
Approximate Logic Synthesis in the Loop for
Designing Low-Power Neural Network Accelerator

Yifan Qian1, Chang Meng1, Yawen Zhang2, Weikang Qian1,3,4, Runsheng Wang2, Ru Huang2
1University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China

2Institute of Microelectronics, Peking University, Beijing, China
3MoE Key Laboratory of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China

4State Key Laboratory of ASIC & System, Fudan University, Shanghai, China

Abstract—Approximate computing is an emerging circuit de-
sign paradigm. It improves the energy efficiency of circuits
by introducing some errors. Recent works propose to apply
approximate multipliers to design low-power neural network
(NN) accelerators. Different from existing methods, in this paper,
we advocate a method that integrates approximate logic synthesis
(ALS) into the design loop of low-power NN accelerators. ALS
automatically synthesizes a good approximate circuit and can
take input distribution into consideration. With the help of
ALS, the NN computation pattern can be exploited to design
an approximate multiplier that fits better with the NN. The
experimental results show that the proposed method can generate
an extremely small approximate multiplier with area only 4.2%
of the accurate version, while it can still achieve a high accuracy
of 97.9% for LeNet-5 on MNIST dataset.

Index Terms—Approximate Computing, Approximate Logic
Synthesis, Neural Network, Neural Network Accelerator

I. INTRODUCTION

As the feature size of CMOS transistors has decreased ex-
ponentially, there is an increasing challenge to improve circuit
performance and energy efficiency. New design paradigms are
needed to produce more energy-efficient circuits. At the same
time, many applications, such as multimedia, data mining, and
machine learning, can tolerate certain errors occurred in their
internal computation. Such error tolerance is exploited in a
new design paradigm, approximate computing, to address the
energy efficiency issue [1]. Its key idea is to deliberately trade
off accuracy for energy consumption by changing the Boolean
function of a circuit. If the new approximate function is
carefully chosen, the application-level correctness is minimally
affected, while the energy consumption of the circuit can be
reduced dramatically.

One application that approximate computing is particularly
suitable is neural network (NN) computation. NN is an effec-
tive machine learning method that is widely used in various
fields nowadays, such as computer vision and natural language
processing [2]. In order to handle more and more complex
learning tasks, NNs with more hidden layers are proposed.
They involve an enormous number of additions and multiplica-
tions and hence, consume a large amount of energy. However,

This work is supported in part by the National Key R&D Program of
China under Grant 2020YFB2205500 and the State Key Laboratory of ASIC
& System Open Research Grant 2019KF004. Corresponding authors: Weikang
Qian (qianwk@sjtu.edu.cn) and Runsheng Wang (r.wang@pku.edu.cn).

many studies have shown that there is always redundancy
within the NNs [3], and hence, they are error tolerant and
suitable for approximate computing. Some popular approaches
to design energy-efficient NN accelerators like weight pruning
and weight quantization indeed can be viewed as approximate
computing methods.

In this paper, we focus on another type of approximate
computing method for designing NN accelerators, that is,
replacing arithmetic circuits by their approximate versions.
Since multiplier is the most area- and energy-consuming
arithmetic circuit in an NN accelerator, most works in this
category target at designing NN accelerator with approximate
multipliers. Some works propose new approximate multipliers
specifically for NN accelerators, such as the logarithm-based
approximate multiplier [4]. Some other works use existing
approximate multiplier to build NN accelerators. Ansari et. al.
apply the circuits in the EvoApprox8b library [5] and compare
their hardware and software efficiency [6]. Then, they identify
the features in approximate multipliers that make them better
than others with respect to NN accuracy and build a predictor
to forecast how well an approximate multiplier will perform.
Liu et. al. proposes INA, which incrementally replaces some
accurate multipliers in the NN by the approximate ones [7].
Mrazek et. al. introduces ALWANN, an automatic layer-wise
approximation of NNs [8]. It uses one approximate multiplier
in each layer.

One common feature of these existing works is that the
approximate multiplier is first chosen and then the weights of
the NNs are properly trained. This creates a one-way link from
approximate multiplier to NN, as shown in Fig. 1(a). For this
approach, if the initial approximate multiplier is not chosen
properly, the NN accuracy may not reach a value close to the
ideal accuracy by later training. To address this problem, in
the paper, we propose an approach of integrating approximate
logic synthesis (ALS) into the design loop, which is shown in
Fig. 1(b).

