
Chapter 9
A Branch-and-Bound-Based Minterm
Assignment Algorithm for Synthesizing
Stochastic Circuit

Xuesong Peng and Weikang Qian

1 Introduction

Stochastic computing (SC) is an alternative to the conventional computing paradigm
based on binary radix encoding. In SC, digital circuits are still used to perform
computation. However, their inputs are stochastic bit streams [1]. Each stochastic
bit stream encodes a value equal to the probability of a 1 in the stream. For example,
the stream A shown in Fig. 9.1 encodes the value 0:75.

One major advantage of SC is that it allows complex arithmetic computation to
be realized by a very simple circuit. Figure 9.1 shows that arithmetic multiplication
can be realized by an AND gate, since for an AND gate, the probability of obtaining
a 1 in the output bit stream is equal to the product of the probabilities of obtaining a
1 in the input bit streams.

Since all the bits in the stream have equal weight and a long bit stream is usually
used to encode a value, a single bit flip occurring anywhere in the bit stream only
causes very small change to the encoded value. Therefore, SC is highly tolerant to
bit flip errors [2].

Given its advantages of low hardware cost and strong error tolerance, SC has
been used in a number of applications, including image processing [3], decoding of
modern error-correcting codes [4], and artificial neural networks [5].

In early days, various elementary computing units in SC were proposed, such as
multiplier, scaled adder, divider, and squaring unit [6]. These units were designed
manually and can only perform a limited types of computations.

X. Peng • W. Qian (�)
University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai, China
e-mail: sayson@sjtu.edu.cn; qianwk@sjtu.edu.cn

© Springer International Publishing AG 2018
A.I. Reis, R. Drechsler (eds.), Advanced Logic Synthesis,
https://doi.org/10.1007/978-3-319-67295-3_9

189

mailto:sayson@sjtu.edu.cn
mailto:qianwk@sjtu.edu.cn
https://doi.org/10.1007/978-3-319-67295-3_9

190 X. Peng and W. Qian

Fig. 9.1 An AND gate
performs multiplication on
real values encoded by
stochastic bit streams C

A 1,1,0,0,0,0,1,0
1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0
B

a = 6/8

b = 4/8

c = 3/8

AND

In order to apply SC to a broad range of target computations, several methods
to synthesize stochastic circuits have been proposed recently. The works [2, 7, 8]
focused on synthesizing reconfigurable stochastic circuits. In [2], the authors
proposed a method based on Bernstein polynomial [9] expansion to synthesize
combinational logic-based stochastic circuits. In [7] and [8], the authors studied
the form of the computation realized by SC using sequential circuits and proposed
methods to synthesize such designs. The works [10–12] focused on synthesizing
fixed stochastic circuits, which take less area than reconfigurable ones. In [10],
the authors demonstrated a fundamental relation between stochastic circuits and
spectral transform. Based on this, they proposed a general approach to synthesize
stochastic circuits. In [11], the authors found that different Boolean functions
could compute the same arithmetic function in SC and proposed the concept of
stochastic equivalence class. They proposed a method to search for the optimal
Boolean function within an equivalence class. However, their method can only be
applied to synthesize multi-linear polynomials. In [12], the authors introduced a
general combinational circuit for SC and analyzed its computation. They further
proposed a method to synthesize low-cost fixed stochastic circuit to realize a general
polynomial.

The study in [12] reveals that in SC, there are a large number of different Boolean
functions that realize the same target arithmetic function. Of course, the circuits for
different Boolean functions have different costs. In previous work [12], a greedy
method was used to find a circuit with low area cost. However, given the extremely
large search space, the greedy strategy, although very fast, may not give a minimal
solution. In this work, we address this problem by applying a branch-and-bound-
based algorithm to extensively search for a Boolean function that will lead to a
circuit with low cost. Our approach constructs a function by iteratively adding cubes
into the on-set of the Boolean function. The optimal set of cubes to be added is
determined through the search process. To improve the runtime, we also introduce
a few speed-up techniques.

In summary, the main contributions of our work are as follows.

• We introduce a new method that iteratively selects cubes to form a Boolean
function that realizes the target computation in SC.

• We develop a branch-and-bound algorithm to search for the optimal set of cubes
to be added.

• We propose several speed-up techniques which prune unpromising branches and
significantly improve the runtime of the algorithm.

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 191

The rest of the chapter is organized as follows. In Sect. 2, we give the background
on the general design proposed in [12] and illustrate the previous synthesis method.
We also present the logic synthesis problem for stochastic computing. In Sect. 3,
we present the new algorithm. In Sect. 4, we discuss several speed-up techniques.
In Sect. 5, we show the experimental results. Finally, we conclude the chapter in
Sect. 6.

2 Background on Synthesizing Stochastic Circuits

In this section, we give the background on the general form of the stochastic circuit
proposed in [12] and discuss the previous method to synthesize a target function. In
what follows, when we say the probability of a signal, we mean the probability of
the signal to be a one.

2.1 The General Form and Its Computation

The general form of a stochastic circuit is shown in Fig. 9.2. The circuit is a
combinational circuit. It computes an arithmetic function f .x1; : : : ; xn/, which is
encoded by the output bit stream. It has n inputs X1, : : : , Xn, which are supplied
with variable probabilities x1, : : : , xn, respectively. In order to offer freedom for
realizing different functions, the circuit has m extra inputs Y1, : : : , Ym, each supplied
with a constant probability of 0:5. They can be easily obtained by a linear feedback
shift register (LFSR). The value of m affects the quantization error and is chosen
according to the accuracy requirement. The large the value m is, the smaller the
quantization error will be.

The study in [12] shows that the general design computes a type of function in
the form

f .x1; : : : ; xn/ D
X

.a1;:::;an/2f0;1gn

g.a1; : : : ; an/

2m

nY

jD1

x
aj

j

�
1 � xj

�1�aj
; (9.1)

Combinational
Logic

...

