
XMG-GPPIC: Efficient and Robust General-Purpose
Processing-in-Cache with XOR-Majority-Graph

Chen Nie∗

School of Electronic Information and

Electrical Engineering

Shanghai Jiao Tong University

Shanghai, China

chen.nie@sjtu.edu.cn

Xianjue Cai∗

UM-SJTU Joint Institute

Shanghai Jiao Tong University

Shanghai, China

shashantao@sjtu.edu.cn

Chenyang Lv∗

School of Electronic Information and

Electrical Engineering

Shanghai Jiao Tong University

Shanghai, China

lvchenyang@sjtu.edu.cn

Chen Huang
UM-SJTU Joint Institute

Shanghai Jiao Tong University

Shanghai, China

kouchin@sjtu.edu.cn

Weikang Qian†

UM-SJTU Joint Institute and MoE Key

Lab of AI

Shanghai Jiao Tong University

Shanghai, China

qianwk@sjtu.edu.cn

Zhezhi He†

School of Electronic Information and

Electrical Engineering

Shanghai Jiao Tong University

Shanghai, China

zhezhi.he@sjtu.edu.cn

ABSTRACT

Recent advances in processing-in-cache (PIC) have enabled general-

purpose, high-performance computation with bit-serial computing

techniques. Its outstanding performance relies on efficient hard-

ware design, and also the software stack (i.e., Logic Compiler, LC)

that converts a high-level function into compact PIC instructions

to be executed. Since XOR-Majority-Graph (XMG) is one of the

most efficient forms to represent a Boolean function, designing the

PIC with XMG can further improve the performance. Thus, we

propose an efficient and robust General-Purpose PIC using XMG,

aka. XMG-GPPIC, with designs in both hardware and software. For

the hardware part, we propose a micro-architecture of XMG-GPPIC

supporting XMG operation. To improve computing efficiency and

robustness against non-ideal effects, we highlight our novel designs

of inversion fusion and temperature compensation. For the soft-

ware part, we develop the XMG-LC for optimized compilation for

GPPIC, which includes two main steps of synthesis and scheduling.

In the synthesis, we propose a multi-line reinforcement learning

agent to search the optimal synthesis flow for the best end-to-end

GPPIC performance. In the scheduling, we minimize the memory

footprint occupied by the computation and support inversion fusion

for instruction reduction. Our design reduces the number of oper-

ations by 67.7% on average w.r.t a majority-inverter-graph-based

prior work, and the average end-to-end energy-delay product is

50.2% and 13.1% lower than our XMG-based naïve and heuristically

optimized baselines, respectively. At the system level, our design

∗These authors contributed equally to this research.
†Corresponding Authors: Weikang Qian and Zhezhi He.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590288

outperforms compute cache with and-inverter-graph-based LC by

77% and 64% in terms of throughput and efficiency, respectively.

CCS CONCEPTS

•Hardware Ñ Hardware accelerators; • Computer systems

organization Ñ Reconfigurable computing.

KEYWORDS

In-Memory Computing; bit-serial; logic synthesis; SRAM

ACM Reference Format:

ChenNie, Xianjue Cai, Chenyang Lv, ChenHuang,WeikangQian, and Zhezhi

He. 2023. XMG-GPPIC: Efficient and Robust General-Purpose Processing-

in-Cache with XOR-Majority-Graph. In Proceedings of the Great Lakes Sym-

posium on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023, Knoxville, TN, USA. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3583781.3590288

1 INTRODUCTION

Recently, the Processing-in-Cache (PIC) [1–3] has drawn great re-

search interest as it prominently mitigates the expensive data com-

munication between processor and cache, thus leading to a great

boost in performance. As the initial PIC design [1] only provides

bulk bit-wise logic (AND, OR, etc.), the followed design in [3] supports
more complicated arithmetic operations (e.g., N-bits multiplication)

via bit-serial technique. However, a framework supporting General-

Purpose computing in PIC (aka. GPPIC) is still absent.

