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a b s t r a c t

In two-level logic synthesis, the typical input specification is a set of minterms defining the
on set and a set ofminterms defining the don’t care set of a Boolean function. The problem is
to synthesize an optimal set of product terms, or cubes, that covers all the minterms in the
on set and some of the minterms in the don’t care set. In this paper, we consider a different
specification: instead of the on set and the don’t care set, we are given a set of numbers,
each of which specifies the number of minterms covered by the intersection of one of the
subsets of a set of λ cubes. We refer to the given set of numbers as an intersection pattern.
The problem is to determine whether there exists a set of λ cubes that satisfies the given
intersection pattern and, if it exists, to synthesize the set of cubes. We show a necessary
and sufficient condition for the existence of λ cubes to satisfy a given intersection pattern.
We also show that the synthesis problem can be reduced to the problem of finding a non-
negative solution to a set of linear equations and inequalities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Two-level logic synthesis is a well-developed and mature topic [4,7]. The typical input specification for a two-level
synthesis problem is the on set and the don’t care set (or in some cases, the off set) of a Boolean function. The on set and the
don’t care set consist of minterms that define when the function evaluates to one and when its evaluation can be either zero
or one, respectively. The problem is to synthesize an optimal set of product terms, or cubes, that covers all the minterms in
the on set and some of the minterms in the don’t care set.

In this work, we consider a related yet different problem pertaining to the synthesis of a set of cubes. A set of cubes,
besides defining a Boolean function, also defines a set of numbers, each of which corresponds to the number of minterms
covered by the intersection of one of the subsets of the set of cubes. For example, given a set of three cubes on four variables
x0, x1, x2, x3, which are c0 = x0x1, c1 = x2, and c2 = x1x3, the numbers of minterms covered by c0, c1, c2, c0c1, c0c2, c1c2, and
c0c1c2 are 4, 8, 4, 2, 2, 2, and 1, respectively. We refer to this set of numbers as an intersection pattern.

Given a set of λ cubes, it is trivial to get its intersection pattern, which is a set of 2λ−1 numbers. However, it is nontrivial
to answer the reverse problem: given a set of 2λ − 1 numbers, can we obtain a set of λ cubes so that its intersection pattern
equals the given set of numbers, or prove that there does not exist such a set of λ cubes? We call this problem the λ-cube
intersection problem. It is what we intend to solve in this paper.

In this paper, we will deal with the number of minterms contained by a Boolean function. For simplicity, we use the
following definition:
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Fig. 1. An AND gate followed by a NOR gate transforms three independent random inputs of probability 0.5 of being one into an random output of
probability 3

8 of being one. The inputs and output of the circuit are random bit streams. The numbers in the parentheses denote the probabilities.

Definition 1. Define V (f ) to be the number of minterms contained in a Boolean function f . �

The following example shows an instance of the λ-cube intersection problem.

Example 1. In a 3-cube intersection problem on 4 variables x0, x1, x2, x3, suppose that we require the intersection pattern
to be

V (c0) = 4, V (c1) = 8, V (c2) = 4,
V (c0c1) = V (c0c2) = V (c1c2) = 2, V (c0c1c2) = 1.

We can synthesize cubes c0 = x0x1, c1 = x2, and c2 = x1x3 to satisfy that pattern. �

The motivation of our study of the λ-cube intersection problem is that it pertains to synthesizing logic circuits for
probabilistic computation, a new paradigm that we have advocated [6]. A fundamental problem in this context is the so
called arithmetic two-level minimization problem. In the remaining part of the introduction, we will introduce this problem
and outline our proposed solution to it. As we will show, an important step in our solution to the arithmetic two-level
minimization problem is to solve the λ-cube intersection problem. This motivates our study of the λ-cube intersection
problem in this work.

1.1. Arithmetic two-level minimization problem

In the paradigm of probabilistic logical computation, digital circuits are designed to transform a set of input probabilities,
encoded by random bit streams, into output probabilities, also encoded by random bit streams [6]. A fundamental problem
in this context is how to synthesize combinational logic that takes independent inputs with probability 0.5 of being one and
generates other probabilities as outputs. For example, we can use the combinational circuit shown in Fig. 1 to generate an
output probability 3

8 from three independent input probabilities 0.5.
For a combinational circuit with n inputs, if each input has probability 0.5 of being one and all the inputs are independent,

then each input combination has probability of 1
2n of occurring. If the Boolean function contains exactly m minterms, then

the probability that the output is one is m
2n . Conversely, if we want to synthesize a probability m

2n (0 ≤ m ≤ 2n), we can
simply implement it with a Boolean function ofmminterms. However, there are

2n
m


Boolean functions that contain exactly

m minterms and different functions have different implementation cost. This motivates a new problem in logic synthesis:
if we want to synthesize a logic circuit such that it covers exactly m minterms, while which m minterms are covered does
not matter, then how can we design an optimal logic circuit?

