
A Branch-and-Bound-Based Minterm Assignment
Algorithm for Synthesizing Stochastic Circuit

Xuesong Peng and Weikang Qian

University of Michigan-Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University, Shanghai, China

Email: {sayson, qianwk}@sjtu.edu.cn

Abstract—Stochastic computing (SC) is an unconventional par-
adigm which performs computation on stochastic bit streams us-
ing ordinary digital circuits. In SC, a real number is encoded by a
stochastic bit stream, where the value is the probability of ones in
the stream. SC can perform complex arithmetic computation with
simple circuits. It also has strong tolerance to bit flip errors. In a
prior work, researchers have proposed a general design of stochas-
tic circuit and a synthesis method. However, the synthesis method
cannot produce a circuit with minimal area. In this paper, we pro-
pose an improved synthesis method that applies a branch-and-
bound algorithm to search for the optimal minterm assignment.
We also introduce a few techniques to speed up the synthesis pro-
cedure with only small quality loss. Experimental results showed
that the new synthesis method produces smaller circuits.

Keywords—stochastic computing; stochastic circuit synthesis;
minterm assignment

I. INTRODUCTION
Stochastic computing (SC) is an alternative to the conven-

tional computing paradigm based on binary radix encoding. In
SC, digital circuits are still used to perform computation. How-
ever, their inputs are stochastic bit streams [1]. Each stochastic
bit stream encodes a value equal to the probability of a 1 in the
stream. For example, the stream shown in Fig. 1 encodes the
value 0.75.

One major advantage of SC is that it allows complex arith-
metic computation to be realized by a very simple circuit. Fig. 1
shows that arithmetic multiplication can be realized by an AND
gate, since for an AND gate, the probability of obtaining a 1 in
the output bit stream is equal to the product of the probabilities
of obtaining a 1 in the input bit streams.

Fig. 1. An AND gate performs multiplication on real values encoded by
stochastic bit streams.

Since all the bits in the stream have equal weight and a long
bit stream is usually used to encode a value, a single bit flip oc-
curring anywhere in the bit stream only causes very small change
to the encoded value. Therefore, SC is highly tolerant to bit flip
errors [2].

Given its advantages of low hardware cost and strong error
tolerance, SC has been used in a number of applications, includ-
ing image processing [3], decoding of modern error-correcting
codes [4], and artificial neural networks [5].

In early days, various elementary computing units in SC
were proposed, such as multiplier, scaled adder, divider, and
squaring unit [6]. These units were designed manually and can
only perform a limited types of computations.

In order to apply SC to a broad range of target computations,
several methods to synthesize stochastic circuits have been pro-
posed recently. The works [2,7,8] focused on synthesizing re-
configurable stochastic circuits. In [2], the authors proposed a
method based on Bernstein polynomial expansion to synthesize
combinational logic-based stochastic circuits. In [7] and [8], the
authors studied the form of the computation realized by SC using
sequential circuits and proposed methods to synthesize such de-
signs. The works [9 11] focused on synthesizing fixed stochas-
tic circuits, which take less area than reconfigurable ones. In [9],
the authors demonstrated a fundamental relation between sto-
chastic circuits and spectral transform. Based on this, they pro-
posed a general approach to synthesize stochastic circuits. In
[10], the authors found that different Boolean functions could
compute the same arithmetic function in SC and proposed the
concept of stochastic equivalence class. They proposed a method
to search for the optimal Boolean function within an equivalence
class. However, their method can only be applied to synthesize
multi-linear polynomials. In [11], the authors introduced a gen-
eral combinational circuit for SC and analyzed its computation.
They further proposed a method to synthesize low-cost fixed sto-
chastic circuit to realize a general polynomial.

The study in [11] reveals that in SC, there are a large number
of different Boolean functions that realize the same target arith-
metic function. Of course, the circuits for different Boolean
functions have different costs. In previous work [11], a greedy
method was used to find a circuit with low area cost. However,
given the extremely large search space, the greedy strategy, alt-
hough very fast, may not give a minimal solution. In this work,
we address this problem by applying a branch-and-bound-based
algorithm to extensively search for a Boolean function that will
lead to a circuit with low cost. Our approach constructs a func-
tion by iteratively adding cubes into the on-set of the Boolean
function. The optimal set of cubes to be added is determined
through the search process. To improve the runtime, we also in-
troduce a few speed-up techniques.