X1(prob=x1)

Xn(prob=xn)

...

Y1(prob=1/2)

Ym(prob=1/2)

F
(prob= f(x1,...,xn))

Fig. 9.2 General form of a stochastic circuit [12]

192 X. Peng and W. Qian

where 0 � g.a1; : : : ; an/ � 2m is an integer. If the combinational cir-
cuit realizes a Boolean function B.X1; : : : ; Xn; Y1; : : : ; Ym/, then the value
g.a1; : : : ; an/ is equal to the number of vectors .b1; : : : ; bm/ 2 f0; 1gm such that
B.a1; : : : ; an; b1; : : : ; bm/D 1.

Example 1 Suppose the Boolean function of the combinational circuit in Fig. 9.2 is
B.X1; X2; Y1; Y2/ D X1Y1 C X2Y2. Then B.1; 1; Y1; Y2/ D Y1 C Y2. Since there are
three vectors .b1; b2/ 2 f0; 1g2 making B.1; 1; b1; b2/ D 1, the value g.1; 1/ D 3.
Similarly, we can derive g.0; 0/ D 0, g.0; 1/ D 2, and g.1; 0/ D 2. Since m D 2,
according to Eq. (9.1), the output function is

f .x1; x2/ D 1

2
.1 � x1/x2 C 1

2
x1.1 � x2/C 3

4
x1x2: (9.2)

�
The function of the form shown in Eq. (9.1) is called a binary combination poly-

nomial (BCP) [12]. If we expand a BCP, we can obtain a multi-linear polynomial
(MLP) of the following form

f .x1; : : : ; xn/ D
X

.a1;:::;an/2f0;1gn

c.a1; : : : ; an/

2m

nY

jD1

x
aj

j ; (9.3)

where c.a1; : : : ; an/’s are integers. The degree of each variable in an MLP is at most
1. For example, expanding Eq. (9.2), we can obtain an MLP

f .x1; x2/ D 1

2
x1 C 1

2
x2 � 1

4
x1x2: (9.4)

2.2 Synthesis of General Function

Given a target function, a procedure was proposed in [12] to synthesize a stochastic
circuit of the general form to realize that function. We use an example to illustrate
the procedure. Since the computation realized by a general-form stochastic circuit
is a polynomial, the target function will be first approximated as a polynomial.

Now suppose the polynomial is f D 1
4
x2

1 C 1
2
x2. Next, it will be transformed into

an MLP. This is achieved by introducing two new variables x1;1 and x1;2 with their
values both set as x1. The MLP obtained is

f D 1

4
x1;1x1;2 C 1

2
x2: (9.5)

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 193

The next step is to map the MLP into a BCP. By a procedure shown in [12], the
result is

f D 1

2
.1 � x1;1/.1 � x1;2/x2 C 1

2
.1 � x1;1/x1;2x2

C 1

2
x1;1.1 � x1;2/x2 C 1

4
x1;1x1;2.1 � x2/C 3

4
x1;1x1;2x2: (9.6)

Assume that the number of Y-variables is m D 2 and the Boolean function is
B.X1;1; X1;2; X2; Y1; Y2/. Comparing Eq. (9.6) with Eq. (9.1), we can obtain that the
Boolean function should satisfy that

g.0; 0; 0/ D 0; g.0; 0; 1/ D 2; g.0; 1; 0/ D 0; g.0; 1; 1/ D 2;

g.1; 0; 0/ D 0; g.1; 0; 1/ D 2; g.1; 1; 0/ D 1; g.1; 1; 1/ D 3: (9.7)

However, since x1;1 D x1;2 D x1, the terms .1�x1;1/x1;2x2 and x1;1.1�x1;2/x2 are
the same. Also, the terms .1�x1;1/x1;2.1�x2/ and x1;1.1�x1;2/.1�x2/ are the same.
Therefore, the requirement for the Boolean function can be relaxed as follows:

g.0; 0; 0/ D 0; g.0; 0; 1/ D 2; g.0; 1; 0/C g.1; 0; 0/ D 0;

g.0; 1; 1/C g.1; 0; 1/ D 4; g.1; 1; 0/ D 1; g.1; 1; 1/ D 3: (9.8)

In the general case, suppose the target polynomial has k variables x1, : : : , xk and
the degree of xi is di, for i D 1, : : : , k. Define n DPk

iD1 di. To transform the original
target into an MLP, we will introduce n new variables x1;1, : : : , x1;d1 , : : : , xi;1, : : : ,
xi;di , : : : , xk;1, : : : , xk;dk , with the values of xi;1, : : : , xi;di all set to xi. The BCP has
2n product terms of the form

kY

iD1

diY

jD1

x
ai;j

i;j .1 � xi;j/
1�ai;j ; (9.9)

where .a1;1; : : : ; a1;d1 ; : : : ; ak;1; : : : ; ak;dk / 2 f0; 1gn. Each product term has a one-
to-one correspondence to a vector .a1;1; : : : ; a1;d1 ; : : : ; ak;1; : : : ; ak;dk / 2 f0; 1gn. We
call the vector the characteristic vector of the product term. We partition the set
f0; 1gn into

Qk
iD1.1 C di/ equivalence classes I.s1; : : : ; sk/, 0 � s1 � d1; : : : ; 0 �

sk � dk, where

I.s1; : : : ; sk/ D
8
<

:.a1;1; : : : ; ak;dk / 2 f0; 1gn W
diX

jD1

ai;j D si; for all i D 1; : : : ; k

9
=

; :

(9.10)

194 X. Peng and W. Qian

Under the condition that for all 1 � i � k, xi;1 D � � � D xi;di D xi, two product
terms are the same if and only if their characteristic vectors belong to the same
equivalence class. Therefore, to realize the target polynomial, we only require that
the sum of the g values over all the vectors in an equivalence class is equal to a
specific constant. Mathematically, the requirement is that for all 0 � s1 � d1, : : : ,
0 � sk � dk

X

.a1;1;:::;ak;dk /2I.s1;:::;sk/

g.a1;1; : : : ; ak;dk / D G.s1; : : : ; sk/; (9.11)

where 0 � G.s1; : : : ; sk/ � 2m
Qk

iD1

�di
si

�
is a constant that can be derived by adding

up the corresponding g values of an initial BCP transformed from the original target
function.

