
High-accuracy Low-power Reconfigurable Architectures for
Decomposition-based Approximate Lookup Table

Xingyue Qian1, Chang Meng1, Xiaolong Shen2, Junfeng Zhao2, Leibin Ni2, and Weikang Qian1,3
1University of Michigan-SJTU Joint Institute and 3MoE Key Lab of AI, Shanghai Jiao Tong University, Shanghai, China

2Central Research Institute, 2012 Laboratories, Huawei Technologies Co., Ltd., Shenzhen, China
Emails: {qianxingyue, changmeng}@sjtu.edu.cn, {shenxiaolong3, junfeng.zhao, nileibin}@huawei.com, qianwk@sjtu.edu.cn

Abstract—Storing pre-computed results of frequently-used
functions into lookup table (LUT) is a popular way to improve
energy efficiency, but its advantage diminishes as the number of
input bits increases. A recent work shows that by decomposing
the target function approximately, the total LUT entries can be
dramatically reduced, leading to significant energy saving. How-
ever, its heuristic approximate decomposition algorithm leads
to sub-optimal approximation quality. Also, its rigid hardware
architecture only supports disjoint decomposition and may have
unnecessary extra power consumption sometimes. To address
these issues, we develop a novel approximate decomposition
algorithm based on beam search and simulated annealing, which
can reduce 11.1% approximation error. We also propose a non-
disjoint approximate decomposition method and two reconfig-
urable architectures. The first has 10.4% less error using 19.2%
less energy and the second has 23.0% less error with same energy
consumption compared to the state-of-the-art design.

I. INTRODUCTION

Energy efficiency is of increasing importance in computing
systems as transistor size shrinks into nano-scale [1]. Com-
puting with memory is a popular technique for low-energy
design [2]. In this method, results of frequently-used functions
are pre-computed and stored in a lookup table (LUT) so that
they can be retrieved at runtime with low energy consump-
tion [3]. A LUT with 2n entries is needed to store a function
with n input bits. Therefore, as the number of input bits in-
creases, the advantage of computing with memory diminishes.
To address this issue, approximate LUT is proposed [4]–[12].
For some error-tolerant applications, hardware cost can be
dramatically reduced by carefully introducing errors, while the
application-level quality remains almost unaffected.

Many methods design approximate LUT based on Taylor
approximation [4]–[8]. Schulte and Stine divide the input into
three segments and use their combinations to index two LUTs,
whose outputs are added to give the approximate result [4].
Several later works extend the above architecture to more than
two LUTs [5]–[8], but they all rely on Taylor approximation,
so non-continuous functions are not supported. Another set of
works are based on approximate input pattern matching [9],
[10]. They store part of all the input-output pairs of a target
function in the LUT. When querying an input X , if there exists
an input X̂ in the LUT close enough to X , the corresponding
output f(X̂) is returned to approximate f(X). Otherwise, they
still require to use conventional computing circuits to obtain
f(X). Tian et al. propose ApproxLUT that also stores the
derivatives f ′ with the selected input-output pairs [11]. When
querying an input X , ApproxLUT matches it with the closest
stored input pattern X̂ and returns f(X) as f(X̂)+f ′(X̂)(X−

This work is supported by the National Key R&D Program of China
under grant number 2020YFB2205501. Corresponding author: Weikang Qian.

X̂). However, it is also based on Taylor approximation. Thus,
it cannot support non-continuous functions well.

Recently, Meng et al. implement approximate LUT
from a different angle and propose DALTA, a Boolean
decomposition-based approximate LUT architecture [12].
DALTA decomposes the target function into two simpler func-
tions that are stored into two smaller LUTs. It supports both
continuous and non-continuous functions and outperforms
ApproxLUT in both energy and latency, which shows the
potential of Boolean decomposition-based approximate LUT
architecture. However, its heuristic approximate decomposi-
tion algorithm explores the solution space greedily, so the
approximation quality is not optimized. Also, its rigid hard-
ware architecture only supports disjoint decomposition and
may have unnecessary extra power consumption sometimes.

In this work, we address the above issues, and our main
contributions are as follows:

• We develop a novel approximate decomposition algo-
rithm based on beam search and simulated annealing.
It can find decomposition with higher accuracy. The
experimental results show that compared to DALTA, it
can reduce 11.1% error by using half runtime.

• We extend the disjoint decomposition method to a non-
disjoint one, which can give better approximation result.

• We propose two reconfigurable architectures to improve
the energy and accuracy and enable accuracy-energy
trade-off. Compared to DALTA, the first has 10.4% less
error using 19.2% less energy, while the second has
23.0% less error using the same amount of energy.

