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Abstract—Stochastic computing (SC) is an unconventional par-
adigm which performs computation on stochastic bit streams us-
ing ordinary digital circuits. In SC, a real number is encoded by a 
stochastic bit stream, where the value is the probability of ones in 
the stream. SC can perform complex arithmetic computation with 
simple circuits. It also has strong tolerance to bit flip errors. In a 
prior work, researchers have proposed a general design of stochas-
tic circuit and a synthesis method. However, the synthesis method 
cannot produce a circuit with minimal area. In this paper, we pro-
pose an improved synthesis method that applies a branch-and-
bound algorithm to search for the optimal minterm assignment. 
We also introduce a few techniques to speed up the synthesis pro-
cedure with only small quality loss. Experimental results showed 
that the new synthesis method produces smaller circuits. 

Keywords—stochastic computing; stochastic circuit synthesis; 
minterm assignment 

I.  INTRODUCTION 
Stochastic computing (SC) is an alternative to the conven-

tional computing paradigm based on binary radix encoding. In 
SC, digital circuits are still used to perform computation. How-
ever, their inputs are stochastic bit streams [1]. Each stochastic 
bit stream encodes a value equal to the probability of a 1 in the 
stream. For example, the stream  shown in Fig. 1 encodes the 
value 0.75. 

One major advantage of SC is that it allows complex arith-
metic computation to be realized by a very simple circuit. Fig. 1 
shows that arithmetic multiplication can be realized by an AND 
gate, since for an AND gate, the probability of obtaining a 1 in 
the output bit stream is equal to the product of the probabilities 
of obtaining a 1 in the input bit streams. 

 
Fig. 1. An AND gate performs multiplication on real values encoded by 
stochastic bit streams. 

Since all the bits in the stream have equal weight and a long 
bit stream is usually used to encode a value, a single bit flip oc-
curring anywhere in the bit stream only causes very small change 
to the encoded value. Therefore, SC is highly tolerant to bit flip 
errors [2]. 

Given its advantages of low hardware cost and strong error 
tolerance, SC has been used in a number of applications, includ-
ing image processing [3], decoding of modern error-correcting 
codes [4], and artificial neural networks [5]. 

In early days, various elementary computing units in SC 
were proposed, such as multiplier, scaled adder, divider, and 
squaring unit [6]. These units were designed manually and can 
only perform a limited types of computations. 

In order to apply SC to a broad range of target computations, 
several methods to synthesize stochastic circuits have been pro-
posed recently. The works [2,7,8] focused on synthesizing re-
configurable stochastic circuits. In [2], the authors proposed a 
method based on Bernstein polynomial expansion to synthesize 
combinational logic-based stochastic circuits. In [7] and [8], the 
authors studied the form of the computation realized by SC using 
sequential circuits and proposed methods to synthesize such de-
signs. The works [9 11] focused on synthesizing fixed stochas-
tic circuits, which take less area than reconfigurable ones. In [9], 
the authors demonstrated a fundamental relation between sto-
chastic circuits and spectral transform. Based on this, they pro-
posed a general approach to synthesize stochastic circuits. In 
[10], the authors found that different Boolean functions could 
compute the same arithmetic function in SC and proposed the 
concept of stochastic equivalence class. They proposed a method 
to search for the optimal Boolean function within an equivalence 
class. However, their method can only be applied to synthesize 
multi-linear polynomials. In [11], the authors introduced a gen-
eral combinational circuit for SC and analyzed its computation. 
They further proposed a method to synthesize low-cost fixed sto-
chastic circuit to realize a general polynomial. 

The study in [11] reveals that in SC, there are a large number 
of different Boolean functions that realize the same target arith-
metic function. Of course, the circuits for different Boolean 
functions have different costs. In previous work [11], a greedy 
method was used to find a circuit with low area cost. However, 
given the extremely large search space, the greedy strategy, alt-
hough very fast, may not give a minimal solution. In this work, 
we address this problem by applying a branch-and-bound-based 
algorithm to extensively search for a Boolean function that will 
lead to a circuit with low cost. Our approach constructs a func-
tion by iteratively adding cubes into the on-set of the Boolean 
function. The optimal set of cubes to be added is determined 
through the search process. To improve the runtime, we also in-
troduce a few speed-up techniques. 