We focus on two-level implementation of logic circuits [4]. Minimizing the area of the two-level implementation is
equivalent to minimizing the number of cubes of the sum-of-product (SOP) representation of a Boolean function [4]. Thus,
the problem, which we will refer to as the arithmetic two-level minimization problem, can be formulated as:

Given the number of variables n for a Boolean function and an integer 0 ≤ m ≤ 2n, find an SOP Boolean expression with the
minimum number of cubes that contains exactly m minterms.

Given m and n, there exists a simple procedure to synthesize a small number of cubes to cover exactly m minterms [5].
The number of cubes synthesized by this procedure is equal to the number of ones in the binary representation ofm. Suppose
that the binary representation ofm has k ones andm =

k−1
i=0 2mi , wherem0 < m1 < · · · < mk−1. Then we can easily find k

cubes c0, c1, . . . , ck−1 so that (1) ci contains 2mi minterms, and (2) any two different cubes ci and cj are disjoint, i.e., ci ·cj = 0.
These k cubes together cover exactlymminterms.

For example, consider m = 7 and n = 4. The binary representation of m has 3 ones and m = 22
+ 21

+ 20. We can
construct three cubes c0 = x0x̄1x̄2x̄3, c1 = x1x̄2x̄3, and c2 = x2x̄3 to cover 7 minterms. Note that cubes c0, c1, c2 cover 1, 2, 4
minterms, respectively. Further, they are mutually disjoint. Therefore, the total number of minterms covered by these three
cubes is 7.

However, the abovemethod cannot guarantee to give theminimum number of cubes to covermminterms. For the above
example, indeed, we can cover 7 minterms with two cubes: c0 = x0x1 and c1 = x2x3. Note that both c0 and c1 contain
4 minterms; their intersection c0c1 = x0x1x2x3 contains one minterm. Thus, the total number of minterms covered by c0
and c1 is 7. Therefore, the above method only gives an upper bound on the minimum number of cubes for the arithmetic
two-level minimization problem. Thus, a more sophisticated method is required.
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Fig. 2. The flow of our proposed search-based approach for solving the arithmetic two-level minimization problem. The λ-cube intersection problem is
an important subproblem in the flow.

1.2. The relation between λ-cube intersection problem and arithmetic two-level minimization problem

In this section, wewill outline our proposed solution to the arithmetic two-levelminimization problem. Aswewill show,
our solution hinges on solving the λ-cube intersection problem.

The simple procedure stated above cannot guarantee to give an optimal solution to an arithmetic two-levelminimization
problem. We propose a search-based approach to find the optimal solution. Studying the previous example, we find that an
optimal solution potentially involves a set of non-disjoint cubes. Therefore, in our approach, a crucial subroutine is to count
the number of minterms covered by a set of non-disjoint cubes. We apply the inclusion–exclusion principle for this purpose:

Given λ cubes c0, . . . , cλ−1, the number of minterms covered by the union of the λ cubes is

V


λ−1
i=0

ci


=

λ−1
i=0

V (ci)−


i,j:

0≤i<j≤λ−1

V (cicj)+


i,j,k:

0≤i<j<k≤λ−1

V (cicjck)− · · · + (−1)λ−1V


λ−1
i=0

ci


. (1)

The flow of our proposed search-based approach is shown in Fig. 2. We initially set λ to be a lower bound on the number
of cubes to covermminterms [5]. Then we will check whether we can find λ cubes so that they covermminterms. In order
to do so, we first construct an intersection pattern on λ cubes that coversmminterms, i.e., a set of 2λ−1 numbers that let Eq.
(1) evaluate to the target valuem. Then, we need to check whether we can find λ cubes to satisfy that intersection pattern. If
we find a solution to that instance of the λ-cube intersection problem, we obtain an optimal solution to the arithmetic two-
level minimization problem. If not, we will try another intersection pattern on λ cubes. After all the intersection patterns on
λ cubes that cover m minterms have been tried and no solution is found, we will increase λ by one. It can be seen that the
λ-cube intersection problem is an important and recurring subproblemwewill encounter in solving the arithmetic two-level
minimization problem.

The following shows an example of applying our approach to solve an arithmetic two-level minimization problem.

Example 2. Synthesize an optimal SOP Boolean expression on 4 variables to cover 11 minterms.
Since we cannot cover 11 minterms with just 1 cube, the lower bound on the number of cubes is 2. Thus, initially, we set

λ = 2. For λ = 2, we first construct an intersection pattern {V (c0), V (c1), V (c0c1)}, so that

V (c0)+ V (c1)− V (c0c1) = 11.

One intersection pattern that satisfies the above equation is V (c0) = 8, V (c1) = 4 and V (c0c1) = 1. However, this 2-cube
intersection problem has no solution. Thus, we will try another intersection pattern on 2 cubes that covers 11 minterms.
Indeed, there is no other proper intersection pattern on 2 cubes that covers 11 minterms. Then, we raise λ to 3.