In summary, the main contributions of our work are as fol-
lows.

AND

A
B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b = 4/8

C

a = 6/8 c = 3/8

 We introduce a new method that iteratively selects cubes to
form a Boolean function that realizes the target computation
in SC.

 We develop a branch-and-bound algorithm to search for the
optimal set of cubes to be added.

 We propose several speed-up techniques which prune un-
promising branches and significantly improve the runtime of
the algorithm.
The rest of the paper is organized as follows. In Section II,

we give the background on the general design proposed in [11]
and illustrate the previous synthesis method. We also present the
logic synthesis problem for stochastic computing. In Section III,
we present the new algorithm. In Section IV, we discuss several
speed-up techniques. In Section V, we show the experimental
results. Finally, we conclude the paper in Section VI.

II. BACKGROUND ON SYNTHESIZING STOCHASTIC CIRCUITS
In this section, we give the background on the general form

of the stochastic circuit proposed in [11] and discuss the previ-
ous method to synthesize a target function. In what follows,
when we say the probability of a signal, we mean the probability
of the signal to be a one.

A. The General Form and Its Computation
 The general form of a stochastic circuit is shown in Fig. 2.

The circuit is a combinational circuit. It computes an arithmetic
function , which is encoded by the output bit stream.
It has inputs , which are supplied with variable prob-
abilities , respectively. In order to offer freedom for re-
alizing different functions, the circuit has extra inputs

, each supplied with a constant probability of 0.5. They
can be easily obtained by a linear feedback shift register (LFSR).
The value of affects the quantization error and is chosen ac-
cording to the accuracy requirement. The large the value is,
the smaller the quantization error.

Fig. 2. General form of a stochastic circuit [11].

The study in [11] shows that the general design computes a
type of function in the form

where is an integer. If the
combinational circuit realizes a Boolean function

, then the value is equal to
the number of vectors such that

.

Example 1
Suppose the Boolean function of the combinational circuit in Fig.
2 is . Then

. Since there are three vectors making
=1, the value . Similarly, we can derive

, , and . Since ,
according to Eq. (1), the output function is

The function of the form shown in Eq. (1) is called a binary
combination polynomial (BCP) [11]. If we expand a BCP, we
can obtain a multi-linear polynomial (MLP) of the following
form

where ’s are integers. The degree of each variable
in an MLP is at most 1. For example, expanding Eq. (2), we can
obtain an MLP

B. Synthesis of General Function
Given a target function, a procedure was proposed in [11] to

synthesize a stochastic circuit of the general form to realize that
function. We use an example to illustrate the procedure. Since
the computation realized by a general-form stochastic circuit is
a polynomial, the target function will be first approximated as a
polynomial.

Now suppose the polynomial is . Next, it
will be transformed into an MLP. This is achieved by introduc-
ing two new variables and with their values both set as

. The MLP obtained is

The next step is to map the MLP into a BCP. By a procedure

shown in [11], the result is

Assume that the number of -variables is and the

Boolean function is . Comparing Eq. (3)
with Eq. (1), we can obtain that the Boolean function should
satisfy that

However, since , the terms

 and are the same. Also, the terms
 and are the

same. Therefore, the requirement for the Boolean function can
be relaxed as follows

In the general case, suppose the target polynomial has var-
iables and the degree of is , for . De-
fine . To transform the original target into an MLP,
we will introduce new variables , , , , , , ,

, , , , with the values of all set to .
The BCP has product terms of the form

where . Each product
term has a one-to-one correspondence to a vector

. We call the vector
the characteristic vector of the product term. We partition the
set into equivalence classes ,

, where

Under the condition that for all ,
, two product terms are the same if and only if their

characteristic vectors belong to the same equivalent class. There-
fore, to realize the target polynomial, we only require that the
sum of the values over all the vectors in an equivalence class
is equal to a specific constant. Mathematically, the requirement
is that for all

where is a constant that can

be derived by adding up the corresponding values of an initial
BCP transformed from the original target function.

The example shown before corresponds to a situation in
which , and . Then we have six equiva-
lence classes

Given the above equivalence classes, the requirement on the
values specified by Eq. (5) is same as Eq. (4) we derived before.