In summary, the main contributions of our work are as fol-
lows. 
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 We introduce a new method that iteratively selects cubes to 
form a Boolean function that realizes the target computation 
in SC. 

 We develop a branch-and-bound algorithm to search for the 
optimal set of cubes to be added. 

 We propose several speed-up techniques which prune un-
promising branches and significantly improve the runtime of 
the algorithm. 
The rest of the paper is organized as follows. In Section II, 

we give the background on the general design proposed in [11] 
and illustrate the previous synthesis method. We also present the 
logic synthesis problem for stochastic computing. In Section III, 
we present the new algorithm. In Section IV, we discuss several 
speed-up techniques. In Section V, we show the experimental 
results. Finally, we conclude the paper in Section VI. 

II. BACKGROUND ON SYNTHESIZING STOCHASTIC CIRCUITS 
In this section, we give the background on the general form 

of the stochastic circuit proposed in [11] and discuss the previ-
ous method to synthesize a target function. In what follows, 
when we say the probability of a signal, we mean the probability 
of the signal to be a one. 

A. The General Form and Its Computation 
 The general form of a stochastic circuit is shown in Fig. 2. 

The circuit is a combinational circuit. It computes an arithmetic 
function , which is encoded by the output bit stream. 
It has  inputs , which are supplied with variable prob-
abilities , respectively. In order to offer freedom for re-
alizing different functions, the circuit has  extra inputs 

, each supplied with a constant probability of 0.5. They 
can be easily obtained by a linear feedback shift register (LFSR). 
The value of  affects the quantization error and is chosen ac-
cording to the accuracy requirement. The large the value  is, 
the smaller the quantization error. 

 
Fig. 2. General form of a stochastic circuit [11]. 

The study in [11] shows that the general design computes a 
type of function in the form 

 

where  is an integer. If the 
combinational circuit realizes a Boolean function 

, then the value  is equal to 
the number of vectors  such that 

. 

 

Example 1  
Suppose the Boolean function of the combinational circuit in Fig. 
2 is . Then 

. Since there are three vectors  making 
=1, the value . Similarly, we can derive 

, , and . Since , 
according to Eq. (1), the output function is 

 

The function of the form shown in Eq. (1) is called a binary 
combination polynomial (BCP) [11]. If we expand a BCP, we 
can obtain a multi-linear polynomial (MLP) of the following 
form 

 

where ’s are integers. The degree of each variable 
in an MLP is at most 1. For example, expanding Eq. (2), we can 
obtain an MLP 

 

B. Synthesis of General Function 
Given a target function, a procedure was proposed in [11] to 

synthesize a stochastic circuit of the general form to realize that 
function. We use an example to illustrate the procedure. Since 
the computation realized by a general-form stochastic circuit is 
a polynomial, the target function will be first approximated as a 
polynomial. 

Now suppose the polynomial is . Next, it 
will be transformed into an MLP. This is achieved by introduc-
ing two new variables  and  with their values both set as 

. The MLP obtained is 

 
The next step is to map the MLP into a BCP. By a procedure 

shown in [11], the result is 

 
Assume that the number of -variables is  and the 

Boolean function is . Comparing Eq. (3) 
with Eq. (1), we can obtain that the Boolean function should 
satisfy that 

 
However, since , the terms 

 and  are the same. Also, the terms 
 and  are the 

same. Therefore, the requirement for the Boolean function can 
be relaxed as follows 

 



In the general case, suppose the target polynomial has  var-
iables  and the degree of  is , for . De-
fine . To transform the original target into an MLP, 
we will introduce new variables , , , , , , , 

, , , , with the values of  all set to . 
The BCP has  product terms of the form 

 

where . Each product 
term has a one-to-one correspondence to a vector 

. We call the vector 
the characteristic vector of the product term. We partition the 
set  into  equivalence classes , 

, where 

Under the condition that for all , 
, two product terms are the same if and only if their 

characteristic vectors belong to the same equivalent class. There-
fore, to realize the target polynomial, we only require that the 
sum of the  values over all the vectors in an equivalence class 
is equal to a specific constant. Mathematically, the requirement 
is that for all  

 

where  is a constant that can 

be derived by adding up the corresponding  values of an initial 
BCP transformed from the original target function. 