Given the large design space of an approximate circuit,
ALS tries to systematically explore the design space and
automatically synthesize a good approximate circuit under
user-specified error constraints. Many ALS methods have been
proposed so far [9]–[15]. One feature of some ALS methods
is that they can take input distribution into consideration to



Fig. 1. Conventional methods versus our proposed method for designing
approximate computing-based lower-power neural network accelerators.

design proper approximate circuits [12], [14], [15]. Given this
feature, we advocate an approach that integrates ALS into the
design loop of the approximate computing-based low-power
NN accelerators. As shown in Fig. 1(b), the key idea is to
take into consideration the operand distribution in the NN
computation to design the approximate multiplier. By profiling
the NN computation, an operand distribution is obtained. It is
then fed into an ALS tool to synthesize an approximate mul-
tiplier. Then, the NN with the new approximate multiplier is
properly trained. This forms a profiling-synthesizing-training
loop, which can be iterated until convergence. With the help
of ALS, the approximate multiplier can fit better with the NN,
since the knowledge on the NN computation pattern is used
to design the multiplier. In some sense, this realizes a genuine
software-hardware co-design.

This paper demonstrates the above idea by using a state-of-
the-art ALS method, ALSRAC [15], and testing it on LeNet-5
with MNIST dataset. The experimental results show that by
using the proposed approach, we can generate an extremely
small approximate multiplier with area only 4.2% of the
accurate version, while it can still enable a high NN accuracy.
Compared to a low-precision accurate multiplier, i.e., a 2-bit
rounded multiplier, the final approximate multiplier generated
by ALSRAC is both smaller and faster, while the NN accuracy
by the approximate multiplier is higher than that by the 2-bit
rounded multiplier.

The rest of the paper is organized as follows. Section II
introduces the basic idea of ALSRAC. Section III describes
the details of integrating ALS into the design loop of NN ac-
celerators. Section IV shows the experimental results. Finally,
Section V concludes the paper.

II. BACKGROUND: ALSRAC

The basic idea of ALSRAC is to implement an internal
signal by a new function that takes some other existing internal
signals as input. With this, the original sub-circuit that gener-
ates the signal is replaced by a new sub-circuit that realizes the
new function. If the new sub-circuit is smaller than the original

one, the entire area of the circuit is reduced. This operation
is called resubstitution in traditional logic synthesis [16]. An
example of resubstitution is shown in Fig. 2. The figure shows
two AND-inverter graphs (AIGs) where a node represents an
AND gate and a dashed edge represents a negation of the
signal on the edge. The signal g in the left sub-figure has the
function g = a(b+c+d). It can be realized by a new function
f(n,m) = n+m on two other existing internal signals n and
m, where n = a(b + c) and m = ad (see the right sub-
figure). By this resubstitution, the node number in the circuit
is reduced by 1.

Fig. 2. Illustration of the resubstitution operation [16].

However, for traditional logic synthesis where resubstitu-
tions should maintain the given Boolean function, the resub-
stitution opportunity is limited. ALSRAC extends the resub-
stitution technique in the approximate computing context and
proposes an approximate resubstitution method [15]. With that,
by allowing a small amount of error, more resubstitution can-
didates can be identified, which leads to further simplification
of the original circuit. ALSRAC uses Monte Carlo simulation
to guide the finding of the resubstitution candidates. It can take
input distribution into consideration. It also supports various
error metrics such as error rate, normalized mean error distance
(NMED), etc.

III. METHODOLOGY

In this section, we elaborate the method of integrating
ALSRAC into the design loop of low-power NN accelerators
built with approximate multipliers.

The NN accelerator with approximate multipliers is modi-
fied from an NN accelerator with accurate integer multipliers
by replacing the accurate multipliers with the approximate
ones. We first describe how the NN accelerator with accurate
integer multipliers is designed. Typically, the original NN
model is real-value computation. The accelerator with accurate
integer multipliers are designed from the original NN model
by properly mapping the weights and activations into integers,
using a method modified from the one presented in [17].
Specifically, the weights in the k-th layer share a common
scaling factor Wk. For a real-valued weight r in that layer, it
is converted into an n-bit signed integer q by the following
equation:

q = round(r/Wk).



Note that the scaling factor Wk should be properly chosen
to map the range of the weights in the k-th layer into the
range of n-bit signed integers. The same mapping method
is also applied to the activations in the k-th layer, which
share a common scaling factor Ak. For different layers of
an NN, the scaling factors Wk and Ak are different. With
the weights and the activations mapped to the integers, the
convolution can be implemented by integer multipliers and
adders. After the convolution is finished, the integer result
will be multiplied by the corresponding scaling factors Wk

and Ak in this layer and sent to the following activation layer.
Although this step involves floating-point multiplications, such
operations are much fewer than the integer multiplications in
the convolution. Thus, its energy cost is negligible.