To achieve the above goal, further designs in both software-

and hardware-end are required. From the software perspective, a

compiler is necessary for GPPIC to convert a high-level function

into hardware-supported instructions. Specifically, such a com-

piler can decompose an arbitrary Boolean function expressed as a

logic netlist into the logic primitives with the least area or delay,

then lowered into instructions. We name such compiler for GPPIC

as Logic Compiler (LC). If the Boolean function is represented by a

Directed Acyclic Graph (DAG), each node in the optimized DAG

will be converted into an instruction correspondingly. Currently,

the well-known DAGs include And-Inverter-Graph (AIG), Majority-

Inverter-Graph (MIG), and XOR-Majority-Graph (XMG), whose

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Chen Nie, Xianjue Cai, Chenyang Lv, Chen Huang, Weikang Qian, and Zhezhi He

efficiencies are listed from low to high. Therefore, to minimize the

number of compiled instructions (fewer execution cycles), efficient

DAG with less number of nodes is preferred.

Prior works [4–6] have contributed to the development of LC

on PIMs that use ReRAM or DRAM memory, with the less efficient

MIG. Note that, to design the LC for GPPIC using XMG, simply

replacing the MIG with XMG will not succeed, as the currently

available PIC micro-architecture cannot efficiently and robustly

compute the primitives of XMG (i.e., 3-inputs majority, XOR, inver-

sion, etc.). The hardware design challenges of GPPIC supporting

XMG are, 1) Massive inversions hamper the throughput: Ac-

cording to our analysis (Table 3), inversion operations take a great

portion of compiled instructions with our XMG-based LC, thus

lowering the GPPIC throughput; 2) PVT-Vulnerability: under the

variation of process-voltage-temperature (PVT), prior PIC circuit

designs (e.g., compute cache [1]) with more memory rows acti-

vated (triple-row activation as discussed in Section 3) may lead to

erroneous computing, thus compromising the functionality.

As a countermeasure, we propose a micro-architecture of GPPIC

that can robustly and efficiently support the XMG primitives (aka.

XMG-GPPIC). XMG-GPPIC can support efficient 3-input XMG opera-
tions in one cycle with fused inversion on any input and output bits.

Standalone inversion is completely eliminated, which greatly re-

duces required instructions (cycles). Besides, we propose a duration-

based temperature compensation method to counter the PVT vul-

nerability with negligible overhead. In addition to the contributions

in hardware, we also develop an XMG-based LC as the software

stack (Section 4) with two main steps of synthesis and scheduling.

The multi-line reinforcement learning (RL)-based synthesis opti-

mizes the XMG netlist, while the scheduling aims to reduce the

runtime memory footprint and fuse all the inversions. Both of the

above two features are designed for instruction reduction.

Overall, our contributions can be summarized as:

‚ Hardware:We propose a micro-architecture of General Pur-

pose PIC supporting XMG operations (XMG-GPPIC). With

our unique hardware design, standalone inversions can be

completely fused into other operations to minimize the in-

structions and improve the throughput. Besides, our tempera-

ture compensation technique helps eliminate the computing

error resulting from PVT variations.

‚ Software:We develop an XMG-LC to compile a high-level

function into GPPIC instructions via synthesis and sched-

uling. In the synthesis, a multi-line RL agent is empowered

to search the optimal synthesis flow with the best GPPIC

performance. In the scheduling, we minimize the computa-

tion memory footprint and support the inversion fusion for

instruction reduction.

2 PRELIMINARY

Bit-serial PIM.Bit-serial processing refers to computing in a bit-by-

bit fashion, which is adopted in parallel processing system [7] with

thousands of processing elements, back in the 1980s. The recent

SRAM [1, 3] and DRAM [6] based processing-in-memory (PIMs)

support bit-serial computing, with the parallelism along memory

bit-lines. With bit-serial processing, PIM can implement various

functions by serially executing only a few types of operations.

WLA

BL BLB

WLB

W
L

D
riv

er
W

L
D

ec
od

er ...
...

...
... ...SRAM

Array

BLBBL

W
LB

W
LA

...