The example shown before corresponds to a situation in which k D 2, d1 D 2,
and d2 D 1. Then we have six equivalence classes

I.0; 0/ D f.0; 0; 0/g; I.0; 1/ D f.0; 0; 1/g; I.1; 0/ D f.0; 1; 0/; .1; 0; 0/g;
I.1; 1/ D f.0; 1; 1/; .1; 0; 1/g; I.2; 0/ D f.1; 1; 0/g; I.2; 1/ D f.1; 1; 1/g:

(9.12)
Given the above equivalence classes, the requirement on the g values specified

by Eq. (9.11) is same as Eq. (9.8) we derived before.

2.3 The Circuit Synthesis Problem

Equation (9.11) shows a requirement on the Boolean function to realize the target
polynomial. However, there are a large number of Boolean functions that can satisfy
the requirement. In order to synthesize an optimal circuit, we need to find an optimal
Boolean function that satisfies the requirement. For simplicity, we focus on two-
level circuit in this work and we use the literal number of the sum-of-product (SOP)
form as the cost measure. The optimization problem is stated as follows.

Given an integer m and
kY

iD1

.1C di/ integers G.0; : : : ; 0/, : : : , G.d1; : : : ; dk/

such that 0 � G.s1; : : : ; sk/ � 2m
kY

iD1

di

si

!
for any 0 � s1 � d1, : : : ,

0 � sk � dk, determine an optimal Boolean function such that its g values

satisfy Eq. (9.11).

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 195

Fig. 9.3 The matrix
representation of the Boolean
function
B.X1; X2; X3; Y1; Y2/ D
X1 Y1 C X2Y1 C X1X3

Y\X 000 001 011 010 110 111 101 100

00 1 1 1 1 1 1

01 1 1 1 1 1 1

11 1 1

10 1 1

The above problem has flexibility in determining the final Boolean function.
However, it is different from the traditional logic minimization with don’t cares
or Boolean relation minimization problem [13]. The problem we consider here has
a constraint on the number of input vectors belonging to a subset that make the
function evaluate to 1. Thus, the determination of the output for an input vector will
reduce the output choices of the other input vectors belonging to the same subset. In
contrast, logic minimization with don’t cares or Boolean relation minimization does
not have that constraint. The determination of the output of an input vector does not
reduce the output choices for the other input vectors. Therefore, solving the above
problem requires a new method.

Suppose the Boolean function is B.X1;1; : : : ; X1;d1 ; : : : ; Xk;1; : : : ; Xk;dk ; Y1; : : : ; Ym/.
We represent it using a matrix, where the columns represent the X-variables and the
rows represent the Y-variables. Both the columns and the rows are arranged in Gray
code order. An example is shown in Fig. 9.3 for a case where k D 1, d1 D 3, and
m D 2.

Using that matrix representation, the number g.a1;1; : : : ; ak;dk / is equal to the
number of ones in the column a1;1 : : : ak;dk . Then the optimization problem is to
distribute G.s1; : : : ; sn/ ones to columns corresponding to the vectors in the class
I.s1; : : : ; sn/ to achieve an optimal Boolean function. A method was proposed in the
previous work [12] to find a good solution. It applies a greedy strategy to distribute
the ones. Assume l D bG.s1; : : : ; sn/=2mc. Then the method sets the g values of the
first l vectors in the class I.s1; : : : ; sn/ as 2m, the g value of the .lC 1/-th vector as
.G.s1; : : : ; sn/� 2ml/, and the g values of the remaining vectors as 0. The following
example illustrates how the previous method works.

Example 2 Consider a case where k D 1, d1 D 3, and m D 2. There are four
equivalence classes for this case:

I.0/ D f.0; 0; 0/g; I.1/ D f.0; 0; 1/; .0; 1; 0/; .1; 0; 0/g;
I.2/ D f.0; 1; 1/; .1; 0; 1/; .1; 1; 0/g; I.3/ D f.1; 1; 1/g: (9.13)

Assume the sums of g values over all the vectors in each equivalence class are
G.0/ D 2, G.1/ D 6, G.2/ D 6, and G.3/ D 2. For equivalence classes I.0/ and
I.3/, each of them covers one column. We set g.0; 0; 0/ D 2 and g.1; 1; 1/ D 2.

196 X. Peng and W. Qian

Fig. 9.4 The matrix
representation of the Boolean
function
B.X1; X2; X3; Y1; Y2/ D Y1

Y\X 000 001 011 010 110 111 101 100

00 1 1 1 1 1 1 1 1

01 1 1 1 1 1 1 1 1

11

10

For equivalence classes I.1/ and I.2/, each of them covers three columns. Since
bG.1/=2mc D 1, we assign g.0; 0; 1/ D 4, g.0; 1; 0/ D 2, and g.1; 0; 0/ D 0.
Similarly, for class I.2/, we assign g.0; 1; 1/ D 4, g.1; 1; 0/ D 2, and g.1; 0; 1/ D
0. The final assignment of the ones is shown in Fig. 9.3. The Boolean function is
B D X1 Y1 C X2Y1 C X1X3, which has six literals. �

However, the previous method may not give an optimal solution. For the case
shown in Example 2, a better assignment is shown in Fig. 9.4, which gives a function
B D Y1. In this work, we explore a better solution to the optimization problem.