C. The Circuit Synthesis Problem
Eq. (5) shows a requirement on the Boolean function to real-

ize the target polynomial. However, there are a large number of
Boolean functions that can satisfy the requirement. In order to
synthesize an optimal circuit, we need to find an optimal Bool-
ean function that satisfies the requirement. For simplicity, we fo-
cus on two-level circuit in this work and we use the literal num-
ber of the sum-of-product (SOP) form as the cost measure. The
optimization problem is stated as follows.

The above problem has flexibility in determining the final

Boolean function. However, it is different from the traditional
logic minimization with don’t cares or Boolean relation minimi-
zation problem [12]. The problem we consider here has a con-
straint on the number of input vectors belonging to a subset that
make the function evaluate to 1. Thus, the determination of the
output for an input vector will reduce the output choices of the
other input vectors belonging to the same subset. In contrast,
logic minimization with don’t cares or Boolean relation minimi-
zation does not have that constraint. The determination of the
output of an input vector does not reduce the output choices for
the other input vectors. Therefore, solving the above problem re-
quires a new method.

Suppose the Boolean function is
. We represent it using a matrix, where the col-

umns represent the -variables and the rows represent the -var-
iables. Both the columns and the rows are arranged in Gray code
order. An example is shown in Fig. 3 for a case where ,

, and .

Fig. 3. The matrix representation of the Boolean function
.

Using that matrix representation, the number
 is equal to the number of ones in the column

. Then the optimization problem is to distribute
 ones to columns corresponding to the vectors in the

class to achieve an optimal Boolean function. A
method was proposed in the previous work [11] to find a good
solution. It applies a greedy strategy to distribute the ones. As-
sume . Then the method sets the values
of the first vectors in the class as , the value
of the -th vector as , and the val-
ues of the remaining vectors as . The following example illus-
trates how the previous method works.

Example 2
Consider a case where , , and . There are

four equivalence classes for this case:

Assume the sums of values over all the vectors in each

equivalence class are , , , and

Given an integer and integers ,
, such that

 for any , deter-

mine an optimal Boolean function such that its values
satisfy Eq. (5).

. For equivalence classes and , each of them
covers one column. We set and . For
equivalence classes and , each of them covers three
columns. Since , we assign ,

, and . Similarly, for class , we
assign , , and . The
final assignment of the ones is shown in Fig. 3. The Boolean
function is , which has 6 literals.

However, the previous method may not give an optimal so-
lution. For the case shown in Example 2, a better assignment is
shown in Fig. 4, which gives a function . In this work, we
explore a better solution to the optimization problem.

Fig. 4. The matrix representation of the Boolean function
.

III. THE PROPOSED ALGORITHM
In this section, we present the new algorithm. For simplicity,

we focus on univariate polynomials, i.e., . Our work can
be extended to handle multivariate polynomials. The only differ-
ence is that there are more equivalence classes for multivariate
cases. For univariate case, we have and we assume the

 inputs are .
The basic approach we use to construct an optimal solution

is to add cubes one by one into the on-set of the Boolean function.
Although the previous work also uses this strategy, it only adds
cubes which cover minterms in the same equivalence class. In
contrast, our method also adds cubes across different equiva-
lence classes.

A. Preliminaries
Before presenting the details, we first introduce a few nota-

tions and definitions. We use to denote
the minterm corresponding to an input vector

. We say a minterm
 is in an equivalence class (

) if .
We use a vector to represent numbers of unas-

signed minterms for equivalent classes. We call such a
vector problem vector. Initially, the problem vector is equal to

, given by the problem specification. With cu-
bes added into the on-set, the entries in the problem vector will
be reduced. Eventually, when all the minterms have been de-
cided, the problem vector will become a zero vector.

We can also represent a cube by a vector of length .
It is formed by the numbers of minterms of the cube in each
equivalence class. We call such a vector cube vector. In order to
distinguish it from the problem vector, we represent the cube
vector using square brackets. For example, assume that

and . The cube contains four minterms ,
, and , as shown in Fig. 5(a). The

minterms and are in the equivalence class
and the minterms and are in the equivalence
class . There are no minterms of the cube in the equiva-
lence class . Therefore, the vector of the cube is .
Note that although each cube has a unique cube vector, a cube
vector may correspond to a number of different cubes. For ex-
ample, the cube has the same cube vector as the cube , as
shown in Fig. 5.

(a) Cube (b) Cube

Fig. 5. Two different cubes of the same cube vector .