Peripherals

Cell
BL

VSS

VDD

WLA

BLB

VSS

WLB

(a) Single Array with Dual-WL 6T SRAM (b) Cell layout

BLB

BL

Cell

...

prec

sync

B
LBB

L

Cell

SA
(1) Precharge(1) Precharge (2) Discharge(2) Discharge (3) Sense & Write(3) Sense & Write

(c) Compute peripherals and example of charge-based computing

Figure 1: Micro-architecture of proposed XMG-GPPIC

Logic synthesis. Logic synthesis consists of two steps: technology-

independent synthesis and technologymapping. The first step trans-

forms a high-level design into a technology-independent DAG rep-

resentation. Such representations include AIG, MIG, XMG, etc. [8].

For identical Boolean functions using various DAG, it takes less

number of nodes from AIG to XMG. By far, there have been PIM

designs [4–6] using MIGs, but works using the more efficient XMGs

are absent due to hardware design challenges.

3 HARDWARE DESIGN OF XMG-GPPIC

3.1 Micro-architecture of GPPIC

As depicted in Fig. 1a, we use a dual Wordline SRAM [9] with sepa-

rate access control (i.e., WLA and WLB for 𝑄 and 𝑄 respectively),

where the bit can be directly accessed in its original or negated

form. The decoder is customized to activate both WLs for memory

read&write or a single WL for computing. The other peripher-

als (Fig. 1c) include precharger, BL synchronizer, sense amplifier,

computing logic, and write driver (not shown for simplicity).

3.2 Charge-based Computing and Instruction

3.2.1 Computingmechanism. With themicro-architecture described

in Section 3.1, multiple cells (rows) are simultaneously selected to

conduct 3-input XOR or MAJ in one clock cycle. Such computing is

charge-based and composed of the following four stages: precharge,

discharge, sense, and writeback.

Precharge. The precharger pulls up both 𝑉BL and 𝑉BLB (i.e.,

𝑉GBL) to𝑉DD. Meanwhile, the BL synchronizer is turned on to keep

the 𝑉BL and 𝑉BLB aligned by the end of the sense stage, where BL

and BLB are wired as a global bit-line (GBL).

Discharge. We adopt triple-row activation (TRA) [10] to simul-

taneously activate three rows of SRAM cells. Note that, each cell

is separately controlled by WLA and WLB, and only one access

transistor will be switched ON. Depending on which access tran-

sistor is enabled, the node 𝑄 or 𝑄 of the cell (Fig. 1a) is routed

to GBL to conditionally discharge the GBL. The activation of 𝑄 is

equivalent to using the inverted data bit, without requiring extra

INV operation. After the discharging, the GBL voltage is:

𝑉GBL “ 𝐶GBL𝑉DD ´ ş𝑡“Δ𝑡
𝑡“0 𝑛 ¨ 𝐼discp𝑡q𝑑𝑡
𝐶GBL

“ 𝑉DD ´ 𝐼discΔ𝑡

𝐶GBL
𝑛 (1)

where 𝑛 “ ř3
𝑖“1 1r𝑔𝑖p𝑥𝑖q “ 0s P t0, 1, 2, 3u is the number of

activated cells discharging the parasitic capacitor of GBL 𝐶GBL,

where each contributes a discharging current 𝐼disc. Each 𝑥𝑖 P t0, 1u

XMG-GPPIC: Efficient and Robust General-Purpose Processing-in-Cache with XOR-Majority-Graph GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

(a) Monte Carlo simulation

Func. FR(%)

dec 0.05

cavlc 0.06

add 0.09

max 1.20

div 4.02

sin 5.67

sqrt 25.63

mult 35.03

log2 35.11

(b) Fail Ratio

Figure 2: (a) Worst case Monte Carlo simulation of 𝑉GBL w/o

and w/ temperature compensation. (b) Fail Ratio (probability

of erroneous output) on EPFL benchmarks when w/o our

temperature compensation.

