
Their power-form polynomial coefficients are between -1 and 1. However, the power-
form polynomial coefficients of the randomly chosen polynomials are much larger. We
give one example as shown in Equation (25). Some coefficients are even larger than
10. Thus, bit flips on these coefficients could dramatically change the evaluation of the
randomly chosen polynomials using the deterministic implementation:

f (Px) = 0.869141−1.74316Px+6.46484P2
x −15.5371P3

x +17.1387P4
x −6.82031P5

x . (25)

5.2.2. Noise in the Internal Circuits. Noise on the internal circuits of the deterministic
implementation is simulated by randomly flipping the bits at the inputs and output of
the adder and multiplier circuits. For example, if the error ratio is 0.001, then for each
bit, we generate a value from a uniformly distributed probability function and compare
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it with the error ratio of 0.001. If the generated probability is less than the error ratio,
then we will flip that bit.

For the FSM-based stochastic implementation, noise is simulated by randomly
changing the current state of the FSM. For example, if the FSM has eight states
and the error ratio is 0.001, then we generate a value from a uniformly distributed
probability function at each clock cycle and compare it with the error ratio. If the gen-
erated probability is less than the error ratio, then we will set the current state to a
random state between 0 and 7.

In all of these experiments, the bit stream of a stochastic implementation uses 1,024
bits and the precision of the deterministic implementation is 10 bits. We choose the
error ratio, λ, to be 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1. We evaluated each
Maclaurin polynomial in Table XIII on 30 points starting from 1 with an interval
of 1

32 : 1, 31
32 , 30

32 , . . . , 3
32 . For each error ratio λ, each Maclaurin polynomial, and each

evaluation point, we simulated both the deterministic and the FSM-based stochastic
implementations 1,000 times. We averaged the relative errors over all simulations.
Finally, for each error ratio λ, we averaged the relative errors over all polynomials and
all evaluation points. Table XV shows the average relative error of the stochastic and
deterministic implementations as a function of the different error ratios λ.

Compared to the case when the input data are corrupted with noise, the FSM-based
stochastic implementation has the same level of errors for the high internal error
ratios. However, compared to the deterministic implementation, it can tolerate more
errors. The same argument we had for the error tolerance of stochastic bit streams
when noise is injected into the input data also applies in this situation where noise is
additionally injected into the internal circuitry. We also simulated injecting noise into
both the input data and the internal circuits simultaneously. The results are presented
in Table XVI. Clearly, the proposed FSM-based architectures are much more tolerant
of noise than the deterministic binary radix-based implementation when noise affects
both the input data and the internal circuit elements.

6. CONCLUSION

In this article, we proposed and evaluated a new reconfigurable architecture for stochas-
tic computing. The computing module of this architecture is implemented using FSMs.
This architecture can compute arbitrary functions by changing its input parameters
using the proposed synthesis method. Furthermore, we can make tradeoffs between
hardware area and approximation error by using different configurations of the FSM,
such as the number of states, the number of inputs, the state transition diagrams,
and the precision of the parameters. Compared to the existing reconfigurable architec-
ture for stochastic computing, which was implemented using combinational logic, this
new architecture can reduce hardware area and energy consumption by 30% and 40%,
respectively, while working at higher speeds and delivering the same fault tolerance
capability.
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