II. BACKGROUND

A. Traditional Disjoint Decomposition
Definition 1 Let f be a single-output Boolean function of
n binary inputs X = (xn, . . . , x1). Let ω = (A,B) be a
partition on X , i.e., A∪B = X and A∩B = ∅. The function
has a disjoint decomposition with free set A and bound set B
if there exist functions ϕ and F such that f(X) = F (ϕ(B), A).

Not all Boolean functions have a disjoint decomposition.
Ashenhurst gives the condition on its existence as follows [13].
Theorem 1 A Boolean function has a disjoint decomposition
F (ϕ(B), A) if and only if there exists a fixed pattern V of
0s and 1s such that all the rows of the 2-dimensional (2D)
truth table with its rows and columns defined by A and B,
respectively, fit into the following types: 1) a pattern of all 0s;
2) a pattern of all 1s; 3) pattern V ; 4) the complement of V .
The type of each row forms a type vector T , while the fixed
pattern V is called a pattern vector. The functions ϕ and F
can be obtained from the vectors V and T , respectively.

Fig. 1. (a) An example 2D truth table; (b) Approximate single-output LUT.

Example 1 Fig. 1(a) shows the 2D truth table of a function
f . Its rows and columns are respectively defined by the free
set A = {x1, x2} and the bound set B = {x3, x4}. With
V = (0, 1, 1, 0), the 4 rows of the truth table are of types
3, 4, 2, and 1, respectively. Thus, f has a disjoint decom-
position f = F (ϕ(B), A). The corresponding type vector is
T = (3, 4, 2, 1). The function ϕ is given by the vector V as
ϕ(x3, x4) = x̄3x4 + x3x̄4. The function F is given by the
vector T as F (ϕ, x1, x2) = ϕx̄1x̄2 + ϕ̄x̄1x2 + x1x̄2.

B. DALTA
DALTA is a decomposition-based approximate lookup table

architecture for an n-input m-output Boolean function Y =
G(X), where X = (xn, . . . , x1) and Y = (ym, . . . , y1) with
xi, yk ∈ {0, 1} [12]. G can be expressed as G = (gm, . . . , g1),
where each component function gk is an n-input single-output
Boolean function that outputs yk. DALTA approximates G
by approximating each component function respectively, i.e.,
Ŷ = Ĝ(X) = (ĝm(X), . . . , ĝ1(X)), where ĝk has a disjoint
decomposition uniquely defined by its variable partition ωk,
pattern vector Vk, and type vector Tk.

DALTA uses an architecture shown in Fig. 1(b) to im-
plement the approximate disjoint decomposition ĝk. It is
called approximate single-output LUT, which has X as input
and outputs one bit of the approximate output Ŷ , ŷk. The
architecture has three main parts: routing box, bound table,
and free table. Routing box shuffles the inputs X into X ′.
The last b bits of X ′, x′

b, ..., x
′
1, form the bound set B and the

other bits, x′
n, ..., x

′
b+1, form the free set A. The bound table

is implemented by a b-input LUT and realizes the function ϕ.
The free table is implemented by an (n − b + 1)-input LUT
and realizes the function F . To store the accurate component
function g, a LUT of 2n entries is needed. However, only
(2b + 2n−b+1) LUT entries are needed to store ĝk, so the
hardware cost is reduced dramatically. To approximate the m-
bit output Y , m approximate single-output LUTs are imple-
mented, and the outputs ŷk’s are combined as Ŷ .

DALTA applies a heuristic algorithm to derive a good
approximate disjoint decomposition ĝk with a small error. The
error is measured by mean error distance (MED), defined as
MED(G, Ĝ) =

∑
X pX ·

∣∣∣Bin (G(X))− Bin
(
Ĝ(X)

)∣∣∣, where
pX is the occurrence probability of input X , and Bin(W) gives
the binary number encoded by the Boolean vector W .

The algorithm optimizes the setting of each ĝk, i.e., ωk,
Vk, and Tk, from the most significant bit (MSB) to the least
significant bit (LSB) in turn for R rounds. When optimizing
ĝk, the algorithm fixes all the other approximate component
functions to their accurate versions if they have not been opti-
mized yet in the first round, or their latest optimized versions
otherwise. Since the number of all possible partitions grows
exponentially with the number of input bits, to be practical,
when optimizing ĝk, the algorithm randomly generates P
candidate partitions ωk’s for consideration and greedily picks

the one with the smallest MED. For a given partition ωk, a
function OptForPart(G, Ĝ, k, ωk) is used to optimize the MED
and get the corresponding pattern vector Vk and type vector
Tk. Specifically, in OptForPart, two 2D truth tables are first
generated based on G and Ĝ respectively according to the
partition ωk. Then, Z initial pattern vectors Vini’s are randomly
generated. For each Vini, a local optimal (V, T) pair is reached
by alternatively fixing one element of (V, T) and optimizing
the other. Finally, the best of the Z local optimums is returned
as the best (V, T) pair for the partition ωk.