Weaken
PMOS

(a) Tuned WL driver

Δt @ 100℃
Δt @ 75℃
Δt @ 50℃
Δt @ 25℃
Δt @ 0℃

VZ

/nS

(b) Transient at 0°C to 100°C

Figure 3: Duration-based temperature compensation by mod-

ulating the pulse width (activation time).

is a bit stored in a cell; 𝑔𝑖 is the conditional inversion applied to

the 𝑖-th bit; 1 is the logical indicator function. According to Eq. (1),

with a given time window Δ𝑡 ,𝑉GBL can produce four voltage levels

depending on the 𝑥𝑖 ’s and 𝑔𝑖 ’s.
Sense. The 𝑉GBL is converted into digital output to realize the

XMG operation. It is done by a 1.5-bit Flash ADC which generates a

thermometer code to be further mapped into result values by subse-

quent logic. For example, the thermometer codes {000/001/011/111}

are respectively mapped to {0/0/1/1} for MAJ and {0/1/0/1} for XOR.
Write-Back. The output is written back to a target cell by the

write driver, like normal memory write. The write path is switched

from the data bus to the compute outputs. Note that, the BL syn-

chronizer is disabled in this stage to not disturb the write-back.

3.2.2 Instruction. The instruction of XMG-GPPIC can be writ-

ten as xopcode, inv_flags, in1, in2, in3, outy, where opcode P
tXOR, MAJu specifies the operation type; inv_flags consists of four
bits indicating the conditional inversion of the corresponding in-

put/output; in1, in2, and in3 are the three input row addresses;

out is the write-back row address.

3.3 Temperature Compensation

3.3.1 Temperature Variation. Transistors have varied ON-currents

𝐼ON and leakage currents 𝐼leak under different operating tempera-

tures 𝑇 (i.e., 𝐼disc “ 𝐼ON ` 𝐼leak9𝑇). Such variation can make the

𝑉GBL levels deviate from their designated distributions and overlap

each other (see Fig. 2a left), thus introducing errors. Our evaluation

in Fig. 2b shows the impact of PVT by failure ratio, which becomes

worse when the function becomes more complex (i.e., more nodes

in DAG). Therefore, it is vital to preserve enough margin and ensure

no overlaps between the 𝑉GBL levels for error-free computing.

3.3.2 Duration-Based Compensation. Higher temperature 𝑇 leads

to larger 𝐼disc, while 𝑉GBL9 ´ 𝐼discΔ𝑡 (Eq. (1)). To compensate for

Synthesis
TuningInput Operations SchedulingOptimized

XMG Netlist
PIM

Instr.Naïve XMG
Netlist

RL-Agent Optim.
Commands

Arithmetic
Control

...

Generate

Figure 4: XMG-LC framework with synthesis and scheduling.

the variation of 𝐼disc, we propose to modulate Δ𝑡 to track the vari-

ation. Take a two-stage driver in Fig. 3a for example, we slightly

tweak the driver to act as a temperature sensor that outputs a

width-modulated pulse inversely proportional to 𝑇 . The PMOS of

the first stage shown in Fig. 3a is intentionally weakened while the

other transistors remain unchanged. The transient curves in Fig. 3b

illustrate the modulation w.r.t different temperatures. When a ris-

ing edge arrives at 𝑋 , both 𝑌 and 𝑍 are instantly pulled down and

up, as all the engaged transistors are of normal driving capabili-

ties (unmodified sizing). However, when the falling edge arrives at

𝑋 , 𝑌 is pulled up slowly by the weakened PMOS with an enlarged

switching time. Thus, the impact of temperature variation will be

amplified. Therefore, the transmission delay is almost fixed for

rising edges but varies for falling edges, so the pulse width Δ𝑡 is
negatively correlated with temperature 𝑇 , as shown in Fig. 3b.

Note that, memory read/write is not degraded as the rising edges

determine the critical delay. Meanwhile, the Monte Carlo sampling

in Fig. 2a (right) demonstrates the effectiveness of our solution,

where overlapping of𝑉GBL levels is avoided with narrowed variance
and enlarged margin. Such improvement in robustness empowers

the error-free XMG-GPPIC.