Our approach splits the problem vector into a set of cube vec-
tors. In order to manipulate on the vector, it is important to know
the valid form of a cube vector. We have the following claim on
this.

Theorem 1
A cube vector is of the form

, where
and are the numbers of the missing -variables and
missing -variables in the cube, respectively. The cube vector
has zeros at the beginning and zeros at the end,
where is equal to the number of uncomple-
mented -variables in the cube and is equal to the
number of complemented -variables in the cube.

Proof: Consider the matrix representation of the cube. Since
there are missing -variables in the cube, the cube covers
rows and all the covered rows have the same pattern. Note that
each covered row is also a cube, which contains all the -var-
iables. Therefore, we only need to show that for such a cube, its
cube vector is of the form .

We consider the -variables of the cube. Suppose that there
are uncomplemented -variables and missing -variables in
the cube. Then, the cube has complemented -var-
iables. The cube covers minterms, among which
minterms are in the equivalence class , for .
For any or , there are no minterms of
the cube in the equivalence class . Therefore, the cube vector
is of the form , in which there
are zeros at the beginning and zeros at the end.

Example 3
Assume that and . Then, the cube con-

tains 8 minterms , , ,
, , , ,
. Its cube vector is

. For this cube vector, is equal to
the number of missing -variables and is equal to the
number of missing -variables. The number of zeros at the be-
ginning is 1, which is equal to the number of uncomplemented

-variables in the cube. The number of zeros at the end is 0,
which is equal to the number of complemented -variables in
the cube.

B. The Basic Idea
As mentioned at the beginning of this section, our approach

iteratively adds cubes into the on-set of the Boolean function.
Each time a cube is added, some entries in the problem vector
will be reduced. When the problem vector becomes zero, the
Boolean function is constructed.

Generally, a cube added later may intersect with a cube
added previously. However, in our approach, we restrict that a
cube added later should be disjoint to any cubes added before.
For simplicity, we call this restriction disjointness constraint.
Although this restriction may cause some quality loss, it has two
benefits. First, it makes the counting of minterms easy, because
we do not need to consider the overlapped minterms. With a
cube satisfying the disjointness constraint added, the problem
vector can be easily updated by subtracting the cube vector from
the original problem vector. Second, the constraint eliminates
many redundant cases. For example, adding two non-disjoint cu-
bes and is equivalent to adding two disjoint cubes and

. Note that although the Boolean function is constructed by
adding disjoint cubes, the final Boolean function will be further
simplified by the two-level logic optimization tool ESPRESSO
[13]. Thus, the final result is a set of non-disjoint cubes corre-
sponding to a minimum SOP expression.

In each iteration, when picking a cube, we also require that
each entry in the cube vector of the cube is no larger than the
corresponding entry in the current problem vector. For simplic-
ity, we call this constraint capacity constraint. If a cube satisfies
both the disjointness constraint and the capacity constraint, we
say the cube is valid.

In each iteration, we apply a greedy strategy in choosing the
cube to be added: we choose the largest cube among all valid
cubes. The reasons for this are 1) in two-level logic synthesis,
larger cubes have fewer literals and 2) with the largest cubes
added, the problem vector is reduced most. The details of how
we choose the largest valid cube will be discussed in Section III-
C. The procedure of choosing the largest valid cube involves ob-
taining a cube corresponding to the cube vector, which will be
discussed in Section III-D. Since at each iteration, there may ex-
ist more than one largest valid cube for the current problem setup,
we actually apply a branch-and-bound algorithm to find the op-
timal solution, which will be discussed in Section III-E.

C. Selecting the Largest Valid Cube
Suppose that at the beginning of one iteration, the problem

vector is Let be the sum of all the entries in the
problem vector, i.e., . Assume . Since
the largest valid cube satisfies the capacity constraint, it contains
at most minterms. Our method to find the largest valid cube
first checks whether there exists a valid cube with minterm.

According to Theorem 1, the cube vector should be in the
form of , where

 and . Furthermore, since the cube contains
minterms, we require that . We will examine all cube
vectors that satisfy the above two requirements and keep those
which also satisfy the capacity constraint. Then, for each kept
cube vector, we will check whether it has a corresponding cube
that satisfies the disjointness constraint. The details of how to
check the existence of such a cube will be discussed in Section
III-D. If such a cube exists, it is a largest valid cube.