III. IMPROVED APPROXIMATE DECOMPOSITION
ALGORITHM

DALTA’s approximate decomposition algorithm explores
the solution space greedily, so the approximation quality is
not optimized. Here, we propose an improved algorithm based
on beam search and simulated annealing, BS-SA, which can
find a better decomposition quickly. We first present the beam
searched-based overall flow. Then, we show an important
improvement in the first round of the flow, that is, when
optimizing an approximate component function, how to set the
other unknown approximate component functions. Finally, we
describe our simulated annealing-based algorithm that finds an
optimized setting for each approximate component function.

A. Beam Search-based Overall Flow
We call s = (E,ω, V, T) a decomposition setting of an

approximate component function ĝ, where E is the MED,
ω is the partition, and V and T are the pattern vector and
type vector, respectively. Since s can uniquely define ĝ, the
aim of the approximate decomposition algorithm is to find an
optimized setting sequence, i.e., S∗ = (s∗m, ..., s∗1) that defines
an approximate function Ĝ minimizing MED(G, Ĝ).

Algorithm 1: Beam search-based flow.
Input: G: accurate function; R: iteration round; Nbeam:

number of beams.
Output: S∗ = (s∗m, ..., s∗1): an optimized setting sequence.

1 Get a random sequence S; Set of top sequences Sb ← {S};
2 for output bit k ← m to 1 do
3 S← ∅;
4 for S = (sm, . . . , sk, . . . , s1) ∈ Sb do
5 Ĝ← GetApproxFunction(S);
6 Bs ← FindBestSettings(G, Ĝ, k,Nbeam);
7 for s ∈ Bs do
8 S← S ∪ {(sm, . . . , sk+1, s, sk−1, . . . , s1)};

9 Sb ← FindTops(S, Nbeam);
10 S∗ = (s∗m, . . . , s∗1)← best sequence in Sb;
11 for round← 2 to R do
12 for output bit k ← m to 1 do
13 Ĝ← GetApproxFunction(S∗);
14 {s} ← FindBestSettings(G, Ĝ, k, 1);
15 S∗ ← (s∗m, . . . , s∗k+1, s, s

∗
k−1, . . . , s

∗
1);

16 return S∗;

The flow of our proposed approximate decomposition algo-
rithm is shown in Algorithm 1. Lines 1–10 correspond to the
first round, while Lines 11–15 correspond to the later rounds.
DALTA greedily picks the best setting for each ĝk in turn
in each round. However, we observed that the only greedy
choice at each output bit narrows down the search space of

the rest bits significantly, which may lead to a sub-optimal
result. Besides, we observed that the overall approximation
performance is largely determined in the first round. Therefore,
in the first round, instead of greedily picking the best setting
for each ĝk, we apply beam search [14], which extends the
greedy search by maintaining the top Nbeam > 1 best settings.

Specifically, in the first round, Line 1 puts an arbitrary
setting sequence S into the set of top decomposition setting
sequences Sb. Since we propose a model to be introduced
in Section III-B to predict the LSBs that have not been
approximated in the first round, the choice of S does not
affect the behavior of the algorithm. Line 2 traverses the output
bit from the MSB to the LSB. When approximating output
bit k, Line 4 further traverses each sequence S in Sb. For a
sequence S, Line 5 first obtains the corresponding approximate
function Ĝ. Then, Line 6 calls the function FindBestSettings
to generate a set Bs, which contains the top Nbeam best
decomposition settings of the current ĝk. FindBestSettings is
a simulated annealing-based algorithm and will be introduced
in Section III-C. Finally, for each top decomposition setting s
in Bs, Line 8 sets the setting of k-th output bit in S, sk, to be
s, and puts the updated S into S. After all the sequences in Sb
are checked, Line 9 updates Sb with Nbeam sequences with the
least errors in S, which will be used when approximating the
next output bit. After the last bit is approximated, Line 10 sets
S∗ to be the best sequence in Sb, and the later rounds further
optimize it. For later rounds (Lines 11–15), we obtain Ĝ using
the best sequence S∗, and only the best decomposition setting
s for the k-th (1 ≤ k ≤ m) output bit is obtained and used to
update the setting of that bit.