The example shown before corresponds to a situation in 
which , and . Then we have six equiva-
lence classes 

 
Given the above equivalence classes, the requirement on the  
values specified by Eq. (5) is same as Eq. (4) we derived before. 

C. The Circuit Synthesis Problem 
Eq. (5) shows a requirement on the Boolean function to real-

ize the target polynomial. However, there are a large number of 
Boolean functions that can satisfy the requirement. In order to 
synthesize an optimal circuit, we need to find an optimal Bool-
ean function that satisfies the requirement. For simplicity, we fo-
cus on two-level circuit in this work and we use the literal num-
ber of the sum-of-product (SOP) form as the cost measure. The 
optimization problem is stated as follows. 

 
The above problem has flexibility in determining the final 

Boolean function. However, it is different from the traditional 
logic minimization with don’t cares or Boolean relation minimi-
zation problem [12]. The problem we consider here has a con-
straint on the number of input vectors belonging to a subset that 
make the function evaluate to 1. Thus, the determination of the 
output for an input vector will reduce the output choices of the 
other input vectors belonging to the same subset. In contrast, 
logic minimization with don’t cares or Boolean relation minimi-
zation does not have that constraint. The determination of the 
output of an input vector does not reduce the output choices for 
the other input vectors. Therefore, solving the above problem re-
quires a new method. 

Suppose the Boolean function is  
. We represent it using a matrix, where the col-

umns represent the -variables and the rows represent the -var-
iables. Both the columns and the rows are arranged in Gray code 
order. An example is shown in Fig. 3 for a case where  , 

, and . 

         

         

         

         

         

Fig. 3. The matrix representation of the Boolean function 
. 

Using that matrix representation, the number 
 is equal to the number of ones in the column 

. Then the optimization problem is to distribute 
 ones to columns corresponding to the vectors in the 

class  to achieve an optimal Boolean function. A 
method was proposed in the previous work [11] to find a good 
solution. It applies a greedy strategy to distribute the ones. As-
sume . Then the method sets the  values 
of the first  vectors in the class  as , the  value 
of the -th vector as , and the  val-
ues of the remaining vectors as . The following example illus-
trates how the previous method works. 

Example 2  
Consider a case where , , and . There are 

four equivalence classes for this case: 

 
Assume the sums of  values over all the vectors in each 

equivalence class are , , , and 

Given an integer  and   integers , 
,  such that 

 for any , deter-

mine an optimal Boolean function such that its  values 
satisfy Eq. (5). 



. For equivalence classes  and , each of them 
covers one column. We set  and . For 
equivalence classes  and , each of them covers three 
columns. Since , we assign , 

, and . Similarly, for class , we 
assign , , and . The 
final assignment of the ones is shown in Fig. 3. The Boolean 
function is , which has 6 literals.  

However, the previous method may not give an optimal so-
lution. For the case shown in Example 2, a better assignment is 
shown in Fig. 4, which gives a function . In this work, we 
explore a better solution to the optimization problem. 

         

         

         

         

         

Fig. 4. The matrix representation of the Boolean function 
. 

III. THE PROPOSED ALGORITHM 
In this section, we present the new algorithm. For simplicity, 

we focus on univariate polynomials, i.e., . Our work can 
be extended to handle multivariate polynomials. The only differ-
ence is that there are more equivalence classes for multivariate 
cases. For univariate case, we have  and we assume the  

 inputs are . 
The basic approach we use to construct an optimal solution 

is to add cubes one by one into the on-set of the Boolean function. 
Although the previous work also uses this strategy, it only adds 
cubes which cover minterms in the same equivalence class. In 
contrast, our method also adds cubes across different equiva-
lence classes. 

A. Preliminaries 
Before presenting the details, we first introduce a few nota-

tions and definitions. We use  to denote 
the minterm corresponding to an input vector 

. We say a minterm 
 is in an equivalence class  (

) if  . 
We use a vector  to represent numbers of unas-

signed minterms for  equivalent classes. We call such a 
vector problem vector. Initially, the problem vector is equal to 

, given by the problem specification. With cu-
bes added into the on-set, the entries in the problem vector will 
be reduced. Eventually, when all the minterms have been de-
cided, the problem vector will become a zero vector. 