3 The Proposed Algorithm

In this section, we present the new algorithm. For simplicity, we focus on univariate
polynomials, i.e., k D 1. Our work can be extended to handle multivariate
polynomials. The only difference is that there are more equivalence classes for
multivariate cases. For univariate case, we have n D d1 and we assume the n X
inputs are X1; X2; : : : ; Xn.

The basic approach we use to construct an optimal solution is to add cubes one
by one into the on-set of the Boolean function. Although the previous work also
uses this strategy, it only adds cubes which cover minterms in the same equivalence
class. In contrast, our method also adds cubes across different equivalence classes.

3.1 Preliminaries

Before presenting the details, we first introduce a few notations and definitions.
We use M.a1; : : : ; an; b1; : : : ; bm/ to denote the minterm corresponding to
an input vector .a1; : : : ; an; b1; : : : ; bm/ 2 f0; 1gnCm. We say a minterm
M.a1; : : : ; an; b1; : : : ; bm/ is in an equivalence class I.i/ .0 � i � n/ if
.a1; : : : ; an/ 2 I.i/.

We use a vector .v0; : : : ; vn/ to represent numbers of unassigned minterms for
.n C 1/ equivalent classes. We call such a vector problem vector. Initially, the
problem vector is equal to .G.0/; : : : ; G.n//, given by the problem specification.
With cubes added into the on-set, the entries in the problem vector will be reduced.
Eventually, when all the minterms have been decided, the problem vector will
become a zero vector.

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 197

Fig. 9.5 Two different cubes
of the same cube vector
Œ0; 2; 2�. (a) Cube X1. (b)
Cube X2

Y1 X1X2 00 01 11 10
0 1 1
1 1 1

(a)

Y1 X1X2 00 01 11 10
0 1 1
1 1 1

(b)

/ /

We can also represent a cube by a vector of length .n C 1/. It is formed by
the numbers of minterms of the cube in each equivalence class. We call such a
vector cube vector. In order to distinguish it from the problem vector, we represent
the cube vector using square brackets. For example, assume that n D 2 and
m D 1. The cube X1 contains four minterms X1X2Y1, X1X2 Y1, X1X2Y1, and X1X2Y1,
as shown in Fig. 9.5a. The minterms X1X2 Y1 and X1X2Y1 are in the equivalence
class I.1/ and the minterms X1X2Y1 and X1X2Y1 are in the equivalence class I.2/.
There are no minterms of the cube X1 in the equivalence class I.0/. Therefore,
the vector of the cube X1 is Œ0; 2; 2�. Note that although each cube has a unique
cube vector, a cube vector may correspond to a number of different cubes. For
example, the cube X2 has the same cube vector as the cube X1, as shown in
Fig. 9.5b.

Our approach splits the problem vector into a set of cube vectors. In order to
manipulate on the vector, it is important to know the valid form of a cube vector. We
have the following claim on this.

Theorem 1 A cube vector is of the form Œ0 , : : : , 0, 2l
�r

0

�
, 2l
�r

1

�
, : : : , 2l

�r
r

�
, 0, : : : ,

0�, where 0 � r � n and 0 � l � m are the numbers of the missing X-variables
and missing Y-variables in the cube, respectively. The cube vector has t zeros at the
beginning and .n � t � r/ zeros at the end, where 0 � t � n � r is equal to the
number of uncomplemented X-variables in the cube and .n � t � r/ is equal to the
number of complemented X-variables in the cube.

Proof Consider the matrix representation of the cube. Since there are l missing Y-
variables in the cube, the cube covers 2l rows and all the covered rows have the
same pattern. Note that each covered row is also a cube, which contains all the m
Y-variables. Therefore, we only need to show that for such a cube, its cube vector is
of the form Œ0 , : : : , 0, 2l

�r
0

�
, 2l
�r

1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0�.

We consider the X-variables of the cube. Suppose that there are t uncomple-
mented X-variables and r missing X-variables in the cube. Then, the cube has
.n � t � r/ complemented X-variables. The cube covers 2r minterms, among which�r

i

�
minterms are in the equivalence class I.tC i/, for i D 0; : : : ; r. For any 0 � j < t

or t C r < j � n, there are no minterms of the cube in the equivalence class I.j/.
Therefore, the cube vector is of the form Œ0 , : : : , 0,

�r
0

�
,
�r

1

�
, : : : ,

�r
r

�
, 0, : : : , 0�, in

which there are t zeros at the beginning and .n � t � r/ zeros at the end. �

Example 3 Assume that n D 3 and m D 2. Then, the cube X1Y1 contains 8

minterms X1X2 X3Y1Y2, X1X2 X3Y1Y2, X1X2X3Y1Y2, X1X2X3Y1Y2, X1X2X3Y1Y2,
X1X2X3Y1Y2, and X1X2X3Y1Y2, X1X2X3Y1Y2. Its cube vector is Œ0; 2; 4; 2� Dh
0; 2

�
2
0

�
; 2
�

2
1

�
; 2
�

2
2

�i
. For this cube vector, l D 1 is equal to the number of missing

Y-variables and r D 2 is equal to the number of missing X-variables. The number

198 X. Peng and W. Qian

of zeros at the beginning is 1, which is equal to the number of uncomplemented
X-variables in the cube. The number of zeros at the end is 0, which is equal to the
number of complemented X-variables in the cube. �

3.2 The Basic Idea

As mentioned at the beginning of this section, our approach iteratively adds cubes
into the on-set of the Boolean function. Each time a cube is added, some entries
in the problem vector will be reduced. When the problem vector becomes zero, the
Boolean function is constructed.