B. Predictive Model for the LSBs
In the algorithm when optimizing ĝk, the other approxi-

mate component functions are assumed to have been known.
However, the LSBs, i.e., ĝk−1, . . . , ĝ1 are unknown in the first
round. DALTA solves this issue by setting them as the accurate
version [12]. However, in reality, the optimization algorithm
tends to minimize the overall error. Thus, a better model is to
predict their behavior in minimizing the error. For this purpose,
we introduce a predictive model that sets the unknown bits
to the ones that minimize the error. Specifically, assume that
we are optimizing the k-th output bit. At this moment, by
the optimization order shown at Line 2 in Algorithm 1, for
each input X , the output bits ŷm, . . . , ŷk+1 are known, while
ŷk−1, . . . , ŷ1 are unknown. For a fixed choice of the k-th
output bit ŷk ∈ {0, 1}, we define ŶM =

∑m
j=k 2

j−1ŷj . Based
on the target output bits ym, . . . , yk for the input X , we define
YM =

∑m
j=k 2

j−1yj . In order to minimize the error distance
|Y−Ŷ | for the input X and the choice ŷk, we set the unknowns
ŷk−1, . . . , ŷ1 by distinguishing the following three cases:

1) The case where ŶM > YM . In this case, to minimize
|Y − Ŷ |, we should let ŷj = 0 for 1 ≤ j ≤ k − 1.

2) The case where ŶM < YM . In this case, to minimize
|Y − Ŷ |, we should let ŷj = 1 for 1 ≤ j ≤ k − 1.

3) The case where ŶM = YM . In this case, to minimize
|Y − Ŷ |, we should let ŷj = yj for 1 ≤ j ≤ k − 1.

C. Simulated Annealing-based FindBestSettings
When DALTA optimizes ĝk, it randomly picks P partitions

from all possible choices for consideration, which leads to

Algorithm 2: SA-based FindBestSettings.

Input: G: accurate function; Ĝ: approximate function; k:
output bit; Nbeams: number of beams.

Output: Bs: the set of top Nbeams best decomposition
settings of ĝk.

Parameter: P : variable partition limit; Nnb: number of
neighbours; τ0: initial temperature; α:
temperature decrease factor.

1 Randomly generate variable partition ω; τ ← τ0;
2 (Eω, V, T)← OptForPart(G, Ĝ, k, ω); Best error E∗ ← Eω;
3 Set of visited partitions Φ← {ω}; Bs ← {(Eω, ω, V, T)};
4 while |Φ| < P do
5 Best neighbour error E∗

nb ←∞; Ω← GenNeib(ω,Nnb);
6 for ωnb ∈ Ω do
7 if ωnb /∈ Φ then
8 (Eωnb , V, T)← OptForPart(G, Ĝ, k, ωnb);
9 Φ← Φ ∪ {ωnb}; Store Eωnb for ωnb;

10 if Eωnb < E∗ then E∗ ← Eωnb ;
11 Bs ← Bs ∪ {(Eωnb , ωnb, V, T)};
12 if |Bs| > Nbeam then
13 Delete the entry in Bs with the largest Eω;

14 else Fetches stored Eωnb for ωnb;
15 if Eωnb < E∗

nb then (ω∗
nb, E

∗
nb)← (ωnb, Eωnb);

16 if E∗
nb ≤ Eω then (ω,Eω)← (ω∗

nb, E
∗
nb) ;

17 else if rand()<exp(
Eω−E∗

nb
τE∗) then (ω,Eω)←(ω∗

nb,E
∗
nb);

18 τ ← ατ ;
19 if no change of Φ in 3 successive iterations then break;
20 return Bs;

a sub-optimal result [12]. In our BS-SA algorithm, we use
simulated annealing (SA) in FindBestSettings to find the best
settings for ĝk. The general process is shown in Algorithm 2.

Lines 1–3 obtain an optimized setting of a randomly-
generated initial partition ω by calling the function OptForPart
introduced in Section II-B, where Eω denotes the correspond-
ing error for ω. In addition, Line 1 sets the temperature τ as
an initial value τ0. Lines 4–19 are the main loop, in which the
current partition ω may be updated. Within the loop, Line 5
first generates Nnb neighbours of ω. For a variable partition ω
with free set A and bound set B, another partition ωnb with
free set Anb and bound set Bnb is called its neighbour if A
and Anb differ in one element.

Lines 6–15 check each neighbour ωnb to get the best one,
ω∗

nb. If ωnb is a new partition, Line 8 calls OptForPart to obtain
an optimized setting (Eωnb , V, T) for it. Then, Line 9 adds ωnb
into the set of visited partitions, Φ, and stores the associated
error Eωnb . If Eωnb is less than the global best error E∗, Line 10
updates E∗ by Eωnb . Lines 11–13 update the set Bs, which
contains the top Nbeam global best settings. If ωnb has already
been visited, Line 14 fetches its associated error Eωnb directly.
Then, Line 15 updates the best neighbour partition ω∗

nb and
its associated error E∗

nb with the current neighbour ωnb and its
associated error Eωnb , respectively, if Eωnb < E∗

nb.
If the error of the best neighbour is smaller than that of the

current partition, Line 16 updates the current partition ω as the
best neighbour. Otherwise, Line 17 does the same update with
a probability related to the normalized error difference and the
current temperature. Line 18 reduces the current temperature
τ with a scaling factor α ∈ (0, 1). If at least P partitions
are visited (Line 4) or the set of visited partitions Φ does not
change for 3 successive iterations (Line 19), the process ends.