We can also represent a cube by a vector of length . 
It is formed by the numbers of minterms of the cube in each 
equivalence class. We call such a vector cube vector. In order to 
distinguish it from the problem vector, we represent the cube 
vector using square brackets. For example, assume that  

and . The cube  contains four minterms , 
,  and , as shown in Fig. 5(a). The 

minterms  and  are in the equivalence class  
and the minterms  and  are in the equivalence 
class . There are no minterms of the cube  in the equiva-
lence class . Therefore, the vector of the cube  is . 
Note that although each cube has a unique cube vector, a cube 
vector may correspond to a number of different cubes. For ex-
ample, the cube  has the same cube vector as the cube , as 
shown in Fig. 5. 

 
(a)  Cube                                  (b) Cube  

Fig. 5. Two different cubes of the same cube vector . 

Our approach splits the problem vector into a set of cube vec-
tors. In order to manipulate on the vector, it is important to know 
the valid form of a cube vector. We have the following claim on 
this. 

Theorem 1 
A cube vector is of the form 

, where  
and  are the numbers of the missing -variables and 
missing -variables in the cube, respectively. The cube vector 
has  zeros at the beginning and  zeros at the end, 
where  is equal to the number of uncomple-
mented -variables in the cube and  is equal to the 
number of complemented -variables in the cube.  

Proof: Consider the matrix representation of the cube. Since 
there are  missing -variables in the cube, the cube covers  
rows and all the covered rows have the same pattern. Note that 
each covered row is also a cube, which contains all the  -var-
iables. Therefore, we only need to show that for such a cube, its 
cube vector is of the form . 

We consider the -variables of the cube. Suppose that there 
are  uncomplemented -variables and  missing -variables in 
the cube. Then, the cube has  complemented -var-
iables. The cube covers  minterms, among which  
minterms are in the equivalence class , for . 
For any  or , there are no minterms of 
the cube in the equivalence class . Therefore, the cube vector 
is of the form , in which there 
are  zeros at the beginning and  zeros at the end.  

Example 3  
Assume that  and . Then, the cube  con-

tains 8 minterms , , , 
, , , , 
. Its cube vector is 

     

     

     

     

     

     



. For this cube vector,  is equal to 
the number of missing -variables and  is equal to the 
number of missing -variables. The number of zeros at the be-
ginning is 1, which is equal to the number of uncomplemented 

-variables in the cube. The number of zeros at the end is 0, 
which is equal to the number of complemented -variables in 
the cube.   

B. The Basic Idea 
As mentioned at the beginning of this section, our approach 

iteratively adds cubes into the on-set of the Boolean function. 
Each time a cube is added, some entries in the problem vector 
will be reduced. When the problem vector becomes zero, the 
Boolean function is constructed. 

Generally, a cube added later may intersect with a cube 
added previously. However, in our approach, we restrict that a 
cube added later should be disjoint to any cubes added before. 
For simplicity, we call this restriction disjointness constraint. 
Although this restriction may cause some quality loss, it has two 
benefits. First, it makes the counting of minterms easy, because 
we do not need to consider the overlapped minterms. With a 
cube satisfying the disjointness constraint added, the problem 
vector can be easily updated by subtracting the cube vector from 
the original problem vector. Second, the constraint eliminates 
many redundant cases. For example, adding two non-disjoint cu-
bes  and  is equivalent to adding two disjoint cubes  and 

. Note that although the Boolean function is constructed by 
adding disjoint cubes, the final Boolean function will be further 
simplified by the two-level logic optimization tool ESPRESSO 
[13]. Thus, the final result is a set of non-disjoint cubes corre-
sponding to a minimum SOP expression. 

In each iteration, when picking a cube, we also require that 
each entry in the cube vector of the cube is no larger than the 
corresponding entry in the current problem vector. For simplic-
ity, we call this constraint capacity constraint. If a cube satisfies 
both the disjointness constraint and the capacity constraint, we 
say the cube is valid. 

In each iteration, we apply a greedy strategy in choosing the 
cube to be added: we choose the largest cube among all valid 
cubes. The reasons for this are 1) in two-level logic synthesis, 
larger cubes have fewer literals and 2) with the largest cubes 
added, the problem vector is reduced most. The details of how 
we choose the largest valid cube will be discussed in Section III-
C. The procedure of choosing the largest valid cube involves ob-
taining a cube corresponding to the cube vector, which will be 
discussed in Section III-D. Since at each iteration, there may ex-
ist more than one largest valid cube for the current problem setup, 
we actually apply a branch-and-bound algorithm to find the op-
timal solution, which will be discussed in Section III-E. 