14 W. Qian et al. / Discrete Applied Mathematics 193 (2015) 11–38

For λ = 3, we first construct an intersection pattern

{V (c0), V (c1), V (c2), V (c0c1), V (c0c2), V (c1c2), V (c0c1c2)},

so that

V (c0)+ V (c1)+ V (c2)− V (c0c1)− V (c0c2)− V (c1c2)+ V (c0c1c2) = 11.

One intersection pattern that satisfies the above equation is V (c0) = 8, V (c1) = 2, V (c2) = 1, and V (c0c1) = V (c0c2) =

V (c1c2) = V (c0c1c2) = 0. For that 3-cube intersection problem, we could synthesize cubes c0 = x0, c1 = x̄0x1x2 and
c2 = x̄0x̄1x̄2x3 to satisfy the given intersection pattern. Thus, we get an optimal solution of 3 cubes to the original arithmetic
two-level minimization problem. �

In summary, in order to solve the arithmetic two-level minimization problem, it is critical to first solve the λ-cube
intersection problem. In this work, we will focus on the λ-cube intersection problem.

The rest of the paper is organized as follows. In Section 2, wewill introduce some preliminaries. In Section 3, wewill give
the solution to the λ-cube intersection problem of a special case. In Section 4, we will solve the general-case problem. In
Section 5, we will discuss the implementation of the procedure to solve the λ-cube intersection problem. In Section 6, we
show the performance of our solution on a number of test cases. We conclude the paper in Section 7.

2. Preliminaries

In this section, we will first introduce some basic definitions and then give a formal definition of the λ-cube intersection
problem. Some of the basic definitions are adopted from [3].

The n variables of a Boolean function are denoted by x0, . . . , xn−1. For a variable x, x and x̄ are referred to as literals. A
Boolean product, or product for short, is a conjunction of literals such that x and x̄ do not appear simultaneously. For example,
x1x̄2x̄3 is a Boolean product. A Boolean product is also known as a cube, which is denoted by c . Aminterm is a cube in which
each of the n variables appear exactly once, in either its complemented or uncomplemented form. If cube c2 takes the value
onewhenever cube c1 equals one, we say that cube c1 implies cube c2 andwrite as c1 ⊆ c2. If cube c1 implies cube c2, then the
number of minterms contained in cube c1 is no larger than the number of minterms contained in cube c2, i.e., V (c1) ≤ V (c2).
If c1 · c2 = 0, we say that cubes c1 and c2 are disjoint.

If a cube c contains k literals (0 ≤ k ≤ n), then the number of minterms contained in the cube is V (c) = 2n−k. Note that
when a cube contains 0 literals, it is a special cube c = 1, which contains all the minterms in the entire Boolean space of n
variables. There is another special cube called empty cube, which is c = 0. The number of minterms contained in the empty
cube is V (c) = 0. Thus, the number of minterms contained in a cube is in the set S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}.

In this paper,we dealwith the intersection of cubes. Tomake the representation compact,we use the following definition.

Definition 2. Given a cube c and a γ ∈ {0, 1}, define

cγ =


1, if γ = 0
c, if γ = 1.

Given a set of λ cubes c0, . . . , cλ−1 and an integer Γ =
λ−1

i=0 γi2
i, where γi ∈ {0, 1}, define CΓ to be the intersection of a

subset of cubes ci’s for those i’s such that γi = 1, i.e., CΓ =
λ−1

i=0 cγii . �

For example, given three cubes c0, c1, and c2, we have C5
= c0c2. With the above definition, we can formally define the

λ-cube intersection problem as follows:
Given n > 0, λ > 0, and a vector of 2λ numbers (v0, v1, . . . , v2λ−1), determine whether there exists a set of λ cubes

c0, . . . , cλ−1 on n variables x0, . . . , xn−1, such that for all 0 ≤ Γ ≤ 2λ − 1, V (CΓ ) = vΓ .
We refer to the vector of numbers (v0, . . . , v2λ−1) as an intersection pattern on λ cubes, or simply as an intersection

pattern. If a set of λ cubes c0, . . . , cλ−1 satisfies the property that for any 0 ≤ Γ ≤ 2λ − 1, V (CΓ ) = vΓ , then we say that
the set of cubes satisfies the intersection pattern (v0, . . . , v2λ−1).

If there exists a set of λ cubes that satisfies the intersection pattern, then for all 0 ≤ Γ ≤ 2λ − 1, we have

vΓ = V (CΓ ) ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}.

Further, the number v0 = V (C0) = V (1) = 2n. Thus, in the remaining of the paper, we will only consider the instances
of the problem with v0 = 2n and v1, . . . , v2λ−1 ∈ S. For the other instances of the problem, it is obvious that no solution
exists. Since it is more meaningful to consider a set of nonempty cubes c0, . . . , cλ−1, we assume that for any 0 ≤ i ≤ λ− 1,
v2i > 0.