Generally, a cube added later may intersect with a cube added previously.
However, in our approach, we restrict that a cube added later should be disjoint
to any cubes added before. For simplicity, we call this restriction disjointness
constraint. Although this restriction may cause some quality loss, it has two benefits.
First, it makes the counting of minterms easy, because we do not need to consider
the overlapped minterms. With a cube satisfying the disjointness constraint added,
the problem vector can be easily updated by subtracting the cube vector from the
original problem vector. Second, the constraint eliminates many redundant cases.
For example, adding two non-disjoint cubes X1 and X2 is equivalent to adding two
disjoint cubes X1 and X1X2. Note that although the Boolean function is constructed
by adding disjoint cubes, the final Boolean function will be further simplified by the
two-level logic optimization tool ESPRESSO [14]. Thus, the final result is a set of
non-disjoint cubes corresponding to a minimum SOP expression.

In each iteration, when picking a cube, we also require that each entry in the cube
vector of the cube is no larger than the corresponding entry in the current problem
vector. For simplicity, we call this constraint capacity constraint. If a cube satisfies
both the disjointness constraint and the capacity constraint, we say the cube is valid.

In each iteration, we apply a greedy strategy in choosing the cube to be added:
we choose the largest cube among all valid cubes. The reasons for this are (1) in
two-level logic synthesis, larger cubes have fewer literals and (2) with the largest
cubes added, the problem vector is reduced most. The details of how we choose
the largest valid cube will be discussed in Sect. 3.3. The procedure of choosing the
largest valid cube involves obtaining a cube corresponding to the cube vector, which
will be discussed in Sect. 3.4. Since at each iteration, there may exist more than one
largest valid cube for the current problem setup, we actually apply a branch-and-
bound algorithm to find the optimal solution, which will be discussed in Sect. 3.5.

3.3 Selecting the Largest Valid Cube

Suppose that at the beginning of one iteration, the problem vector is .v0; : : : ; vn/.
Let s be the sum of all the entries in the problem vector, i.e., s DPn

iD0 vi. Assume

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 199

q D blog2 sc. Since the largest valid cube satisfies the capacity constraint, it contains
at most 2q minterms. Our method to find the largest valid cube first checks whether
there exists a valid cube with 2q minterm.

According to Theorem 1, the cube vector should be in the form of Œ0 , : : : , 0, 2l
�r

0

�
,

2l
�r

1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0�, where 0 � r � n and 0 � l � m. Furthermore, since

the cube contains 2q minterms, we require that lC r D q. We will examine all cube
vectors that satisfy the above two requirements and keep those which also satisfy the
capacity constraint. Then, for each kept cube vector, we will check whether it has
a corresponding cube that satisfies the disjointness constraint. The details of how
to check the existence of such a cube will be discussed in Sect. 3.4. If such a cube
exists, it is a largest valid cube.

Example 4 Suppose n D 2, m D 2, and we are given an initial problem vector of
.2; 5; 2/. The sum of all the entries in the problem vector is nine. Thus, the largest
valid cube has at most eight minterms. We first check whether there exists any valid
cube with 8 minterms. This type of cubes should be in the form of Œ0 , : : : , 0, 2l

�r
0

�
,

2l
�r

1

�
, : : : , 2l

�r
r

�
, 0, : : : , 0� with 0 � r � 2, 0 � l � 2, and l C r D 3. Given the

constraint, we have either l D 2 and r D 1 or l D 1 and r D 2. Thus, the possible
cube vectors are Œ0; 4; 4�, Œ4; 4; 0�, and Œ2; 4; 2�. Among these three cube vectors,
only the cube vector Œ2; 4; 2� satisfies the capacity constraint. Then, we will further
check whether it has a corresponding cube satisfying the disjointness constraint.
Since no cubes have been added yet, we can find a valid cube for the cube vector
Œ2; 4; 2�, for example, the cube Y1. This cube is one largest valid cube. �

In some situations, there may not exist a valid cube with 2q minterms because
either the capacity constraint or the disjointness constraint is violated. The following
is an example.

Example 5 Suppose n D 2, m D 3, and we are given an initial problem vector of
.1; 3; 7/. The sum of all the entries in the problem vector is 11. Thus, the largest
valid cube has at most eight minterms. The possible cube vectors of eight minterms
are Œ0; 0; 8�, Œ0; 8; 0�, Œ8; 0; 0�, Œ0; 4; 4�, Œ4; 4; 0�, and Œ2; 4; 2�. However, none of these
cube vectors satisfy the capacity constraint. Therefore, we cannot find a valid cube
with eight minterms. �

If there exists no valid cube with 2q minterms, then we will reduce the minterm
number by half and check whether there exists a valid cube with 2q�1 minterms. This
procedure will be repeated until we are able to find a valid cube with 2i minterms for
some 0 � i � q. Then, that cube is the largest valid cube. Since in the worst case,
we can always find a minterm that is valid, the procedure guarantees to terminate at
some point.

However, in general cases, the largest valid cube is not unique. This is due to the
existence of more than one largest cube vector that satisfies the capacity constraint
and the existence of more than one cube for a cube vector.

Example 6 Suppose n D 2, m D 3, and we are given an initial problem vector of
.4; 8; 3/. The largest possible cube has eight minterms. Among all cube vectors
of eight minterms, three satisfy the capacity constraint: Œ0; 8; 0�, Œ4; 4; 0�, and

200 X. Peng and W. Qian

Œ2; 4; 2�. Furthermore, there exists more than one cube that satisfies the disjointness
constraint for each of the three cube vectors. For example, for the cube vector
Œ0; 8; 0�, it corresponds to cubes X1X2 and X1X2, which satisfy the disjoint constraint.
Therefore, there exist more than one largest valid cubes for this case. �

When there are multiple choices of the largest valid cubes, we want to evaluate
all of them and choose the best one. For this purpose, we apply a branch-and-bound
algorithm to find an optimal Boolean function. The details of it will be discussed in
Sect. 3.5.