4 XMG-LC:XMG-BASED LOGIC COMPILATION

4.1 Framework Overview

We develop an XMG-based logic compiler framework for GPPIC

synthesis and scheduling, as depicted in Fig. 4. The main steps in

the frameworks can be specified as: � A high-level input function

is primarily synthesized into a naïve XMG netlist; � The RL agent

generates the optimal optimization commands that achieve the best

hardware performance. � The naïve XMG is tuned with the gener-

ated commands and obtains the optimized XMG. � Scheduling is

applied to obtain instructions with the best efficiency.

4.2 RL-framework for Optimized Synthesis

We leverage reinforcement learning to perform design space ex-

ploration and generate optimized XMG with the best end-to-end

GPPIC performance. Our solution distinguishes from prior works

[11, 12] in terms of parallel multi-worker space exploration and

GPPIC-aware end-to-end optimization.

State space. We concatenate the extracted XMG topology with

historical state and temporal information as the state vector 𝒔 “
r𝒕 ; 𝒓 ; 𝑖;𝐺xmgs, where 𝒕 P t0, 1u8 is of one-hot format and indicates

the past four actions, 𝒓 “ r𝑟cur, 𝑟lasts is the rewards (indicating

GPPIC performance) of current and last step, 𝑖 is the index in the

command sequence, and 𝐺xmg is the extracted topology.

Action space. Each action is an optimization command in Mock-

turtle [13] that optimizes the XMG without distorting its function.

Rewards. The reward is 𝑅𝑡 “ pp𝑟last´𝑟curq´𝑟baseq{𝑟init, which
includes the improvement of performance (i.e. energy, delay).

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Chen Nie, Xianjue Cai, Chenyang Lv, Chen Huang, Weikang Qian, and Zhezhi He

Algorithm 1 Monte Carlo policy gradient with state estimation.

Input: Policy 𝜋p𝑎 | 𝑠, 𝜃q, State-value 𝑣p𝑠, 𝑤q
Output: Updated 𝜋p𝑎 | 𝑠, 𝜃q, 𝑣p𝑠, 𝑤q
1: for all epochs 𝑖 do
2: Generate 𝑎 with 𝜋 , select the best one for the following update

3: for all time steps 𝑡 in the action sequence do

4: 𝐺 Ð ř𝑇
𝑘“𝑡`1 𝛾

𝑘´𝑡´1𝑅𝑘 , 𝛿 Ð 𝐺 ´ 𝑣p𝑠𝑡 , 𝑤q
5: 𝑤 Ð 𝑤 ` Adamp∇𝑤 ln 𝑣p𝑠𝑡 , 𝑤qq
6: 𝜃 Ð 𝜃 ` Adamp𝛾𝑡𝛿∇𝜃 ln𝜋p𝑎𝑡 , 𝑠𝑡 | 𝜃qq

Multi-line merit-based update method. A parallel RL algo-

rithm (Algorithm 1) is developed to speed up the exploration, named

multi-line RL. In each epoch, copies of the initial environment are

created for multiple independent agents. Each agent then individu-

ally samples and generates the actions with the same policy. With

all the generated actions applied, the best one is selected to update

both the state-value estimation model and the policy model.

4.3 Scheduling

We implement a priority-queue-based scheduling algorithm [5] to

map the optimized XMG netlist into XMG-GPPIC instructions in a

hardware-aware fashion. The algorithm ranks all the nodes in the

XMG netlist and decides the execution order that minimizes the

array-level memory footprint (avoid inter-array communication)

and therefore improves the computation efficiency. In each time

step, the most favored available node with the highest ranking

among all the un-executed nodes is added to the instruction list.

Note that, the node is considered available only when 1) it has not

been computed; 2) all fan-ins have been computed. Besides, all the

inversions are fused into other operations during the scheduling.

Table 1: Specifications of benchmarking platforms.