In our treatment, we find it convenient to represent a cube as a cube-variable row vector and a set of cubes as a cube-
variable matrix. These are defined as follows.
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Definition 3. Given a nonempty cube c on n variables x0, . . . , xn−1, we represent it by a cube-variable row vector U of length
n, whose elements are from the set {0, 1, ∗}. If the jth (0 ≤ j ≤ n− 1) element Uj = 1, then the literal xj appears in the cube
c; if Uj = 0, then the literal x̄j appears in the cube c; if Uj = ∗, then the cube c does not depend on the variable xj, i.e., neither
literal xj nor literal x̄j appears in the cube c.

Given a set of λ nonempty cubes c0, . . . , cλ−1 on n variables x0, . . . , xn−1, we represent them by a cube-variable matrix D
of size λ× n, so that the ith row of the matrix is the cube-variable row vector of ci. �

For example, a set of two cubes c0 = x0x̄1 and c1 = x̄0x2 is represented as a cube-variable matrix
1 0 ∗

0 ∗ 1


.

Given a cube-variable row vector, the following simple lemma suggests how to obtain the number of minterms covered
by the corresponding cube.

Lemma 1. For a nonempty cube, if its cube-variable row vector contains k∗’s, then the cube covers 2k number of minterms. �

Proof. Assume that the cube-variable row vector is (a1, . . . , an) (n ≥ k). Without loss of generality, we assume that the
first (n− k) entries of the row vector are not ∗’s and the last k entries of the row vector are ∗’s, i.e., a1, a2, . . . , an−k ∈ {0, 1}
and an−k+1 = an−k+2 = · · · = an = ∗. Then, the row vector covers 2k minterms whose cube-variable row vectors are
(a1, . . . , an−k, 0, 0, . . . , 0, 0), (a1, . . . , an−k, 0, 0, . . . , 0, 1), . . . , (a1, . . . , an−k, 1, 1, . . . , 1, 1). �

In what follows, we will say that a cube-variable matrix satisfies the given intersection pattern if the corresponding set
of cubes satisfies the intersection pattern.

We find that several operations on the cube-variablematrix will keep the intersection pattern unchanged. One operation
relates to the negation operator defined below.

Definition 4. For a value a in {0, 1, ∗}, the negation of a is defined as follows:

ā =

1, if a = 0
0, if a = 1
∗, if a = ∗.

The negation of a column vector (cube-variable matrix) is the element-wise negation of the column vector (matrix). �

An important property of a cube-variable matrix is that performing column permutation or column negation on the
matrix keeps the intersection pattern unchanged, as stated by the following lemma.

Lemma 2. Suppose that a cube-variable matrix D satisfies the intersection pattern (v0, . . . , v2λ−1). Then D′ satisfies the same
intersection pattern if D′ is obtained from D by column permutation or column negation. �

Proof. Assume that the intersection pattern of the cube-variable matrix D′ is (v′

0, . . . , v
′

2λ−1). We only need to show that
for all 0 ≤ Γ ≤ 2λ − 1, vΓ = v′

Γ .
Obviously, v0 = v′

0 = 2n, where n is the total number of variables. Now consider any 1 ≤ Γ ≤ 2λ − 1. Assume that
Γ =

r−1
i=0 2li , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1. Denote the cube-variable matrix which consists of

the row l0, l1, . . . , lr−1 of the matrix D as DΓ and the cube-variable matrix which consists of the row l0, l1, . . . , lr−1 of the
matrix D′ as D′

Γ . Then, D
′
Γ is obtained from DΓ by column permutation or column negation. We consider two cases.

1. The case where there exists a column in DΓ that contains both a 0 and a 1. In this case, there must exist a column in D′
Γ

that contains both a 0 and a 1. Therefore, vΓ = v′
Γ = 0.

2. The case where there exists no column in DΓ that contains both a 0 and a 1. Assume that there are k columns in DΓ of
which all the entries are ∗’s. Then, we have vΓ = 2k. Since D′

Γ is obtained from DΓ by column permutation or column
negation, it has no column that contains both a 0 and a 1. Further, the number of columns in D′

Γ that have all the entries
as ∗ is k. Thus, v′

Γ = 2k
= vΓ .