IV. RECONFIGURABLE HARDWARE ARCHITECTURES

This section presents two proposed reconfigurable archi-
tectures. They both support the basic disjoint decomposition
mode same as DALTA, which we call the normal mode. In
addition, the first architecture supports a bound-table-only
(BTO) mode to further reduce power consumption, while
the second supports both the BTO mode and a non-disjoint
decomposition (ND) mode to improve the accuracy.

A. Reconfigurable Architecture with BTO and Normal Mode

We observe that for some output bits in some functions, the
minimum error when all rows in the 2D truth table are fixed
to type 3 is close to the original minimum error achieved by
choosing the best type from type 1 to type 4 for each row. In
this case, the approximate function F (ϕ(B), A) is independent
of the free set A, and it reduces to ϕ(B). This implies that in
the approximate single-output LUT shown in Fig. 1(b), we can
turn off the free table and directly use the output of the bound
table, ϕ, thus saving the power consumption. This mode is
called the BTO mode. To get the best pattern vector under the
BTO mode, we only need to modify the function OptForPart
by restricting the type vector T as a vector of all 3s.

Example 2 For the example function shown in Fig. 2(a), it
can be accurately decomposed with V = (1, 1, 1, 0) and
T = (3, 2, 3, 3). However, if we restrict that all the rows should
be of type 3, then the closest approximate decomposition has
its pattern vector as (1, 1, 1, 0), corresponding to the function
ϕ(x3, x4) = x̄3x̄4 + x̄3x4 + x3x̄4. It is very close to the
accurate decomposition: only the red cell in Fig. 2(a) is wrong.
Meanwhile, it does not need to use the free table.

Fig. 2. (a) An example 2D truth table; (b) BTO-Normal architecture.

To support both the power-saving BTO mode and the
more accurate normal mode, we propose a reconfigurable
architecture as shown in Fig. 2(b). We call it BTO-Normal.
When the signal mode = 0, the architecture operates in the
BTO mode, where the free table is turned off by setting its
enable and clock signals to zero, hence saving the dynamic
power and the total power consumption. When mode = 1, the
architecture operates in the normal mode and the free table is
activated as usual. The approximate output bit ŷ is selected
from the outputs of the bound and free tables by the signal
mode through a MUX.

When using BTO-Normal to implement a function, we also
need to decide the operating mode of each output bit. For this
purpose, at Line 14 of Algorithm 1, besides obtaining the best
setting s for the normal mode, we also obtain the best setting
sBTO when using the BTO mode. Let the MEDs of the settings
s and sBTO be E and EBTO, respectively. For the current output
bit, we choose the BTO mode if EBTO < (1 + δ)E, where
δ > 0 is a factor controlling the mode selection; otherwise,
we choose the normal mode.

B. Reconfigurable Architecture with BTO, Normal, and ND
Modes

This section presents the architecture with the BTO, normal,
and ND modes denoted as BTO-Normal-ND. We first show
the approximate non-disjoint decomposition algorithm and
architecture. Then, we show the reconfigurable architecture.

1) Approximate Non-disjoint Decomposition: The approx-
imation based on disjoint decomposition is restrictive and
sometimes, can lead to a large error. In order to reduce the
error, we resort to non-disjoint decomposition. A non-disjoint
decomposition can be represented as f(X) = F (ϕ(B), A,C),
where (A,B) form a partition of X and C is a subset of
B. We limit to the case where C contains a single input in
set B so that the hardware cost is not increased too much.
Let that input be xs ∈ B. Then, we can rewrite the non-
disjoint decomposition as F (ϕ(B), A, xs). For j = 0, 1, define
Fj(ϕ,A) = F (ϕ,A, j). By distinguishing between xs = 0 and
xs = 1, we can prove:

f(X)=F (ϕ(B),A,xs)= x̄sF0(ϕ(B),A)+xsF1(ϕ(B),A). (1)

Based on Eq. (1), we can realize a non-disjoint decomposition
by an architecture shown in Fig. 3(a), which serves as a
foundation for our proposed reconfigurable architecture that
will be introduced next. The architecture consists of a bound
table that realizes ϕ, a free table (Free Table 0) that realizes
F0, a free table (Free Table 1) that realizes F1, and a MUX
that uses xs to select from F0 and F1.

Fig. 3. (a) An architecture for realizing a non-disjoint decomposition; (b) An
example of approximate non-disjoint decomposition.