Example 4
Suppose , , and we are given an initial problem

vector of . The sum of all the entries in the problem vec-
tor is 9. Thus, the largest valid cube has at most 8 minterms. We
first check whether there exists any valid cube with 8 minterms.
This type of cubes should be in the form of

 with ,
, and . Given the constraint, we have either

 and , or and . Thus, the possible cube
vectors are , , and . Among these three cube
vectors, only the cube vector satisfies the capacity con-
straint. Then, we will further check whether it has a correspond-
ing cube satisfying the disjointness constraint. Since no cubes
have been added yet, we can find a valid cube for the cube vector

, for example, the cube . This cube is one largest valid
cube.

In some situations, there may not exist a valid cube with
minterms because either the capacity constraint or the disjoint-
ness constraint is violated. The following is an example.

Example 5
Suppose , , and we are given an initial problem

vector of . The sum of all the entries in the problem vec-
tor is 11. Thus, the largest valid cube has at most 8 minterms.
The possible cube vectors of 8 minterms are , ,

, , , and . However, none of these
cube vectors satisfy the capacity constraint. Therefore, we can-
not find a valid cube with 8 minterms.

If there exists no valid cube with minterms, then we will
reduce the minterm number by half and check whether there ex-
ists a valid cube with minterms. This procedure will be re-
peated until we are able to find a valid cube with minterms for
some . Then, that cube is the largest valid cube. Since
in the worst case, we can always find a minterm that is valid, the
procedure guarantees to terminate at some point.

However, in general cases, the largest valid cube is not
unique. This is due to the existence of more than one largest cube
vector that satisfies the capacity constraint and the existence of
more than one cube for a cube vector.

Example 6
Suppose , , and we are given an initial problem

vector of . The largest possible cube has 8 minterms.
Among all cube vectors of 8 minterms, three satisfy the capacity

constraint: , , and . Furthermore, there ex-
ists more than one cube that satisfies the disjointness constraint
for each of the three cube vectors. For example, for the cube vec-
tor , it corresponds to cubes and , which sat-
isfy the disjoint constraint. Therefore, there exist more than one
largest valid cubes for this case.

When there are multiple choices of the largest valid cubes,
we want to evaluate all of them and choose the best one. For this
purpose, we apply a branch-and-bound algorithm to find an op-
timal Boolean function. The details of it will be discussed in Sec-
tion III-E.

D. Obtainting Cubes for a Cube Vector
In this section, we discuss one important procedure in select-

ing the largest valid cube: obtaining cubes for a given cube vec-
tor that satisfies the disjointness constraint. Since a cube is com-
posed of -variables and -variables, the procedure is divided
into two parts: determining the -variables and determining the

-variables.
The -variables are determined based on the form of the

cube vector. As shown in Theorem 1, if the vector is of the form
 where there are ze-

ros at the beginning and zeros at the end, then the
set of -variables is composed of uncomplemented -varia-
bles and complemented -variables. For example,
if and the cube vector is of the form , then the
possible -variable cubes are , , , , ,
and .

Next, for each set of possible -variables, we will further de-
termine all sets of -variables so that the cube formed by these

-variables and -variables satisfies the disjointness constraint.
According to Theorem 1, the set of -variables we need to pick
consists of -variables. To obtain all valid sets of -
variables, we can simply enumerate all cubes consisting of

 -variables and keep those when combined with the -varia-
ble cube do not overlap with the current Boolean function. How-
ever, we could find a large number of valid -variable cubes,
which increases the number of largest valid cubes. In order to
reduce the choices, in our implementation, we enumerate all cu-
bes with -variables in the Gray code order and keep
the first valid -variable cube for each set of possible -varia-
bles.

E. Branch-and-Bound Algorithm
As we mentioned before, in each iteration, there may exist

more than one largest valid cube. If this happens, it is hard to
decide which one will minimize the literal number of the final
Boolean function. Therefore, we apply a branch-and-bound al-
gorithm to evaluate all possible cube choices. An example of the
search tree is shown in Fig. 6. Each leaf of the search tree corre-
sponds to a final solution, represented by a set of cubes. Each
internal node stores a partial solution composed of a set of cubes
added and the remaining problem vector. The root is the initial
problem vector. At each internal node, the multiple choices of
the largest valid cubes for the current problem vector lead to
multiple branches from the node.