Our proposed method designs the approximate multipliers
to be used in the NN accelerator. The procedure of our method
is shown in Fig. 3.

Fig. 3. The flow chart of our proposed method.

First, we use ALSRAC to generate an approximate integer
multiplier from the original accurate integer multiplier. Besides
the original circuit, ALSRAC takes two additional inputs, a
bound on an error metric and an input distribution, as shown in
Fig. 3. ALSRAC will generate an approximate circuit with the
error no more than the bound under the input distribution. The
error metric we use in this work is NMED, which is defined as
the mean absolute difference between the accurate result and
approximate result normalized to the maximum output value.
The bound on NMED is initially set as a small value E0. The
input distribution is initially set as the uniform distribution.
After the approximate multiplier is generated, we use it to
replace each accurate multiplier in the NN accelerator and
train the NN with the approximate multiplication to obtain
the new weights. Then, we do inference on the test dataset
and count the number of occurrences for each input pattern of
the approximate multiplier. We count all the occurring input
patterns in the process of forward propagation and normalize

the results to obtain the probability distribution of the input
patterns.

In the next round, we use the input distribution just derived
to generate a new approximate multiplier using ALSRAC, as
shown in Fig. 3. The following steps are the same as those in
the first round. We repeat the process until the accuracy of the
NN drops below a threshold. Then, we use the approximate
multiplier of the previous round as the final one. Note that
in each round, the error bound is increased over that of the
previous round to enable ALSRAC to generate a smaller
approximate multiplier.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results on the
proposed method.

A. Experiment Setup

We use LeNet-5 and MNIST dataset [18] to study the
effect of the proposed method. There are 50000 images in the
training dataset and 10000 images in the test dataset. We use
tiny-dnn [19], which is an open source C++14 implementation
of deep learning, to simulate the accuracy of various LeNet-5
accelerators built with different multipliers. For hardware cost
study, we focus on the multipliers in the accelerators. The
accurate and the approximate multipliers are mapped with the
MCNC standard cell library [20] using the logic synthesis tool
ABC [21]. The area and delay of the circuits are reported by
ABC.

The baseline accelerator uses accurate 8-bit signed multipli-
ers. Its accuracy is 99.00%. The area and delay of an accurate
8-bit signed multiplier are listed in Table I.

Some important parameters of the training are listed below.
The epoch is 50. The learning rate is set to be 0.001. The mini-
batch size is 16. The accuracy threshold used in the proposed
procedure is 97%.

B. Performance of the Proposed Method

We use the procedure described in Section III to generate
the approximate multipliers and retrain the NN. We run 5
rounds in total. The NMED bounds for the 5 rounds are
set as 0.001, 0.003, 0.006, 0.012, and 0.024, respectively.
The area and delay of the multiplier generated in each round
are listed in Table I. In the table, the accuracy of the NN
accelerator using each approximate multiplier is also listed.
For comparison purpose, we also consider a 2-bit rounded
multiplier for 8-bit signed multiplication. It consists of a 2-bit
signed multiplier and the input rounding part, which rounds the
3 most significant bits of each 8-bit input into a 2-bit signed
number. Table I also lists the area and delay of that multiplier
together with the accuracy of the LeNet-5 accelerator built
with it.

We can see from Table I that after 5 rounds, we can
finally obtain an extremely small approximate multiplier. Its
area is only 4.2% of the accurate 8-bit multiplier. After
retraining, the accelerator with that multiplier still achieves
an accuracy of 97.86%, which is only 1.14% less than the



TABLE I
THE AREAS AND DELAYS OF VARIOUS MULTIPLIERS AND THE

ACCURACIES OF THE ACCELERATORS BUILT WITH THESE MULTIPLIERS.

Circuit type area delay error bound accuracy
Accurate 8-bit multiplier 1326 27.1 - 99.00%
Approximate multiplier 1 966 27 0.001 98.86%
Approximate multiplier 2 786 26 0.003 98.74%
Approximate multiplier 3 202 18.1 0.006 98.67%
Approximate multiplier 4 73 10.7 0.012 98.44%
Approximate multiplier 5 56 6.7 0.024 97.86%
2-bit rounded multiplier 72 7.7 - 97.52%

Fig. 4. Accuracy for retraining LeNet-5 accelerators built with the final
approximate multiplier and with the 2-bit rounded multiplier.

baseline accuracy. Compared to the 2-bit rounded multiplier,
the final approximate multiplier has smaller area and shorter
delay. Yet, the accelerator with the approximate multiplier
achieves a higher accuracy than the one with the 2-bit rounded
multiplier.