C. Selecting the Largest Valid Cube 
Suppose that at the beginning of one iteration, the problem 

vector is  Let  be the sum of all the entries in the 
problem vector, i.e., . Assume . Since 
the largest valid cube satisfies the capacity constraint, it contains 
at most  minterms. Our method to find the largest valid cube 
first checks whether there exists a valid cube with  minterm. 

According to Theorem 1, the cube vector should be in the 
form of , where 

 and . Furthermore, since the cube contains  
minterms, we require that . We will examine all cube 
vectors that satisfy the above two requirements and keep those 
which also satisfy the capacity constraint. Then, for each kept 
cube vector, we will check whether it has a corresponding cube 
that satisfies the disjointness constraint. The details of how to 
check the existence of such a cube will be discussed in Section 
III-D. If such a cube exists, it is a largest valid cube. 

Example 4  
Suppose , , and we are given an initial problem 

vector of . The sum of all the entries in the problem vec-
tor is 9. Thus, the largest valid cube has at most 8 minterms. We 
first check whether there exists any valid cube with 8 minterms. 
This type of cubes should be in the form of 

 with , 
, and . Given the constraint, we have either 

 and , or  and . Thus, the possible cube 
vectors are , , and . Among these three cube 
vectors, only the cube vector  satisfies the capacity con-
straint. Then, we will further check whether it has a correspond-
ing cube satisfying the disjointness constraint. Since no cubes 
have been added yet, we can find a valid cube for the cube vector 

, for example, the cube . This cube is one largest valid 
cube.  

In some situations, there may not exist a valid cube with  
minterms because either the capacity constraint or the disjoint-
ness constraint is violated. The following is an example. 

Example 5  
Suppose , , and we are given an initial problem 

vector of . The sum of all the entries in the problem vec-
tor is 11. Thus, the largest valid cube has at most 8 minterms. 
The possible cube vectors of 8 minterms are , , 

, , , and . However, none of these 
cube vectors satisfy the capacity constraint. Therefore, we can-
not find a valid cube with 8 minterms.  

If there exists no valid cube with  minterms, then we will 
reduce the minterm number by half and check whether there ex-
ists a valid cube with  minterms. This procedure will be re-
peated until we are able to find a valid cube with  minterms for 
some . Then, that cube is the largest valid cube. Since 
in the worst case, we can always find a minterm that is valid, the 
procedure guarantees to terminate at some point. 

However, in general cases, the largest valid cube is not 
unique. This is due to the existence of more than one largest cube 
vector that satisfies the capacity constraint and the existence of 
more than one cube for a cube vector. 

Example 6  
Suppose , , and we are given an initial problem 

vector of . The largest possible cube has 8 minterms. 
Among all cube vectors of 8 minterms, three satisfy the capacity 



constraint: , , and . Furthermore, there ex-
ists more than one cube that satisfies the disjointness constraint 
for each of the three cube vectors. For example, for the cube vec-
tor , it corresponds to cubes  and , which sat-
isfy the disjoint constraint. Therefore, there exist more than one 
largest valid cubes for this case.  

When there are multiple choices of the largest valid cubes, 
we want to evaluate all of them and choose the best one. For this 
purpose, we apply a branch-and-bound algorithm to find an op-
timal Boolean function. The details of it will be discussed in Sec-
tion III-E. 

D. Obtainting Cubes for a Cube Vector 
In this section, we discuss one important procedure in select-

ing the largest valid cube: obtaining cubes for a given cube vec-
tor that satisfies the disjointness constraint. Since a cube is com-
posed of -variables and -variables, the procedure is divided 
into two parts: determining the -variables and determining the 

-variables. 
The -variables are determined based on the form of the 

cube vector. As shown in Theorem 1, if the vector is of the form 
 where there are  ze-

ros at the beginning and  zeros at the end, then the 
set of -variables is composed of  uncomplemented -varia-
bles and  complemented -variables. For example, 
if  and the cube vector is of the form , then the 
possible -variable cubes are , , , , , 
and . 