Thus, we have proved that for all 0 ≤ Γ ≤ 2λ − 1, vΓ = v′
Γ . �

Before we go through the details of our proposed solution, we will briefly talk about the basic idea of our solution. Our
solution is a column-based method: synthesizing a cube-variable matrix is equivalent to determining what each column of
the matrix should be. Since each entry of the matrix is in the set {0, 1, ∗}, each column, which has λ entries, has a total of 3λ
choices. However, we only need to consider a small subset of all 3λ column choices as the candidate choices. One reason for
this is because the negation of a columndoes not change the intersection pattern, as Lemma2 indicates. Thus, for each pair of
column choice and its negation, we only need to pick one as the candidate choice. Furthermore, by Lemma 2, since the order
of the columns does not matter, we only need to determine the number of occurrences of each candidate column choice in
the cube-variable matrix. We treat their numbers of occurrences as unknowns. We could establish a system of equations
over those unknowns and the given intersection pattern. The λ-cube intersection problem can be solved by finding a non-
negative solution to the system of equations.
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3. A special case of the λ-cube intersection problem

In this section, we consider a special case in which v2λ−1 > 0. We will study the necessary and sufficient condition on
(v0, . . . , v2λ−1) so that there exists a set of λ cubes that satisfies the intersection pattern. For this purpose, we will assume
that there exists a cube-variable matrix D to satisfy the given intersection pattern.

We argue that without loss of generality, we can assume that each entry of the cube-variablematrix is either 1 or ∗. Since
v2λ−1 > 0, we must have

λ−1
i=0 ci ≠ 0. Therefore, no column of the matrix D could simultaneously contain both a 0 and a 1;

otherwise,
λ−1

i=0 ci = 0. Consequently, each column of the matrix D contains either only 0’s and ∗’s or only 1’s and ∗’s. By
Lemma 2, if we negate those columns of the matrix D that contain only 0’s and ∗’s, then we obtain a new matrix D′ which
still satisfies the given intersection pattern. Note that the matrix D′ only contains 1’s and ∗’s. In this case, all the cubes are
composed of uncomplemented literals xi’s and therefore, the union of these cubes is a positive unate Boolean function [4].

Since thematrix only contains 1’s and ∗’s, each column of thematrix is a length-λ vector composed of either 1 or ∗. There
are 2λ different length-λ vectors that are composed of either 1 or ∗. We denote them as ψ0, ψ1, . . . , ψ2λ−1.

Definition 5. Given any 0 ≤ Γ ≤ 2λ − 1, suppose that Γ =
λ−1

i=0 γi2
i, where γi ∈ {0, 1}. DefineψΓ to be a column vector

of length λ that is composed of either 1 or ∗, such that the ith element (0 ≤ i ≤ λ− 1) of it is

(ψΓ )i =


1, if γi = 0
∗, if γi = 1.

Define the set Ψ = {ψ0, ψ1, . . . , ψ2λ−1}. �

For example, if λ = 3, then ψ1 = (∗, 1, 1)T and ψ5 = (∗, 1, ∗)T .1

As Lemma 2 states, if there exists a cube-variable matrix D that satisfies the intersection pattern, then a matrix obtained
by permuting the columns of the matrix D also satisfies the intersection pattern. Therefore, the order on the columns in the
matrix does not matter. What matters is the number of times that each column patternψΓ occurs in the matrix. We define
that number as zΓ .

Definition 6. For any 0 ≤ Γ ≤ 2λ−1, define zΓ to be the number of occurrences of column patternψΓ in the cube-variable
matrix. �

In the special case that v2λ−1 > 0, we have the following theorem on the values vΓ ’s in the intersection pattern.

Theorem 1. Suppose that there exists a cube-variable matrix that satisfies the intersection pattern (v0, . . . , v2λ−1) and v2λ−1 >

0. Then for any 0 ≤ Γ ≤ 2λ − 1, we have vΓ > 0. �

Proof. Suppose that the set of cubes that satisfies the intersection pattern is {c0, . . . , cλ−1}. Based on Definition 2, for any
0 ≤ Γ ≤ 2λ − 1, we have C2λ−1

⊆ CΓ , Therefore,

0 < v2λ−1 = V (C2λ−1) ≤ V (CΓ ) = vΓ . �

As we stated in Section 2, for any 0 ≤ Γ ≤ 2λ − 1, vΓ ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}. Now since vΓ > 0,
we have vΓ = 2kΓ , where kΓ ∈ {0, 1, . . . , n}, for all 0 ≤ Γ ≤ 2λ − 1. In what follows, we will establish a relation between
zΓ ’s, which are the numbers of occurrences of patternsψΓ ’s in the cube-variable matrix, and kΓ ’s, which are obtained from
the intersection pattern. In order to state that relation, we first define the following relation between two numbers A and B.

Definition 7. Given two integers A and B, let their binary representations be A =
k−1

i=0 ai2i and B =
k−1

i=0 bi2i, where
ai, bi ∈ {0, 1}. We write A ⊒ B if for all 0 ≤ i ≤ k − 1, ai ≥ bi; we write A ⊑ B if for all 0 ≤ i ≤ k − 1, ai ≤ bi. �

With the help of the above definition, we can state a major result in this section.