3.4 Obtaining Cubes for a Cube Vector

In this section, we discuss one important procedure in selecting the largest valid
cube: obtaining cubes for a given cube vector that satisfies the disjointness con-
straint. Since a cube is composed of X-variables and Y-variables, the procedure is
divided into two parts: determining the X-variables and determining the Y-variables.

The X-variables are determined based on the form of the cube vector. As shown
in Theorem 1, if the vector is of the form Œ0 , : : : , 0, 2l

�r
0

�
, 2l
�r

1

�
, : : : , 2l

�r
r

�
, 0, : : : ,

0� where there are t zeros at the beginning and .n � t � r/ zeros at the end, then
the set of X-variables is composed of t uncomplemented X-variables and .n� t� r/
complemented X-variables. For example, if n D 3 and the cube vector is of the form
Œ0; 4; 4; 0�, then the possible X-variable cubes are X1X2, X1X3, X2X1, X2X3, X3X1,
and X3X2.

Next, for each set of possible X-variables, we will further determine all sets of
Y-variables so that the cube formed by these X-variables and Y-variables satisfies
the disjointness constraint. According to Theorem 1, the set of Y-variables we need
to pick consists of .m � l/ Y-variables. To obtain all valid sets of Y-variables, we
can simply enumerate all cubes consisting of .m � l/ Y-variables and keep those
when combined with the X-variable cube do not overlap with the current Boolean
function. However, we could find a large number of valid Y-variable cubes, which
increases the number of largest valid cubes. In order to reduce the choices, in our
implementation, we enumerate all cubes with .m � l/ Y-variables in the Gray code
order and keep the first valid Y-variable cube for each set of possible X-variables.

3.5 Branch-and-Bound Algorithm

As we mentioned before, in each iteration, there may exist more than one largest
valid cube. If this happens, it is hard to decide which one will minimize the literal
number of the final Boolean function. Therefore, we apply a branch-and-bound
algorithm to evaluate all possible cube choices. An example of the search tree
is shown in Fig. 9.6. Each leaf of the search tree corresponds to a final solution,
represented by a set of cubes. Each internal node stores a partial solution composed

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 201

Fig. 9.6 An illustration of
the solution tree for the
problem with the initial
problem vector .4; 8; 2/ and
m D 2. Note that for
simplicity, we use a cube
vector to represent a cube and
we only show a partial tree

(4,8,2)

[4,4,0]+ (4,8,2)

[4,4,0]
+[0,4,0]
+[0,0,2]

[4,4,0]
+[0,2,2]
+[0,2,0]

[2,4,2]+ (2,4,0)

[2,4,2]
+[2,2,0]
+[0,2,0]

[2,4,2]
+[0,4,0]
+[2,0,0]

Algorithm 1 Branch-and-bound algorithm to find optimal function
Input: problem vector v D .G0; : : : ; Gn/ and an integer m
Output: the set of cubes of the final Boolean function B

1: initialize a node N: N:vector v; N:cubeset ;;
2: initialize the optimal literal number no 1;
3: initialize the optimal cube set So ;;
4: push the node N into an empty stack Stk;
5: while Stk is not empty do
6: pop a node N out of Stk;
7: find a list L of largest valid cubes for N:vector, N:cubeset, and m;
8: for each cube C in L do
9: if litcount.N:cubeset [C/ < no then

10: Nnew:vector N:vector � vector.C/;
11: Nnew:cubeset N:cubeset [C;
12: if Nnew:vector D 0 then
13: no litcount.Nnew:cubeset/;

// reach a leaf

14: So Nnew:cubeset;
15: else
16: push the node Nnew into Stk;
17: end if
18: end if
19: end for
20: end while
21: return So;

of a set of cubes added and the remaining problem vector. The root is the initial
problem vector. At each internal node, the multiple choices of the largest valid cubes
for the current problem vector lead to multiple branches from the node.

In order to apply a brand-and-bound algorithm, we need a lower bound on the
candidate solutions from a branch. We choose the lower bound as the minimum
literal number for the set of cubes that forms a partial solution at a branch. For
example, for the branch Œ2; 4; 2� C .2; 4; 0/ shown in Fig. 9.6, its lower bound is
the minimum literal number for the cube with the cube vector Œ2; 4; 2�. Strictly
speaking, the minimum literal number for the set of chosen cubes at a branch may

202 X. Peng and W. Qian

not be the lower bound for that branch, because with more cubes determined later,
it is possible to reduce the literal count due to cube expansion and redundant cube
removal. However, since the cubes selected later are no larger than any of the cubes
already chosen, it is more likely that with more cubes selected, the literal count will
increase. Thus, we use the proposed method to obtain the lower bound. A branch
will be pruned if the lower bound for the branch is larger than or equal to the
minimum literal count for the best solution obtained so far. In practice, the exact
minimum literal number for a set of cubes is computationally expensive to obtain.
Instead, we call the powerful two-level logic optimization tool ESPRESSO [14] to
estimate the minimum value. Algorithm 1 summarizes the proposed branch-and-
bound algorithm to find an optimal solution. Note that we explore the solution tree
using the depth-first traversal.

4 Speed-Up Techniques

Although the branch-and-bound algorithm deletes some unpromising branches,
there are still too many branches to process as the degree of the polynomial
increases, which increases the runtime considerably. However, there are numerous
branches unnecessary to process, either because they are unpromising or because
they produce the same results. In this section, we present several techniques to speed
up the algorithm with only small quality loss.

4.1 Removing Branches with Duplicated Cube Sets

For a node in the search tree, even though the sum of all entries in its problem
vector is in the interval Œ2q; 2qC1 � 1�, the size of the largest valid cube may not be
2q. Example 5 shows such a case. If this happens, we may add in sequence multiple
cubes of the same size of 2u, where u < q is an integer. In the original branch-
and-bound algorithm, the order that these cubes are added can produce different
branches. Nevertheless, in most cases, different orders will finally lead to the same
results.