Next, for each set of possible -variables, we will further de-
termine all sets of -variables so that the cube formed by these 

-variables and -variables satisfies the disjointness constraint. 
According to Theorem 1, the set of -variables we need to pick 
consists of  -variables. To obtain all valid sets of -
variables, we can simply enumerate all cubes consisting of 

 -variables and keep those when combined with the -varia-
ble cube do not overlap with the current Boolean function. How-
ever, we could find a large number of valid -variable cubes, 
which increases the number of largest valid cubes. In order to 
reduce the choices, in our implementation, we enumerate all cu-
bes with  -variables in the Gray code order and keep 
the first valid -variable cube for each set of possible -varia-
bles. 

E. Branch-and-Bound Algorithm 
As we mentioned before, in each iteration, there may exist 

more than one largest valid cube. If this happens, it is hard to 
decide which one will minimize the literal number of the final 
Boolean function. Therefore, we apply a branch-and-bound al-
gorithm to evaluate all possible cube choices. An example of the 
search tree is shown in Fig. 6. Each leaf of the search tree corre-
sponds to a final solution, represented by a set of cubes. Each 
internal node stores a partial solution composed of a set of cubes 
added and the remaining problem vector. The root is the initial 
problem vector. At each internal node, the multiple choices of 
the largest valid cubes for the current problem vector lead to 
multiple branches from the node. 

 
Fig. 6. An illustration of the solution tree for the problem with the problem 
vector  and . Note that for simplicity, we use a cube vector to 
represent a cube and we only show a partial tree. 

Algorithm 1. Branch-and-bound algorithm to find optimal function. 

1. inputs: problem vector  and an integer  
2. outputs: the set of cubes of the final Boolean function  
3. initialize a node : ; ; 
4. initialize the optimal literal number ; 
5. initialize the optimal cube set ; 
6. push the node  into an empty stack ; 
7. while  is not empty do 
8. pop a node  out of ; 
9. find a list  of largest valid cubes for , , 

and ; 
10. for each cube  in the list  do 
11. if  then 
12.  
13. ; 
14. if  then  // reach a leaf 
15. ; 
16. ; 
17. else 
18. push the node  into ; 
19. end if 
20. end if 
21. end for 
22. end while 
23. return ; 

 
In order to apply a brand-and-bound algorithm, we need a 

lower bound on the candidate solutions from a branch. We 
choose the lower bound as the minimum literal number for the 
set of cubes that forms a partial solution at a branch. For example, 
for the branch  shown in Fig. 6, its lower bound 
is the minimum literal number for the cube with the cube vector 

. Strictly speaking, the minimum literal number for the set 
of chosen cubes at a branch may not be the lower bound for that 
branch, because with more cubes determined later, it is possible 
to reduce the literal count due to cube expansion and redundant 
cube removal. However, since the cubes selected later are no 
larger than any of the cubes already chosen, it is more likely that 
with more cubes selected, the literal count will increase. Thus, 
we use the proposed method to obtain the lower bound. A branch 
will be pruned if the lower bound for the branch is larger than or 
equal to the minimum literal count for the best solution obtained 
so far. In practice, the exact minimum literal number for a set of 
cubes is computationally expensive to obtain. Instead, we call 
the powerful two-level logic optimization tool ESPRESSO [13] 
to estimate the minimum value. Algorithm 1 summarizes the 

(4, 8, 2)

[4, 4, 0]+(0, 4, 2) [2, 4, 2]+(2, 4, 0)

[4, 4, 0]
+[0, 4, 0]
+[0, 0, 2]

[4, 4, 0]
+[0, 2, 2]
+[0, 2, 0]

[2, 4, 2]
+[2, 2, 0]
+[0, 2, 0]

[2, 4, 2]
+[0, 4, 0]
+[2, 0, 0]



proposed branch-and-bound algorithm to find an optimal solu-
tion. Note that we explore the solution tree using the depth-first 
traversal. 

IV. PEED-UP TECHNIQUES 
Although the branch-and-bound algorithm deletes some un-

promising branches, there are still too many branches to process 
as the degree of the polynomial increases, which increases the 
runtime considerably. However, there are numerous branches 
unnecessary to process, either because they are unpromising or 
because they produce the same results. In this section, we present 
several techniques to speed up the algorithm with only small 
quality loss.  