Theorem 2. If there exists a cube-variable matrix D that satisfies the intersection pattern, then for all 0 ≤ L ≤ 2λ − 1, we have

kL =


0≤Γ≤2λ−1:Γ⊒L

zΓ . � (2)

1 The superscript T here means the transpose of a vector.
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Proof. Since the total number of columns in matrix D is n, we have
2λ−1

Γ=0 zΓ = n. Further, since v0 = 2n (as we stated in
Section 2), we have k0 = n. Therefore,

0≤Γ≤2λ−1:Γ⊒0

zΓ = k0.

Thus, Eq. (2) holds for L = 0.
Now consider any 1 ≤ L ≤ 2λ − 1. L can be represented as L =

r−1
j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · <

lr−1 ≤ λ − 1. Then, C L represents a cube that is the intersection of the set of cubes cl0 , . . . , clr−1 , i.e., C
L
=
r−1

j=0 clj . Due to
this relation, the ith entry in the cube-variable row vector of C L is ∗ if and only if the ith column of the cube-variable matrix
D has ∗’s on the rows l0, l1, . . . , lr−1. Therefore, the number of ∗’s in the cube-variable row vector of C L is the number of
columns in D whose entries on the rows l0, l1, . . . , lr−1 are all ∗’s, or, the sum of the numbers of occurrences of patterns
ψΓ ’s in D with the l0th, l1th, . . . , lr−1th entries all being ∗, i.e.,

0≤Γ≤2λ−1:
(ψΓ )l0=···=(ψΓ )lr−1=∗

zΓ .

On the other hand, by Lemma 1, since V (C L) = vL = 2kL , it indicates that the number of ∗’s in the cube-variable row
vector of C L is kL. Therefore, together with Definition 5, we have

kL =


0≤Γ≤2λ−1:

(ψΓ )l0=···=(ψΓ )lr−1=∗

zΓ =


0≤Γ≤2λ−1,

Γ=

λ−1
i=0

γi2i :

γl0=···=γlr−1=1

zΓ . (3)

By Definition 7, we can rewrite Eq. (3) as

kL =


0≤Γ≤2λ−1:Γ⊒L

zΓ . �

Example 3. Consider the following 4 cubes on 6 variables x0, x1, . . . , x5:

c0 = x0x1x2x4, c1 = x3, c2 = x0, c3 = x0x1x3x4x5.

Their cube-variable matrix is1 1 1 ∗ 1 ∗

∗ ∗ ∗ 1 ∗ ∗

1 ∗ ∗ ∗ ∗ ∗

1 1 ∗ 1 1 1

 .
Based on Definition 5, the above matrix can be represented in terms of ψΓ as

ψ2 ψ6 ψ14 ψ5 ψ6 ψ7

.

Thus, we can get the number of occurrences of each pattern ψΓ in the matrix as

z2 = 1, z5 = 1, z6 = 2, z7 = 1, z14 = 1,
zΓ = 0, for Γ = 0, 1, 3, 4, 8, 9, 10, 11, 12, 13, 15.

It can be shown that Eq. (2) holds for all 0 ≤ L ≤ 15. As an example, now we verify that Eq. (2) holds for L = 6. First,
notice that C6

= c1c2 = x0x3. Therefore, v6 = V (C6) = 24
= 16 and k6 = 4. On the other hand,

0≤Γ≤15:Γ⊒6

zΓ = z6 + z7 + z14 + z15 = 4,

which indicates that
0≤Γ≤15:Γ⊒6

zΓ = k6.

Therefore, Eq. (2) holds for L = 6. �
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Note that Eq. (2) is a linear equation on z0, . . . , z2λ−1 and holds for all 0 ≤ L ≤ 2λ − 1. Therefore, we can derive a system
of 2λ linear equations on unknowns z0, . . . , z2λ−1:

0≤Γ≤2λ−1:Γ⊒L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1. (4)

We can represent the above system of linear equations in matrix form, as shown by the following theorem.

Theorem 3. Let vector k⃗ = (k0, . . . , k2λ−1)
T and vector z⃗ = (z0, . . . , z2λ−1)

T . Then we can represent the system of 2λ linear
equations shown in Eq. (4) in matrix form as

Rλz⃗ = k⃗, (5)

where Rλ is a 2λ × 2λ square matrix defined recursively as follows:

R1 =


1 1
0 1


, Ri =


Ri−1 Ri−1
0 Ri−1


, for i = 2, . . . , λ. �

Proof. For convenience, we use z⃗[j, k](0 ≤ j ≤ k ≤ 2λ − 1) to represent the column vector (zj, . . . , zk)T .
We claim that given any 1 ≤ i ≤ λ, the set of 2i linear expressions

0≤Γ≤2i−1:Γ⊒L

zΓ , for L = 0, 1, . . . , 2i
− 1

can be represented in matrix form as

Riz⃗[0, 2i
− 1].

We prove this claim by induction on i.
Base case: When i = 1, the set of 2 linear expressions


0≤Γ≤1:Γ⊒0

zΓ
0≤Γ≤1:Γ⊒1

zΓ

is 
z0 + z1
z1 .