Fig. 6. An illustration of the solution tree for the problem with the problem
vector and . Note that for simplicity, we use a cube vector to
represent a cube and we only show a partial tree.

Algorithm 1. Branch-and-bound algorithm to find optimal function.

1. inputs: problem vector and an integer
2. outputs: the set of cubes of the final Boolean function
3. initialize a node : ; ;
4. initialize the optimal literal number ;
5. initialize the optimal cube set ;
6. push the node into an empty stack ;
7. while is not empty do
8. pop a node out of ;
9. find a list of largest valid cubes for , ,

and ;
10. for each cube in the list do
11. if then
12.
13. ;
14. if then // reach a leaf
15. ;
16. ;
17. else
18. push the node into ;
19. end if
20. end if
21. end for
22. end while
23. return ;

In order to apply a brand-and-bound algorithm, we need a

lower bound on the candidate solutions from a branch. We
choose the lower bound as the minimum literal number for the
set of cubes that forms a partial solution at a branch. For example,
for the branch shown in Fig. 6, its lower bound
is the minimum literal number for the cube with the cube vector

. Strictly speaking, the minimum literal number for the set
of chosen cubes at a branch may not be the lower bound for that
branch, because with more cubes determined later, it is possible
to reduce the literal count due to cube expansion and redundant
cube removal. However, since the cubes selected later are no
larger than any of the cubes already chosen, it is more likely that
with more cubes selected, the literal count will increase. Thus,
we use the proposed method to obtain the lower bound. A branch
will be pruned if the lower bound for the branch is larger than or
equal to the minimum literal count for the best solution obtained
so far. In practice, the exact minimum literal number for a set of
cubes is computationally expensive to obtain. Instead, we call
the powerful two-level logic optimization tool ESPRESSO [13]
to estimate the minimum value. Algorithm 1 summarizes the

(4, 8, 2)

[4, 4, 0]+(0, 4, 2) [2, 4, 2]+(2, 4, 0)

[4, 4, 0]
+[0, 4, 0]
+[0, 0, 2]

[4, 4, 0]
+[0, 2, 2]
+[0, 2, 0]

[2, 4, 2]
+[2, 2, 0]
+[0, 2, 0]

[2, 4, 2]
+[0, 4, 0]
+[2, 0, 0]

proposed branch-and-bound algorithm to find an optimal solu-
tion. Note that we explore the solution tree using the depth-first
traversal.

IV. PEED-UP TECHNIQUES
Although the branch-and-bound algorithm deletes some un-

promising branches, there are still too many branches to process
as the degree of the polynomial increases, which increases the
runtime considerably. However, there are numerous branches
unnecessary to process, either because they are unpromising or
because they produce the same results. In this section, we present
several techniques to speed up the algorithm with only small
quality loss.

A. Removing Branches with Duplicated Cube Sets
For a node in the search tree, even though the sum of all en-

tries in its problem vector is in the interval , the
size of the largest valid cube may not be . Example 5 shows
such a case. If this happens, we may add in sequence multiple
cubes of the same size of , where is an integer. In the
original branch-and-bound algorithm, the order that these cubes
are added can produce different branches. Nevertheless, in most
cases, different orders will finally lead to the same results.

Example 7
Suppose , , and the initial problem vector is

. We cannot extract a valid cube of size 8 from the initial
problem vector. As a result, the largest valid cube is of size 4. Its
cube vector is either or . With the original algo-
rithm, if the first cube selected is of the cube vector , then
the second cube selected will be of the cube vector [0,4,0]. On
the other hand, if the first cube selected is of the cube vector

, then the second cube selected will be of the cube vector
. These two branches from the root node will produce the

same results.

Those branches with the same set of cubes as a branch ex-
plored before are unnecessary to be explored again. To remove
them, we keep track of the sets of cube vectors we have already
examined. If the set of the cube vectors at the current branch has
been examined before, the branch will be pruned.