Example 7 Suppose n D 2, m D 3, and the initial problem vector is .1; 6; 2/. We
cannot extract a valid cube of size 8 from the initial problem vector. As a result, the
largest valid cube is of size 4. Its cube vector is either Œ1; 2; 1� or Œ0; 4; 0�. With the
original algorithm, if the first cube selected is of the cube vector Œ1; 2; 1�, then the
second cube selected will be of the cube vector Œ0; 4; 0�. On the other hand, if the
first cube selected is of the cube vector Œ0; 4; 0�, then the second cube selected will
be of the cube vector Œ1; 2; 1�. These two branches from the root node will produce
the same results. �

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 203

Those branches with the same set of cubes as a branch explored before are
unnecessary to be explored again. To remove them, we keep track of the sets of
cube vectors we have already examined. If the set of the cube vectors at the current
branch has been examined before, the branch will be pruned.

4.2 Bounding by the Optimal Cost at Each Level

In the original algorithm, a branch is pruned only when its lower bound exceeds
the value of the optimal full solution known so far. In practice, given that each
time we always add a largest valid cube, it is very likely that for any level i in the
search tree, the cost of the partial solution at level i in a branch that will be pruned
later is larger than the cost of the optimal partial solution at level i. In other words,
only those branches with costs close to the optimal partial solution at each level
are promising in leading to the optimal full solution. Therefore, we propose another
speed-up technique which prunes branches based on the cost of the optimal partial
solution at each level. With this technique, we can find and prune many unpromising
branches earlier. However, the proposed method is just a heuristic. In order to reduce
the quality loss caused by applying this heuristic, we choose the bound at each level
as the cost of the optimal partial solution at the current level multiplied by a constant
ml > 1. We will only delete those branches whose costs exceed the bound. In real
implementation, since we traverse the solution tree in a depth-first way, the optimal
partial solution is obtained among all the explored nodes at the current level.

4.3 Limiting Update Count and Explored Node Number

The previous two speed-up techniques focus on eliminating unpromising branches.
However, for some extreme cases, the numbers of nodes explored could still be very
large. In order to further reduce the runtime for these extreme cases, we impose
limits on the update count and the number of explored nodes.

Our algorithm will update the optimal solution if the current solution is no worse
than the optimal one recorded. As a result, each update will either improve the result
or leave it unchanged. Our experimental results showed that with more updates,
the improvement will gradually reduce. Therefore, we consider the solution to be
optimal enough after a specific number of updates. Thus, we set a limit on the
update number and terminate the algorithm once the limit is reached. From our
experimental results, we set this limit as three. The quality loss is negligible.

Even though limiting the updating number can further improve the runtime for
some extreme cases, there are still some cases for which a large number of nodes are
explored between two consecutive updates. In our experiment, there is a recorded
case for which after the second update, the algorithm processed 16,463 other nodes
to reach the third update. It took about 57 min to explore these nodes, but no

204 X. Peng and W. Qian

improvement was made for the third update. Therefore, we also set a limit on the
number of explored nodes. The algorithm records the number of nodes explored.
Once the initial solution has been found, the number of nodes explored will be
compared against the limit and the algorithm will terminate once the limit is reached.
In our experiment, the limit is often set from 15 to 30 for 3 � n � 7 and 3 � m � 7,
or larger if needed. With a larger limit, we can achieve a better solution.

5 Experiment Results

In this section, we show the experimental results of the proposed algorithm. All
the experiments were conducted on a desktop with 3.20 GHz Intel® Core™ i5-4570
CPU and 16.0 GB RAM. ESPRESSO is used to evaluate the literal count [14].

We applied the proposed branch-and-bound algorithm with the speed-up tech-
nique to univariate polynomials with 3 � n � 7 and 3 � m � 7. For each pair of
n and m, we generated 50 random cases and obtained the average result. Table 9.1
shows for each pair of n and m, the average percentage of literal count reduction

Table 9.1 The average percentage of literal count reduction by the proposed algorithm over the
previous method [12] (in the first row of each cell), the percentage of improved and unchanged
cases (in the second row of each cell), and the average runtime of the proposed algorithm (in the
third row of each cell) for different pairs of n and m

mnn 3 4 5 6 7

3 6% 12% 19% 18% 26%

100% 90% 94% 88% 100%

0:44 s 0:60 s 1:60 s 2:56 s 5:20 s

4 3% 13% 16% 22% 29%

98% 100% 88% 92% 94%

0:60 s 1:42 s 2:46 s 4:20 s 7:48 s

5 2% 13% 18% 18% 26%

92% 100% 92% 84% 88%

0:88 s 1:14 s 2:92 s 8:74 s 17:1 s

6 2% 12% 15% 18% 23%

92% 96% 86% 88% 90%

1:34 s 3:90 s 7:04 s 16:6 s 42:6 s

7 2% 10% 14% 17% 22%

88% 94% 86% 90% 90%

2:46 s 8:54 s 16:6 s 39:2 s 116 s

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 205

Fig. 9.7 Comparison
between the
branch-and-bound algorithm
without acceleration and the
accelerated algorithm for
n D 3 and 3 � m � 8

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

0
2
4
6
8

10

3 4 5 6 7 8

Speed-up ratio Quality loss

by the proposed algorithm over the method in [12], the percentage of improved or
unchanged cases among all 50 cases, and the average runtime in seconds of the
proposed algorithm. The literal reduction percentage, the percentage of improved
and unchanged cases, and the runtime are shown in the first row, the second row,
and the third row of each cell, respectively. For example, for n D 4 and m D 4, the
proposed algorithm saves 13% literal count on average. 100% of the 50 cases have
their literal counts reduced or unchanged. The average runtime is 1:42 s.