Therefore, in the matrix form, the set of expressions can be represented as R1z⃗[0, 1].
Inductive step: Assume that the claim holds for i. Now consider the set of 2i+1 linear expressions

0≤Γ≤2i+1−1:Γ⊒L

zΓ , for L = 0, 1, . . . , 2i+1
− 1. (6)

For any 0 ≤ L ≤ 2i+1
− 1, we have

0≤Γ≤2i+1−1:
Γ⊒L

zΓ =


0≤Γ≤2i−1:

Γ⊒L

zΓ +


2i≤Γ≤2i+1−1:

Γ⊒L

zΓ =


0≤Γ≤2i−1:

Γ⊒L

zΓ +


0≤Γ≤2i−1:
(Γ+2i)⊒L

z(Γ+2i). (7)

Now consider the first 2i expressions of (6). In this case, 0 ≤ L ≤ 2i
− 1. It is not hard to see that

{Γ |0 ≤ Γ ≤ 2i
− 1, (Γ + 2i) ⊒ L} = {Γ |0 ≤ Γ ≤ 2i

− 1,Γ ⊒ L}.

Thus, Eq. (7) can be rewritten as
0≤Γ≤2i+1−1:Γ⊒L

zΓ =


0≤Γ≤2i−1:Γ⊒L

zΓ +


0≤Γ≤2i−1:Γ⊒L

z(Γ+2i).

By the induction hypothesis, the first 2i expressions of (6)
0≤Γ≤2i+1−1:Γ⊒L

zΓ , for L = 0, . . . , 2i
− 1
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can be represented in matrix form as

Riz⃗[0, 2i
− 1] + Riz⃗[2i, 2i+1

− 1]. (8)

Now consider the last 2i expressions of (6). In this case, 2i
≤ L ≤ 2i+1

− 1. It is not hard to see that

{Γ |0 ≤ Γ ≤ 2i
− 1,Γ ⊒ L} = φ,

{Γ |0 ≤ Γ ≤ 2i
− 1, (Γ + 2i) ⊒ L} = {Γ |0 ≤ Γ ≤ 2i

− 1,Γ ⊒ (L − 2i)}.

Therefore, Eq. (7) can be rewritten as
0≤Γ≤2i+1−1:Γ⊒L

zΓ =


0≤Γ≤2i−1:Γ⊒(L−2i)

z(Γ+2i).

Note that since 2i
≤ L ≤ 2i+1

− 1, we have 0 ≤ L − 2i
≤ 2i

− 1. By the induction hypothesis, the last 2i expressions of (6)
0≤Γ≤2i+1−1:Γ⊒L

zΓ , for L = 2i, . . . , 2i+1
− 1

can be represented in matrix form as

Riz⃗[2i, 2i+1
− 1]. (9)

Based on Eqs. (8) and (9), the set of linear expressions
0≤Γ≤2i+1−1:Γ⊒L

zΓ , for L = 0, . . . , 2i+1
− 1

can be represented in matrix form as
Ri Ri
0 Ri

 
z⃗[0, 2i

− 1]
z⃗[2i, 2i+1

− 1]


= Ri+1z⃗[0, 2i+1

− 1].

Therefore, the claim holds for i + 1. Thus, by induction, the claim holds for all i = 1, 2, . . . , λ.
Thus, the system of linear equations

0≤Γ≤2λ−1:Γ⊒L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1

can be represented in matrix form as Rλz⃗ = k⃗. �

It is not hard to see that det(Rλ) = 1. Therefore, Rλ is invertible. Based on Theorem 3, we can obtain the numbers of
occurrences of all patterns ψΓ ’s in the matrix D as

z⃗ = R−1
λ k⃗. (10)

The following lemma shows what the form of R−1
λ is.

Lemma 3. R−1
1 , . . . , R

−1
λ , the inverses of the matrices R1, . . . , Rλ defined in Theorem 3, have a recursive structure shown below:

R−1
1 =


1 −1
0 1


, R−1

i =


R−1
i−1 −R−1

i−1
0 R−1

i−1


for i = 2, . . . , λ. �

Proof. We only need to show that for i = 1, . . . , λ, R−1
i Ri = I2i , where I2i is a 2i

× 2i identity matrix. We prove this claim
by induction on i.
Base case: When i = 1,

R−1
1 R1 =


1 −1
0 1

 
1 1
0 1


=


1 0
0 1


.

Inductive step: Assume the claim holds for i. Then, based on the induction hypothesis,

R−1
i+1Ri+1 =


R−1
i −R−1

i
0 R−1

i

 
Ri Ri
0 Ri


=


I2i 0
0 I2i


= I2i+1 .