CPU Intel Xeon® Silver 4210 @ 2.2GHz, 128GB DDR4 @ 2666MHz

ASIC Design Compiler, TSMC-N28 technology, 32KB SRAM

PIC
1MB memory capacity, 32K computing parallelism

128KB per bank, 32KB per mat, 8KB per array

5 EVALUATION

5.1 Methodology

5.1.1 Benchmarks. The benchmarks (Table 2) consist of twelve rep-

resentative functions in EPFL combinational benchmark suite [14]

that are most probably applied in parallel scenarios. Both arithmetic

and control functions are included to ensure generality.

5.1.2 Evaluation Methodology. We conduct in-depth performance

evaluations to compare our design to CPU, ASIC, and prior works

on PIC, with configurations listed in Table 1. CPU: The bench-

marks are executed and verified using Verilator. The execution cost

is evaluated following the method in [6]. Meanwhile, the average

on-load CPU power consumption is monitored through the Intel

RAPL API. ASIC:We use Design Compiler and TSMC 28nm stan-

dard cell library to synthesize and evaluate the area, delay, and

power. Besides, a 32KB SRAM storing the input operands and final

results is included as in [15], for a fair comparison. The perfor-

mance is normalized according to the ratio of the ASIC area and the

XMG-GPPIC area. PIC: The performance of our proposed GPPIC

Precharge
90%

Discharge
2%

Sense
5%

Write-back
3%

(a) Energy breakdown

Component Area (µm2)

SRAM cells 9680

Decoder 1589

Control unit 840

Compute logic 402

Sense amplifier 186

Precharger 159

Total 12856

(b) Detailed area summary

Figure 5: Array energy breakdown and area summary.

is assessed with an in-house cross-layer evaluator, based on circuit-

level transient simulation, architectural formulaic estimation, and

behavior-level cycle-accurate simulation. The memory cells and

peripherals are both implemented with the TSMC 28nm PDK, and

array-level post-simulation is conducted via Cadence Spectre to

ensure functionalities. Besides, complete computations are simu-

lated to acquire important specifications, such as per-cycle energy

consumption and maximum delay. For the system level, we modify

NVSim [16] to acquire memory read/write cost and area of common

memory components. All these specifications are packed into our

cycle-accurate simulator, which implements all the operations to

evaluate performance, throughput, and energy efficiency. Besides,

we compare with the compute cache [1], which is an SRAM-PIM

and performs AIG-based logic operations via our LC.

5.2 Micro-Architecture Evaluation

5.2.1 Array-Level Performance. Obtained from circuit-level simu-

lation, the average energy cost of each PIC operation (XOR/MAJ)

is 46.93fJ. Besides, the four computing stages can be completed in

less than 0.9ns and we use a 1GHz clock. The energy breakdown of

each stage is depicted in Fig. 5a, where the precharge consumes the

most percentages owing to the large parasitic capacitance on BL.

Meanwhile, a detailed area summary is listed in Fig. 5b, where the

additional computation components have negligible area overhead.

5.2.2 Cross-Hierarchy Movement Analysis. Oversized functions

incur data movements across arrays, mats, or even banks to ac-

commodate the input/output and intermediate results, leading to

additional overhead. Our evaluation shows intra-mat, intra-bank,

and intra-rank movements consume 87.6, 157.3, and 439.0 fJ of en-

ergy per bit, and take 637.4, 673.3, and 755.5 ps of time, respectively.

The primary concern is energy consumption, where long-distance

single-bit movement costs more than the operation itself. There-

fore, our XMG-LC takes memory footprint minimization as an

optimization objective to reduce cross-hierarchy communications.

5.2.3 Inversion Analysis. XMG-GPPIC can execute single-cycle

XOR and MAJ operations with configurable inversion on each input

and output, instead of using additional INV operations. Thus, the

performance gain of configurable inversion relies on the occurrence

of inverted operation inputs. According to our analysis in Table 3,

the average inversion rate is 26.44%. Therefore, our inversion fusion
can effectively reduce the delay and memory footprint overhead.