Next, we illustrate given a single-output target function
t(X) and a variable partition ω = (A,B), how to ob-
tain a single-output approximate function f(X) with a non-
disjoint decomposition in the form of F (ϕ(B), A, xs) so that
MED(t, f) is minimized. Note that in the actual situation, we
try to find an approximate non-disjoint decomposition for the
k-th (1 ≤ k ≤ m) LSB of G so that MED(G, Ĝ) is minimized.
The solution to this actual problem shares the same basic idea
as the solution to the above problem, but due to space limit,
we omit the details.

First, we assume that the shared bit is fixed as xs ∈ B.
Define B = B\{xs} and X = X\{xs}. We rewrite t(X) as
t(X, xs), f(X) as f(X, xs), and ϕ(B) as ϕ(B, xs). For j =
0, 1, define tj(X) = t(X, j), fj(X) = f(X, j), and ϕj(B) =
ϕ(B, j). We use P(Ω) to denote the probability of event Ω.
By definition, we have

MED(t, f) =
∑
X

P(X)|t(X)− f(X)|

=
∑
X

P(X, xs = 0)|t0(X)− f0(X)|

+
∑
X

P(X, xs = 1)|t1(X)− f1(X)| (2)

= P(xs = 0)
∑
X

P(X|xs = 0)|t0(X)− f0(X)|

+ P(xs = 1)
∑
X

P(X|xs = 1)|t1(X)− f1(X)|.

Since f(X) = F (ϕ(B), A, xs), we have that for j = 0, 1,
fj(X) = F (ϕj(B), A, j) = Fj(ϕj(B), A). Clearly, (B, A)
forms a partition on the variable set X. Thus, Fj(ϕj(B), A)
(j = 0, 1) is a disjoint decomposition. By Eq. (2), to minimize
MED(t, f), it is equivalent to finding two disjoint decompo-
sitions f0(X) = F0(ϕ0(B), A) and f1(X) = F1(ϕ1(B), A) to
minimize MED(t0, f0) and MED(t1, f1), respectively, under
the corresponding conditional probability distribution on X,
which can be obtained from the probability distribution on
X . We can solve these two disjoint decompositions by calling
the function OptForPart. After that, we obtain F0, F1, and
ϕ(B) = x̄sϕ0(B) + xsϕ1(B). Finally, we can get the non-
disjoint decomposition according to Eq. (1).

Example 3 Fig. 3(b) shows an example for a single-output
function t on five inputs under the variable partition A =
{x4, x5} and B = {x1, x2, x3}. Assume that we want
to get an approximate non-disjoint decomposition f(X) =
F (ϕ(B), A, x2) that minimizes MED(t, f). For the shared
bit x2, t0 and t1 are defined by the blue and orange
columns in the table, respectively. Assume that the inputs
are uniformly distributed. We first obtain the disjoint de-
compositions f0 = F0(ϕ0(x1, x3), x4, x5) that minimizes
MED(t0, f0) and f1 = F1(ϕ1(x1, x3), x4, x5) that mini-
mizes MED(t1, f1). We get ϕ0(x1, x3) = x̄1x̄3 + x1x3,
F0(ϕ, x4, x5) = ϕx̄4x̄5 + ϕx4x̄5 + x4x5, ϕ1(x1, x3) =
x̄1x̄3 + x̄1x3, and F1(ϕ, x4, x5) = x̄4x̄5 + ϕ̄x̄4x5 + ϕx4x̄5.
Finally, we get the non-disjoint decomposition F (ϕ(B), A, x2)
as F (ϕ, x4, x5, x2) = x̄2F0(ϕ, x4, x5) + x2F1(ϕ, x4, x5) and
ϕ(x1, x2, x3) = x̄2ϕ0(x1, x3) + x2ϕ1(x1, x3).

Note that in the above illustration, we assume that the share
bit xs is known. If real case, it is unknown. To solve this
problem, we enumerate all the bits in B and finally pick the
one with the least MED.

2) BTO-Normal-ND Architecture: The proposed reconfig-
urable BTO-Normal-ND architecture is shown in Fig. 4, which
is based on the non-disjoint decomposition architecture in
Fig. 3(a). Since the input goes through a routing box, we can
always rearrange the bound set B to let the selected shared bit
xs be x′

b. The mode of the architecture is determined by the
signals mode1 and mode2. When (mode2,mode1) = (0, 0),
both free tables are off, and the architecture is in the BTO
mode. When (mode2,mode1) = (0, 1), Free Table 1 is off,
Free Table 0 is on, and the architecture is in the normal mode.
When (mode2,mode1) = (1, 1), both free tables are on. In
this case, the block connection is the same as that shown in
Fig. 3(a), and hence, the architecture is in the ND mode.

Fig. 4. BTO-Normal-ND architecture.