A. Removing Branches with Duplicated Cube Sets 
For a node in the search tree, even though the sum of all en-

tries in its problem vector is in the interval , the 
size of the largest valid cube may not be . Example 5 shows 
such a case. If this happens, we may add in sequence multiple 
cubes of the same size of , where  is an integer. In the 
original branch-and-bound algorithm, the order that these cubes 
are added can produce different branches. Nevertheless, in most 
cases, different orders will finally lead to the same results. 

Example 7  
Suppose , , and the initial problem vector is 

. We cannot extract a valid cube of size 8 from the initial 
problem vector. As a result, the largest valid cube is of size 4. Its 
cube vector is either  or . With the original algo-
rithm, if the first cube selected is of the cube vector , then 
the second cube selected will be of the cube vector [0,4,0]. On 
the other hand, if the first cube selected is of the cube vector 

, then the second cube selected will be of the cube vector 
. These two branches from the root node will produce the 

same results.  

Those branches with the same set of cubes as a branch ex-
plored before are unnecessary to be explored again. To remove 
them, we keep track of the sets of cube vectors we have already 
examined. If the set of the cube vectors at the current branch has 
been examined before, the branch will be pruned. 

B. Bounding by the Optimal Cost at Each Level 
In the original algorithm, a branch is pruned only when its 

lower bound exceeds the value of the optimal full solution 
known so far. In practice, given that each time we always add a 
largest valid cube, it is very likely that for any level  in the 
search tree, the cost of the partial solution at level  in a branch 
that will be pruned later is larger than the cost of the optimal 
partial solution at level . In other words, only those branches 
with costs close to the optimal partial solution at each level are 
promising in leading to the optimal full solution. Therefore, we 
propose another speed-up technique which prunes branches 
based on the cost of the optimal partial solution at each level. 
With this technique, we can find and prune many unpromising 
branches earlier. However, the proposed method is just a heuris-
tic. In order to reduce the quality loss caused by applying this 
heuristic, we choose the bound at each level as the cost of the 

optimal partial solution at the current level multiplied by a con-
stant . We will only delete those branches whose costs 
exceed the bound. In real implementation, since we traverse the 
solution tree in a depth-first way, the optimal partial solution is 
obtained among all the explored nodes at the current level. 

C. Limiting Update Count and Explored Node Number 
The previous two speed-up techniques focus on eliminating 

unpromising branches. However, for some extreme cases, the 
numbers of nodes explored could still be very large. In order to 
further reduce the runtime for these extreme cases, we impose 
limits on the update count and the number of explored nodes. 

Our algorithm will update the optimal solution if the current 
solution is no worse than the optimal one recorded. As a result, 
each update will either improve the result or leave it unchanged. 
Experimental results showed that with more updates, the im-
provement will gradually reduce. Therefore, we consider the so-
lution to be optimal enough after a specific number of updates. 
Thus, we set a limit on the update number and terminate the al-
gorithm once the limit is reached. From our experimental results, 
we set this limit as 3. The quality loss is negligible. 

Even though limiting the updating number can further im-
prove the runtime for some extreme cases, there are still some 
cases for which a large number of nodes are explored between 
two consecutive updates. In our experiment, there is a recorded 
case for which after the second update, the algorithm processed 
16463 other nodes to reach the third update. It took about 57 
minutes to explore these nodes, but no improvement was made 
for the third update. Therefore, we also set a limit on the number 
of explored nodes. The algorithm records the number of nodes 
explored. Once the initial solution has been found, the number 
of nodes explored will be compared against the limit and the al-
gorithm will terminate once the limit is reached. In our experi-
ment, the limit is often set from 15 to 30 for  and 

, or larger if needed. With a larger limit, we can achieve a 
better solution. 

V. EXPERIMENT RESULTS 
In this section, we show the experimental results of the pro-

posed algorithm. All the experiments were conducted on a desk-
top with 3.20GHz Intel(R) Core(TM) i5-4570 CPU and 16.0 GB 
RAM. ESPRESSO is used to evaluate the literal count [13]. 