It can be seen that in the average sense, the proposed algorithm reduces the literal
count compared to the previous method. When n is small, the literal count reduction
is small because the previous greedy method is able to find a good solution among
limited choices. However, as n increases, more percentage of literals is saved. For
n D 7, the literal saving reaches up to 29%. For each pair of n and m, at least 84% of
cases have their literal counts improved or unchanged. For some pairs of n and m, all
50 cases have their literal counts improved or unchanged. With the increase of n and
m, the runtime also increases, which is due to the growth of the search space. Notice
that the runtime of the previous method is negligible compared to ours, due to its
greedy nature. However, since the values n and m for a typical stochastic circuit tend
to be small, the runtime of our algorithm is still affordable for a normal stochastic
circuit. In summary, in situations where better circuit quality is pursued, our method
gives a better solution under a reasonable amount of runtime.

We also compared the proposed accelerated algorithm to the branch-and-bound
algorithm without using the speed-up techniques. Due to the inefficiency of the
algorithm without acceleration, the comparison was only done for polynomials of
degree n D 3 and 3 � m � 8. Figure 9.7 plots the speed-up ratio (shown in solid
line, y-axis on the left) and the quality loss (shown in dashed line, y-axis on the
right) of the accelerated algorithm for different m values. For the quality loss, the
more negative the value is, the more loss the accelerated algorithm has. We can see
from Fig. 9.7 that as the problem instance grows, more runtime can be saved through
the speed-up techniques. However, the quality loss also increases. Nevertheless, the
quality loss is small. Indeed, in terms of the absolute value, the average quality loss
is smaller than one literal. Thus, the speed-up techniques have a negligible impact
on the quality.

206 X. Peng and W. Qian

6 Conclusion

In this work, we proposed a search-based method for synthesizing stochastic
circuits. The synthesis problem we considered here is different from the traditional
logic synthesis problem in that there exist many different Boolean functions to
realize a target computation. We proposed a branch-and-bound algorithm to system-
atically explore the solution space. A final solution is obtained by adding a series
of cubes to the on-set of the Boolean function. We also provided several speed-up
techniques. The experimental results showed that our algorithm produced smaller
circuits than a previous greedy approach, especially when the target polynomial had
a high degree.

Acknowledgements This work is supported by National Natural Science Foundation of China
(NSFC) under Grant No. 61204042 and 61472243.

References

1. B.R. Gaines, Stochastic computing systems, in Advances in Information Systems Science
(Springer, New York, 1969), pp. 37–172

2. W. Qian, X. Li, M.D. Riedel, K. Bazargan, D.J. Lilja, An architecture for fault-tolerant
computation with stochastic logic. IEEE Trans. Comput. 60(1), 93–105 (2011)

3. A. Alaghi, C. Li, J.P. Hayes, Stochastic circuits for real-time image-processing applications,
in Proceedings of the 50th Annual Design Automation Conference (ACM, New York, 2013),
p. 136

4. S.S. Tehrani, S. Mannor, W.J. Gross, Fully parallel stochastic LDPC decoders. IEEE Trans.
Signal Process. 56(11), 5692–5703 (2008)

5. B.D. Brown, H.C. Card, Stochastic neural computation. II. Soft competitive learning. IEEE
Trans. Comput. 50(9), 906–920 (2001)

6. B.D. Brown, H.C. Card, Stochastic neural computation. I. Computational elements. IEEE
Trans. Comput. 50(9), 891–905 (2001)

7. P. Li, W. Qian, M.D. Riedel, K. Bazargan, D.J. Lilja, The synthesis of linear finite state
machine-based stochastic computational elements, in 17th Asia and South Pacific Design
Automation Conference (IEEE, Washington, DC, 2012), pp. 757–762

8. P. Li, D.J. Lilja, W. Qian, K. Bazargan, M. Riedel, The synthesis of complex arithmetic com-
putation on stochastic bit streams using sequential logic, in Proceedings of the International
Conference on Computer-Aided Design (ACM, New York, 2012), pp. 480–487

9. G. Lorentz, Bernstein Polynomials (University of Toronto Press, Toronto, 1953)
10. A. Alaghi, J.P. Hayes, A spectral transform approach to stochastic circuits, in Computer

Design (ICCD), 2012 IEEE 30th International Conference on (IEEE, Washington, DC, 2012),
pp. 315–321

11. T.H. Chen and J.P. Hayes, Equivalence among stochastic logic circuits and its application,
in Proceedings of the 52nd Annual Design Automation Conference (ACM, New York, 2015),
p. 131

9 Minterm Assignment Algorithm for Synthesizing Stochastic Circuit 207

12. Z. Zhao and W. Qian, A general design of stochastic circuit and its synthesis, in Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition (EDA Consortium,
San Jose, 2015), pp. 1467–1472

13. D. Baneres, J. Cortadella, and M. Kishinevsky, A recursive paradigm to solve Boolean
relations, in Proceedings of the 41st annual Design Automation Conference (ACM, New York,
2004), pp. 416–421

14. R.L. Rudell, Multiple-valued logic minimization for PLA synthesis (No. UCB/ERL-M86/65).
California Univ Berkeley Electronics Research Lab (1986)

	9 A Branch-and-Bound-Based Minterm Assignment Algorithm for Synthesizing Stochastic Circuit
	1 Introduction
	2 Background on Synthesizing Stochastic Circuits
	2.1 The General Form and Its Computation
	2.2 Synthesis of General Function
	2.3 The Circuit Synthesis Problem

	3 The Proposed Algorithm
	3.1 Preliminaries
	3.2 The Basic Idea
	3.3 Selecting the Largest Valid Cube
	3.4 Obtaining Cubes for a Cube Vector
	3.5 Branch-and-Bound Algorithm

	4 Speed-Up Techniques
	4.1 Removing Branches with Duplicated Cube Sets
	4.2 Bounding by the Optimal Cost at Each Level
	4.3 Limiting Update Count and Explored Node Number

	5 Experiment Results
	6 Conclusion
	References