B. Bounding by the Optimal Cost at Each Level
In the original algorithm, a branch is pruned only when its

lower bound exceeds the value of the optimal full solution
known so far. In practice, given that each time we always add a
largest valid cube, it is very likely that for any level in the
search tree, the cost of the partial solution at level in a branch
that will be pruned later is larger than the cost of the optimal
partial solution at level . In other words, only those branches
with costs close to the optimal partial solution at each level are
promising in leading to the optimal full solution. Therefore, we
propose another speed-up technique which prunes branches
based on the cost of the optimal partial solution at each level.
With this technique, we can find and prune many unpromising
branches earlier. However, the proposed method is just a heuris-
tic. In order to reduce the quality loss caused by applying this
heuristic, we choose the bound at each level as the cost of the

optimal partial solution at the current level multiplied by a con-
stant . We will only delete those branches whose costs
exceed the bound. In real implementation, since we traverse the
solution tree in a depth-first way, the optimal partial solution is
obtained among all the explored nodes at the current level.

C. Limiting Update Count and Explored Node Number
The previous two speed-up techniques focus on eliminating

unpromising branches. However, for some extreme cases, the
numbers of nodes explored could still be very large. In order to
further reduce the runtime for these extreme cases, we impose
limits on the update count and the number of explored nodes.

Our algorithm will update the optimal solution if the current
solution is no worse than the optimal one recorded. As a result,
each update will either improve the result or leave it unchanged.
Experimental results showed that with more updates, the im-
provement will gradually reduce. Therefore, we consider the so-
lution to be optimal enough after a specific number of updates.
Thus, we set a limit on the update number and terminate the al-
gorithm once the limit is reached. From our experimental results,
we set this limit as 3. The quality loss is negligible.

Even though limiting the updating number can further im-
prove the runtime for some extreme cases, there are still some
cases for which a large number of nodes are explored between
two consecutive updates. In our experiment, there is a recorded
case for which after the second update, the algorithm processed
16463 other nodes to reach the third update. It took about 57
minutes to explore these nodes, but no improvement was made
for the third update. Therefore, we also set a limit on the number
of explored nodes. The algorithm records the number of nodes
explored. Once the initial solution has been found, the number
of nodes explored will be compared against the limit and the al-
gorithm will terminate once the limit is reached. In our experi-
ment, the limit is often set from 15 to 30 for and

, or larger if needed. With a larger limit, we can achieve a
better solution.

V. EXPERIMENT RESULTS
In this section, we show the experimental results of the pro-

posed algorithm. All the experiments were conducted on a desk-
top with 3.20GHz Intel(R) Core(TM) i5-4570 CPU and 16.0 GB
RAM. ESPRESSO is used to evaluate the literal count [13].

We applied the proposed branch-and-bound algorithm with
the speed-up technique to univariate polynomials with

 and . For each pair of and , we generated 50
random cases and obtained the average result. Table I shows for
each pair of and , the average percentage of literal count re-
duction by the proposed algorithm over the method in [11], the
percentage of improved or unchanged cases among all 50 cases,
and the average runtime in seconds of the proposed algorithm.
The literal reduction percentage, the percentage of improved and
unchanged cases, and the runtime are shown in the first row, the
second row, and the third row of each cell. For example, for

 and , the proposed algorithm saves 13% literal count on
average. 100% of the 50 cases have their literal counts reduced
or unchanged. The average runtime is 1.42s.

TABLE I. THE AVERAGE PERCENTAGE OF LITERAL COUNT REDUCTION
BY THE PROPOSED ALGORITHM OVER THE PREVIOUS METHOD [11] (IN THE
FIRST ROW OF EACH CELL), THE PRECENTAGE OF IMPROVED AND UNCHANGED
CASES (IN THE SECOND ROW OF EACH CELL), AND THE AVERAGE RUNTIME OF
THE PROPOSED ALGORITHM (IN THE THIRD ROW OF EACH CELL) FOR
DIFFERENT PAIRS OF AND .