The mode selection is similar to that of BTO-Normal. At
Line 14 of Algorithm 1, besides obtaining the best setting s
for the normal mode, we obtain the best setting sBTO when
using the BTO mode and the best setting sND when using the
ND mode. Let the MEDs of the settings s, sBTO, and sND be
E, EBTO, and END, respectively. For the current output bit,
we choose the BTO mode if EBTO < (1 + δ)E and END >
(1− δ′)E, where δ and δ′ are two parameters satisfying that
0 < δ < δ′ < 1. Otherwise, if END < (1 − δ)E, we choose
the ND mode. For the rest case, we choose the normal mode.

V. EXPERIMENTAL RESULTS

This section shows the experimental results. We implement
the algorithms in C++ and perform experiments on a com-
puter with 48-core 2.4GHz Intel 4214R processors and 64GB
RAM. All the architectures are implemented in Verilog. LUTs
are implemented by RAMs consisting of D flip-flops. The
architectures are further synthesized with Synopsys Design
Compiler (DC) [15] using the Nangate 45nm standard cell
library [16]. DC is also used for measuring areas and delays.
The functionality is verified by Synopsys VCS [15], and the
power is evaluated by Synopsys PrimeTime [15].

We use the same benchmarks as DALTA [12] in Table I.
The 6 continuous functions are from [11], whose inputs and
outputs are both quantized into 16 bits. The 4 non-continuous
functions are from AxBench [17], whose 16-bit inputs are
stitched by two 8-bit operands of the original functions. We
assume that all inputs are uniformly distributed.

Table I. Benchmarks used in the experiments.

Continuous Domain Range Non-continuous #input #output

cos(x) [0, π
2
] [0, 1] Brent-Kung 16 9

tan(x) [0, 2π
5
] [0, 3.08] Forwardk2j 16 16

exp(x) [0, 3] [0, 20.09] Inversek2j 16 16
ln(x) [1, 10] [0, 2.30] Multiplier 16 16
erf(x) [0, 3] [0, 1]

denoise(x) [0, 3] [0, 0.81]

A. Performance of BS-SA Algorithm
This section studies the performance of the BS-SA al-

gorithm by comparing it with the DALTA algorithm. Since
DALTA only supports the normal mode, we only test this
mode of BS-SA. Both DALTA and BS-SA spend most of
their runtime in calling the function OptForPart. To reduce the
runtime, we call the function for different partitions in parallel
with 44 threads for both algorithms. In order to sufficiently
use these threads, in the actual implementation of BS-SA, for
each function call of FindBestSettings, we run 10 SA-based
processes simultaneously that share a common set of visited
partitions Φ. For both DALTA and BS-SA, we set the bound
set size b = 9, the iteration round R = 5, and the number of
initial patterns Z = 30, which are same as those in [12]. In
BS-SA, we set the beam number Nbeam = 3, the number of
neighbours Nnb = 5, the initial temperature τ0 = 0.2, and the
decrease factor α = 0.9. Since the SA algorithm can choose
more promising variable partitions, we set the partition limit
P for BS-SA as 500, while that for DALTA is 1000.

We run both DALTA’s algorithm and BS-SA for 10 times
and obtain the minimum, average, and standard deviation of
MED and the average runtime, as listed in Table II. Note
that the minimum MEDs for DALTA’s algorithm for several
benchmarks are much smaller than those reported in [12]

because they are the best results in 10 runs. Comparing the
geometric means of the metrics, BS-SA can reduce 11.1%
minimum error and 97.1% standard deviation over DALTA by
using half of its runtime.

Table II. Comparison of DALTA’s algorithm and BS-SA.

DALTA BS-SA

MED Time (s) MED Time (s)

benchmark Min Avg Stdev Avg Min Avg Stdev Avg

cos 9.47 10.50 0.88 424 8.66 8.80 0.14 202
tan 3.13 3.61 1.32 352 3.09 3.38 0.16 168
exp 9.06 15.92 8.04 433 8.76 8.87 0.05 189
ln 10.39 13.94 6.48 442 10.03 10.10 0.04 190
erf 13.97 46.68 18.99 391 10.93 10.99 0.10 185

denoise 9.49 29.01 10.10 446 8.77 8.84 0.14 199
Brent-Kung 0.09 0.85 0.70 148 0.06 0.31 0.21 76
Forwardk2j 586.9 870.9 199.0 650 581.0 624.9 64.58 327
Inversek2j 325.9 425.0 116.4 643 299.8 300.8 1.94 264
Multiplier 414.2 584.2 146.1 682 318.5 319.2 0.74 274

GEOMEAN 17.39 34.04 11.07 429 15.46 18.53 0.32 195

B. Performance of Reconfigurable Hardware Architectures

To show the performance of BTO-Normal and BTO-
Normal-ND, we compare them with DALTA and two
rounding-based architectures, RoundOut and RoundIn.
RoundOut rounds off the q LSBs of the output and keeps the
rest. We adjust q for each benchmark so that the resulting
MED is larger than that of DALTA. RoundIn rounds off
w bits of the input and uses the rest to look up for the
approximate output. Specifically, we partition the inputs into
blocks of 2w adjacent ones and use the median output in
each block as the approximate output of all the inputs in the
block. We set w = 6 to obtain a comparable MED.