5.3 Framework and System Performance

5.3.1 RL-Assisted Synthesis. As tabulated in Table 2, we compare

our RL-assisted XMG-based synthesis to a MIG-based work [5]

as well as XMG-based counterparts, in terms of the number of

XMG-GPPIC: Efficient and Robust General-Purpose Processing-in-Cache with XOR-Majority-Graph GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

Table 2: Comparison of LC for GPPIC with different DAGs (MIG and XMG) and optimization techniques.

MIG XMG

Benchmark MIG-based [5] Ours (naïve) Ours (heuristic) Ours (RL)

#C #R #C #R Energy Delay #C #R Energy Delay #C #R Energy Delay Imprv.

int2float 428 41 259 48 0.0131 0.2590 221 64 0.0112 0.2210 209 56 0.0106 0.2090 10.57%

dec 777 258 304 264 0.0162 0.3097 304 264 0.0162 0.3097 304 264 0.0162 0.3097 0.00%

router 401 64 207 85 0.0105 0.2070 208 110 0.0106 0.2080 197 101 0.0100 0.1970 10.30%

cavlc 1124 102 697 133 0.0354 0.6970 609 149 0.0309 0.6090 592 161 0.0301 0.5920 5.508%

adder 1911 259 764 627 0.0873 1.1171 256 384 0.0567 0.5811 256 384 0.0577 0.5811 -1.69%

priority 2147 149 976 246 0.0496 0.9760 574 248 0.0291 0.5740 535 240 0.0272 0.5350 13.13%

max 4996 579 2865 883 0.3428 4.3010 1985 860 0.3329 3.6020 1935 848 0.2838 3.2851 22.25%

sin 10223 402 4572 380 0.3131 5.1610 3814 397 0.2707 4.2489 3619 368 0.2477 4.0843 12.06%

sqrt 49782 323 31202 414 3.0014 41.515 9103 373 1.0414 13.318 9699 322 0.8877 12.575 19.52%

multiplier 56009 419 20160 1800 3.3366 33.421 14219 1847 3.0149 26.829 14251 1542 2.6112 25.190 18.68%

log2 60184 1256 24738 1238 2.7825 35.241 20276 1374 2.8604 32.318 21276 1315 2.5916 31.528 11.61%

div 147608 590 65533 731 6.4678 88.388 33355 602 3.2702 44.829 28379 619 3.1556 40.858 12.05%

(1) #C: number of clock cycles; #R: maximum number of memory footprint; Imprv.: EDP improvement over heuristic method
(2) Units of energy and delay are nJ and µs, respectively.

Table 3: Inversion rates of EPFL benchmarks.

Benchmark % INV Benchmark % INV Benchmark % INV Benchmark % INV

adder 0* max 41.27 log2 16.51 int2float 34.48

dec 14.12 sin 28.18 cavlc 34.87 priority 26.71

div 42.62 sqrt 33.69 multiplier 18.12 router 27.57

*adder is of regular ripple-carry type without inversion.

10-3

10-1

101

103

Th
ro

ug
hp

ut
 (G

O
ps

)

 CPU ASIC Compute Cache (AIG) Ours (XMG)

2.15

1.17 1.83
1.83 1.99

3.42
1.17

1.17 1.05 1.32 2.27 1.27

3.00

1.31 2.04
1.57 1.39 3.55

1.20

1.27 1.05 1.32 2.27 1.27

Adder Multiplier Divider Max Sine Sqrt Log2 Calvc Decoder Int2Float Priority Router
10-6

10-4

10-2

100

102

Ef
fic

ie
nc

y
(G

O
ps

/W
)

Figure 6: System-level performance comparison.

clock cycles (#C), the maximum number of memory rows occu-

pied (#R), energy, and delay. Since [5] is implemented in ReRAM

and does not report its energy or delay, we only report its #C and

#R. Compared with [5], we achieve 67.7% fewer cycles (geometric

mean). Moreover, our RL optimization achieves 50.2% and 13.1%
lower energy-delay product (EDP) (geometric mean) than naïve

and heuristically optimized XMG-based ones, respectively.