In Fig. 4, we show more details on the accuracy of the
LeNet-5 accelerators with the final approximate multiplier
(i.e., approximate multiplier 5 in Table I) and with the 2-
bit rounded multiplier after retraining. We can see that the
accelerator with the final approximate multiplier always has a
higher accuracy than the one with the 2-bit rounded multiplier.

Besides, as the approximate multiplier is generated by
ALSRAC using the specific distribution from the NN compu-
tation, it is easy to retrain the NN model with the approximate
multiplier. Thus, the training process does not require much
time. Before retraining, the accuracy of the NN with the
approximate multiplier is 12.03%. However, after one epoch,
the NN accuracy improves significantly. More details are
shown in the inset of Fig. 4. After the first epoch, the accuracy
of the NN increases to more than 96.0%. Then, it fluctuates
between 96.9% and 97.86%. From this, we can see that very
few epochs are needed to retrain the NN built with the final
approximate multiplier.

V. CONCLUSION

This paper proposes a new approach for designing low-
power approximate computing-based NN accelerators: inte-
grating ALS into the design loop. This approach potentially
can obtain approximate computing components that fit better
with the given NN, since ALS can take into account the NN
computation pattern in designing the approximate computing
components. We use a state-of-the-art ALS method, ALSRAC,
to demonstrate the effectiveness of the proposed method. The
experimental results show that the proposed method leads
to an extremely small approximate multiplier with negligible
accuracy loss for LeNet-5 on MNIST dataset.

REFERENCES

[1] Q. Xu, T. Mytkowicz, and N. Kim, “Approximate computing: A survey,”
IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Computer Vision and Pattern Recognition Conference,
2016, pp. 770–778.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations, 2016, pp. 1–7.

[4] M. S. Ansari, B. F. Cockburn, and J. Han, “An improved logarithmic
multiplier for energy-efficient neural computing,” IEEE Transactions on
Computers, pp. 1–1, 2020.

[5] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation Test
in Europe, 2017, pp. 258–261.

[6] M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z. Vasicek,
and J. Han, “Improving the accuracy and hardware efficiency of neural
networks using approximate multipliers,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317–328,
2020.

[7] Z. Liu, K. Jia, W. Liu, Q. Wei, F. Qiao, and H. Yang, “INA: Incremental
network approximation algorithm for limited precision deep neural
networks,” in International Conference on Computer-Aided Design,
2019, pp. 1–7.

[8] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
“ALWANN: Automatic layer-wise approximation of deep neural net-
work accelerators without retraining,” in International Conference on
Computer-Aided Design, 2019, pp. 1–8.

[9] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “SALSA: systematic logic synthesis of approximate circuits,” in
Design Automation Conference, 2012, pp. 796–801.

[10] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality con-
figurable circuits,” in Design, Automation, and Test in Europe, 2013, pp.
1367–1372.

[11] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in Design Automation
Conference, 2016, pp. 128:1–128:6.

[12] G. Liu and Z. Zhang, “Statistically certified approximate logic synthe-
sis,” in International Conference on Computer-Aided Design, 2017, pp.
344–351.

[13] S. Hashemi, H. Tan, and S. Reda, “BLASYS: Approximate logic
synthesis using boolean matrix factorization,” in Design Automation
Conference, 2018, pp. 55:1–55:6.

[14] Z. Zhou, Y. Yao, S. Huang, S. Su, C. Meng, and W. Qian, “DALS:
delay-driven approximate logic synthesis,” in International Conference
on Computer-Aided Design, 2018, pp. 86:1–86:7.

[15] C. Meng, W. Qian, and A. Mishchenko, “ALSRAC: Approximate
logic synthesis by resubstitution with approximate care set,” in Design
Automation Conference, 2020, pp. 1–6.

[16] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using
a simple circuit structure,” in International Workshop on Logic and
Synthesis, 2006, pp. 15–22.



[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Computer Vision and
Pattern Recognition Conference, 2018, pp. 2704–2713.

[18] Y. Lecun and L. Bottou, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[19] “tiny-dnn,” https://github.com/tiny-dnn/tiny-dnn.
[20] S. Yang, “Logic synthesis and optimization benchmarks,” Microelec-

tronics Center of North Carolina, Tech. Rep., 1991.
[21] A. Mishchenko et al., “ABC: a system for sequential synthesis and ver-

ification, release 90703,” http://people.eecs.berkeley.edu/∼alanmi/abc/,
accessed July 3, 2019.