We applied the proposed branch-and-bound algorithm with 
the speed-up technique to univariate polynomials with 

 and . For each pair of  and , we generated 50 
random cases and obtained the average result. Table I shows for 
each pair of  and , the average percentage of literal count re-
duction by the proposed algorithm over the method in [11], the 
percentage of improved or unchanged cases among all 50 cases, 
and the average runtime in seconds of the proposed algorithm. 
The literal reduction percentage, the percentage of improved and 
unchanged cases, and the runtime are shown in the first row, the 
second row, and the third row of each cell. For example, for 

 and , the proposed algorithm saves 13% literal count on 
average. 100% of the 50 cases have their literal counts reduced 
or unchanged. The average runtime is 1.42s. 



TABLE I.  THE AVERAGE PERCENTAGE OF LITERAL COUNT REDUCTION 
BY THE PROPOSED ALGORITHM OVER THE PREVIOUS METHOD [11] (IN THE 
FIRST ROW OF EACH CELL), THE PRECENTAGE OF IMPROVED AND UNCHANGED 
CASES (IN THE SECOND ROW OF EACH CELL), AND THE AVERAGE RUNTIME OF 
THE PROPOSED ALGORITHM  (IN THE THIRD ROW OF EACH CELL) FOR 
DIFFERENT PAIRS OF  AND . 
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 100% 
0.44s 

12% 
90% 

 0.60s 

19% 
94% 

 1.60s 

18% 
88% 
2.56s 

26% 
100% 
5.20s 

 
3% 
98% 

 0.60s 

13% 
100% 
 1.42s 

16% 
88% 

 2.46s 

22% 
92% 
4.20s 

29% 
94% 
7.48s 

 
2% 
92% 

 0.88s 

13% 
100% 
 1.14s 

18% 
92% 

 2.92s 

18% 
84% 
8.74s 

26% 
88% 
17.1s 

 
2% 
92% 

 1.34s 

12% 
96% 

 3.90s 

15% 
86% 

 7.04s 

18% 
88% 
16.6s 

23% 
90% 
42.6s 

 
2% 
88% 

 2.46s 

10% 
94% 

 8.54s 

14% 
86% 

 16.6s 

17% 
90% 
39.2s 

22% 
90% 
116s 

 
It can be seen that in the average sense, the proposed algo-

rithm reduces the literal count compared to the previous method. 
When  is small, the literal count reduction is small because the 
previous greedy method is able to find a good solution among 
limited choices. However, as  increases, more percentage of lit-
erals is saved. For , the literal saving reaches up to 29%. 
For each pair of  and m, at least 84% of cases have their literal 
counts improved or unchanged. For some pairs of  and , all 
50 cases have their literal counts improved or unchanged. With 
the increase of  and , the runtime also increases, which is due 
to the growth of the search space. Notice that the runtime of the 
previous method is negligible compared to ours, due to its 
greedy nature. However, the runtime of our algorithm is still af-
fordable. In situations where better circuit quality is pursued, our 
method gives a better solution under a reasonable amount of 
runtime. 

 
Fig. 7. Comparison between the branch-and-bound algorithm without 
acceleration and the accelrated algorithm for  and . 

We also compared the proposed accelerated algorithm to the 
branch-and-bound algorithm without using the speed-up tech-

niques. Due to the inefficiency of the algorithm without acceler-
ation, the comparison was only done for polynomials of degree 

 and . Fig. 7 plots the speed-up ratio (shown in 
solid line, -axis on the left) and the quality loss (shown in 
dashed line, -axis on the right) of the accelerated algorithm for 
different  values. For the quality loss, the more negative the 
value is, the more loss the accelerated algorithm has. We can see 
from Fig. 7 that as the problem instance grows, more runtime 
can be saved through the speed-up techniques. However, the 
quality loss also increases. Nevertheless, the quality loss is small. 
Indeed, in terms of the absolute value, the average quality loss is 
smaller than one literal. Thus, the speed-up techniques have a 
negligible impact on the quality. 

VI. CONCLUSION 
In this work, we proposed a search-based method for synthe-

sizing stochastic circuits. The synthesis problem we considered 
here is different from the traditional logic synthesis problem in 
that there exist many different Boolean functions to realize a tar-
get computation. We proposed a branch-and-bound algorithm to 
systematically explore the solution space. A final solution is ob-
tained by adding a series of cubes to the on-set of the Boolean 
function. We also provided several speed-up techniques. The ex-
perimental results showed that our algorithm produces smaller 
circuits than a previous greedy approach, especially when the 
target polynomial has a high degree. 
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