5.3.2 System Evaluation. We compare our system-level through-

put and efficiency against CPU, ASIC, and prior PIC, as depicted

in Fig. 6, with the improvement of ours w.r.t. compute cache [1]

annotated above bars. According to the comparison, ASIC achieves

the best throughput, due to the shortest delay. Both CPU and GPPIC

are general-purpose platforms, but CPU is less efficient in process-

ing a function in a bit-serial pattern. As for efficiency, XMG-GPPIC

achieves orders-of-magnitude improvement over CPU and ASIC,

due to the elimination of data movements and low-power mecha-

nism. Our work also presents better throughput (77% on average)

and efficiency (64% on average) than compute cache with AIG-based

LC, as our design supports more efficient XMG-based computation

and eliminates INV operations.

5.3.3 Scaling Analysis. We explore multiple array sizes to track

the performance variation of the sqrt benchmark given fixed total

memory capacity. As shown in Table 4, with larger arrays, both

throughput and efficiency increase but then decrease sharply. The

increase is caused by reduced cross-hierarchy data movements, as

Table 4: Design space exploration of array size.

Array size 64 128 256 512 1024

Throughput (GOps) 1.221 1.269 1.425 1.688 0.884

Efficiency (GOps/W) 0.103 0.319 0.536 1.068 0.548

each array can accommodate more data. On the other hand, the

decrease is caused by reduced parallelism, as there are fewer arrays.

6 CONCLUSION

In this work, we present the hardware and software stack of an

XMG-based GPPIC, for higher efficiency and better robustness

against PVT. With the improved performance, GPPIC can poten-

tially execute more complex functions (i.e., netlist with more nodes)

with lower energy and delay.

7 ACKNOWLEDGMENT

The authors acknowledge the support from National Natural Sci-

ence Foundation of China (No.62102257), National Key R&D Pro-

gram of China (2022YFB4500200 and 2020YFB2205501), and Lingang

Laboratory Open Research Fund No.LG-QS-202202-11.

REFERENCES
[1] Shaizeen Aga et al. Compute caches. In HPCA. IEEE, 2017.
[2] Charles Eckert et al. Neural cache: Bit-serial in-cache acceleration of deep neural

networks. In ISCA, pages 383–396. IEEE, 2018.
[3] Wang et al. A 28-nm compute sram with bit-serial logic/arithmetic operations

for programmable in-memory vector computing. JSSC, 55(1):76–86, 2019.
[4] Pierre-Emmanuel Gaillardon et al. The programmable logic-in-memory (PLiM)

computer. In DATE, pages 427–432. IEEE, 2016.
[5] Mathias Soeken et al. AnMIG-based compiler for programmable logic-in-memory

architectures. In DAC, pages 1–6. IEEE, 2016.
[6] Nastaran Hajinazar et al. SIMDRAM: An End-to-End Framework for Bit-Serial

SIMD Computing in DRAM. In ASPLOS, 2021.
[7] Batcher et al. Bit-serial parallel processing systems. TC, 31(05):377–384, 1982.
[8] Testa et al. Logic synthesis for established and emerging computing. Proceedings

of the IEEE, 107(1):165–184, 2018.
[9] Jeloka et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-

rule 6T bit cell enabling logic-in-memory. IEEE JSSC, 51(4):1009–1021, 2016.
[10] Vivek Seshadri et al. Ambit: In-memory accelerator for bulk bitwise operations

using commodity DRAM technology. In MICRO, 2017.
[11] Keren Zhu et al. Exploring logic optimizations with reinforcement learning and

graph convolutional network. In MLCAD. IEEE, 2020.
[12] Peruvemba et al. RL-guided runtime-constrained heuristic exploration for logic

synthesis. In ICCAD, pages 1–9. IEEE, 2021.
[13] Soeken et al. The EPFL logic synthesis libraries. arXiv:1805.05121, 2018.
[14] Amarú et al. The EPFL combinational benchmark suite. In IWLS, 2015.
[15] Angizi et al. Mrima: An MRAM-based in-memory accelerator. TCAD, 39(5), 2019.
[16] Dong et al. Nvsim: A circuit-level performance, energy, and area model for

emerging nonvolatile memory. TCAD, 31(7), 2012.