We use the best results in the 10 runs, i.e., the ones that give
column 2 in Table II, to configure DALTA. For BTO-Normal
and BTO-Normal-ND, we run BS-SA only once thanks to
its high stability. We set the mode selection factor δ = 0.01
and δ′ = 0.1. We set the same delay constraint for RoundIn,
DALTA, BTO-Normal, and BTO-Normal-ND during synthesis
so that they have similar latency. For each benchmark, we
measure the energy for 1024 read operations and record their
average. For MED, area, latency, and energy, we take their
geometric means over all 10 benchmarks and normalize the
result to that of DALTA as shown in Fig. 5. We can see that the
three decomposition-based architectures, i.e., DALTA, BTO-
Normal, and BTO-Normal-ND, have smaller error and energy
than the two rounding-based ones. Compared to DALTA,
BTO-Normal has 10.4% less error due to the use of BS-SA and
19.2% less energy due to the use of BTO mode for some output
bits. BTO-Normal-ND improves DALTA’s error by 23.0% due
to the availability of the ND mode. It has almost the same
energy as DALTA, but it requires 29% more area due to the
extra free tables.

C. Accuracy-Energy Trade-off of BTO-Normal-ND

We perform a case study on the widely-used cosine function
using BTO-Normal-ND. By selecting different modes for each
output bit, we can obtain configurations with accuracy-energy
trade-off as shown in Fig 6. We label the number of output
bits in each mode, i.e., (#BTO,#Normal,#ND), for two
configurations. All the 6 configurations between these two
inclusively have both less error and less energy than DALTA.

Fig. 5. Performance comparison of hardware architectures.

Fig. 6. Accuracy-energy trade-off of the function cos(x).

VI. CONCLUSION

In this work, we propose two high-accuracy low-power
reconfigurable architectures for decomposition-based approxi-
mate LUT. We also develop a novel approximate decomposi-
tion algorithm based on beam search and simulated annealing,
which can quickly give optimized configurations. The exper-
iments show that the proposed architectures outperform the
state of the art.

REFERENCES

[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature, vol.
530, no. 7589, pp. 144–147, 2016.

[2] P. T. P. Tang, “Table-lookup algorithms for elementary functions and
their error analysis,” in ARITH, 1991, pp. 232–236.

[3] J. Cong et al., “Energy-efficient computing using adaptive table lookup
based on nonvolatile memories,” in ISLPED, 2013, pp. 280–285.

[4] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate
function approximation,” in ARITH, 1997, pp. 175–183.

[5] J. E. Stine and M. J. Schulte, “The symmetric table addition method for
accurate function approximation,” VLSI signal proc., vol. 21, no. 2, pp.
167–177, 1999.

[6] J.-M. Muller, “A few results on table-based methods,” Reliab. Comput.,
vol. 5, no. 3, pp. 279–288, 1999.

[7] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Trans Comput, vol. 54, no. 3, pp. 319–330, 2005.

[8] S. Hsiao et al., “Hierarchical multipartite function evaluation,” IEEE
Trans Comput, vol. 66, no. 1, pp. 89–99, 2017.

[9] A. Rahimi, “Approximate associative memristive memory for energy-
efficient GPUs,” in DATE, 2015, pp. 1497–1502.

[10] M. Imani et al., “Resistive configurable associative memory for approx-
imate computing,” in DATE, 2016, pp. 1327–1332.

[11] Y. Tian et al., “ApproxLUT: A novel approximate lookup table-based
accelerator,” in ICCAD, 2017, pp. 438–443.

[12] C. Meng et al., “DALTA: A decomposition-based approximate lookup
table architecture,” in ICCAD, 2021, pp. 1–8.

[13] R. L. Ashenhurst, “The decompositions of switching functions,” in
ISTSF, 1959, pp. 74–116.

[14] C. Sammut, Beam Search. Springer US, 2017, pp. 120–120.
[15] Synopsys, Inc., “Synopsys softwares,” 2021. [Online]. Available:

http://www.synopsys.com
[16] Nangate, Inc., “Nangate 45nm open cell library,” 2021. [Online].

Available: https://si2.org/open-cell-library/
[17] A. Yazdanbakhsh et al., “AxBench: A multi-platform benchmark suite

for approximate computing,” in IEEE Des. Test, 2016.