6%

 100%
0.44s

12%
90%

 0.60s

19%
94%

 1.60s

18%
88%
2.56s

26%
100%
5.20s

3%
98%

 0.60s

13%
100%
 1.42s

16%
88%

 2.46s

22%
92%
4.20s

29%
94%
7.48s

2%
92%

 0.88s

13%
100%
 1.14s

18%
92%

 2.92s

18%
84%
8.74s

26%
88%
17.1s

2%
92%

 1.34s

12%
96%

 3.90s

15%
86%

 7.04s

18%
88%
16.6s

23%
90%
42.6s

2%
88%

 2.46s

10%
94%

 8.54s

14%
86%

 16.6s

17%
90%
39.2s

22%
90%
116s

It can be seen that in the average sense, the proposed algo-

rithm reduces the literal count compared to the previous method.
When is small, the literal count reduction is small because the
previous greedy method is able to find a good solution among
limited choices. However, as increases, more percentage of lit-
erals is saved. For , the literal saving reaches up to 29%.
For each pair of and m, at least 84% of cases have their literal
counts improved or unchanged. For some pairs of and , all
50 cases have their literal counts improved or unchanged. With
the increase of and , the runtime also increases, which is due
to the growth of the search space. Notice that the runtime of the
previous method is negligible compared to ours, due to its
greedy nature. However, the runtime of our algorithm is still af-
fordable. In situations where better circuit quality is pursued, our
method gives a better solution under a reasonable amount of
runtime.

Fig. 7. Comparison between the branch-and-bound algorithm without
acceleration and the accelrated algorithm for and .

We also compared the proposed accelerated algorithm to the
branch-and-bound algorithm without using the speed-up tech-

niques. Due to the inefficiency of the algorithm without acceler-
ation, the comparison was only done for polynomials of degree

 and . Fig. 7 plots the speed-up ratio (shown in
solid line, -axis on the left) and the quality loss (shown in
dashed line, -axis on the right) of the accelerated algorithm for
different values. For the quality loss, the more negative the
value is, the more loss the accelerated algorithm has. We can see
from Fig. 7 that as the problem instance grows, more runtime
can be saved through the speed-up techniques. However, the
quality loss also increases. Nevertheless, the quality loss is small.
Indeed, in terms of the absolute value, the average quality loss is
smaller than one literal. Thus, the speed-up techniques have a
negligible impact on the quality.

VI. CONCLUSION
In this work, we proposed a search-based method for synthe-

sizing stochastic circuits. The synthesis problem we considered
here is different from the traditional logic synthesis problem in
that there exist many different Boolean functions to realize a tar-
get computation. We proposed a branch-and-bound algorithm to
systematically explore the solution space. A final solution is ob-
tained by adding a series of cubes to the on-set of the Boolean
function. We also provided several speed-up techniques. The ex-
perimental results showed that our algorithm produces smaller
circuits than a previous greedy approach, especially when the
target polynomial has a high degree.

ACKNOWLEDGMENT
This work is supported by National Natural Science Founda-

tion of China (NSFC) under Grant No. 61204042 and 61472243.

REFERENCES
[1] B. Gaines, “Stochastic computing systems,” in Advances in Information

Systems Science. Plenum, 1969, vol. 2, ch. 2, pp. 37–172.
[2] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture

for fault-tolerant computation with stochastic logic,” IEEE Transactions
on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[3] A. Alaghi, C. Li, and J. Hayes, “Stochastic circuits for real-time
imageprocessing applications,” in DAC, 2013, pp. 1–6.

[4] S. Tehrani, S. Mannor, and W. Gross, “Fully parallel stochastic LDPC
decoders,” IEEE Transactions on Signal Processing, vol. 56, no. 11, pp.
5692–5703, 2008.

[5] B. Brown and H. Card, “Stochastic neural computation II: Soft
competitive learning,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 906–920, 2001.

[6] B. Brown and H. Card, “Stochastic neural computation I: Computational
elements,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 891–905,
2001.

[7] P. Li, W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “The synthesis of
linear finite state machine-based stochastic computational elements,” in
ASPDAC, 2012, pp. 757–762.

[8] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis of
complex arithmetic computation on stochastic bit streams using sequential
logic,” in ICCAD, 2012, pp. 480–487.

[9] A. Alaghi and J. Hayes, “A spectral transform approach to stochastic
circuits,” in ICCD, 2012, pp. 315–321.

[10] T.-H. Chen and J. Hayes, “Equivalence among stochastic logic circuits
and its application,” in DAC, 2015, pp. 131-136.

[11] Z. Zhao and W. Qian, “A general design of stochastic circuit and its
synthesis,” in DATE, 2015, pp. 1467-1472.

[12] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm to
solve Boolean relations,” in DAC, 2004, pp. 416-421.

[13] R. Rudell, “Multiple-valued logic minimization for PLA synthesis,”
Technical Report, University of. California, Electronics Research
Laboratory, Berkeley, 1986.

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

0
2
4
6
8

10

3 4 5 6 7 8

Speed-up ratio Quality loss