Therefore, the claim holds for i + 1. Thus, by induction, the claim holds for all i = 1, . . . , λ. �
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Therefore, given an intersection pattern (v0, . . . , v2λ−1), we can get z0, . . . , z2λ−1 as (z0, . . . , z2λ−1)
T

= R−1
λ (k0, . . . ,

k2λ−1)
T , where ki = log2 vi.

Since for any 0 ≤ Γ ≤ 2λ − 1, zΓ is the number of occurrences of ψΓ in the matrix D, it must be a non-negative
integer. By Lemma 3, R−1

λ is an integer matrix. Therefore, z0, . . . , z2λ−1 are always integers. Thus, a necessary condition for
the existence of a cube-variable matrix to satisfy the given intersection pattern is that the vector z⃗ = R−1

λ k⃗ has all entries
non-negative. On the other hand, from Eq. (5), we can see that the intersection pattern (v0, . . . , v2λ−1) = (2k0 , . . . , 2k2λ−1)

only depends on z0, . . . , z2λ−1. Therefore, as long as the vector z⃗ = R−1
λ k⃗ has all entries non-negative, there exists a cube-

variable matrix that satisfies the given intersection pattern. Such a matrix contains zΓ columns of column pattern ψΓ , for
each Γ = 0, . . . , 2λ − 1. In summary, we have the following corollary.

Corollary 1. The necessary and sufficient condition for the existence of a cube-variable matrix to satisfy a given intersection
pattern (v0, . . . , v2λ−1) is that the vector z⃗ = R−1

λ k⃗ has all entries non-negative, where k⃗ = (k0, . . . , k2λ−1)
T

= (log2(v0),
. . . , log2(v2λ−1))

T and R−1
λ is defined in Lemma 3. �

Example 4. Given v0 = 32, v1 = 16, v2 = 16, v3 = 8, v4 = 8, v5 = 4, v6 = 4, and v7 = 2, determine whether there exists
a set of three cubes c0, c1, and c2 on 5 variables that satisfies the intersection pattern (v0, . . . , v7).
Solution: From the given conditions, we have

k⃗ = (5, 4, 4, 3, 3, 2, 2, 1)T .

Since

R−1
3 =



1 −1 −1 1 −1 1 1 −1
0 1 0 −1 0 −1 0 1
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1


,

then by Eq. (10), we get

z⃗ = (0, 0, 0, 2, 0, 1, 1, 1)T .

Therefore, there are two ψ3’s, one ψ5, one ψ6, and one ψ7 in the cube-variable matrix of the set of cubes c0, c1, and c2. One
realization of the cube-variable matrix is

∗ ∗ ∗ 1 ∗

∗ ∗ 1 ∗ ∗

1 1 ∗ ∗ ∗


and the corresponding cubes are c0 = x3, c1 = x2, and c2 = x0x1. It can be verified that these three cubes satisfy the given
intersection pattern. �

4. General λ-cube intersection problem

In this section, we consider the more general situation where v2λ−1 ≥ 0. In what follows, we will assume that there
exists a cube-variable matrix D that satisfies the given intersection pattern. We first give an overview of our solution to the
general case problem.

4.1. Overview of our solution

In the general case, the cube-variablematrix consists of 0, 1, and ∗; so does each column of thematrix. There are a total of
3λ different choices of patterns for each column. However, not all combinations of 0, 1 and ∗ as a column vector can appear
in the matrix. For example, if the given intersection pattern indicates that ci · cj ≠ 0, then those column patterns that have a
0 at the ith entry and a 1 at the jth entry cannot be present in the matrix. On the other hand, some kinds of column patterns
must be present at least once in the matrix. For example, if the given intersection pattern indicates that ci · cj = 0, then at
least one of the column patterns that have a 0 at the ith entry and a 1 at the jth entry or have a 1 at the ith entry and a 0 at
the jth entry must be present in the matrix.

In Section 4.2, we show what kinds of column patterns can be presented in the cube-variable matrix. We introduce the
representative compatible column pattern set in Definition 12. We further define in Definition 13 a set F as the union of the
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representative compatible column pattern sets and the set Ψ (see Definition 5). Then, we present Lemma 5, which states
that only those column patterns in the set F are needed to construct the cube-variable matrix.

In Section 4.3, we present Theorems 4 and 5 which give two necessary conditions on the numbers vΓ > 0 in the given
intersection pattern for the existence of a cube-variable matrix to satisfy the given intersection pattern.

In Section 4.4, we present our solution to the generalλ-cube intersection problem. The idea is same as that used in solving
the special case problem: we establish the numerical relations between the given intersection pattern (v0, . . . , v2λ−1) and
the numbers of times that the column patterns in the set F appear in the cube-variable matrix; the λ-cube intersection
problem is then solved based on these relations. For this purpose, we first link the general case problem to the special case
problem by defining the root cube-variable matrix in Definition 15. The root cube-variable matrix contain only 1’s and ∗’s.
Thus, we could define the numbers zΓ (see Definition 6) on the root cube-variable matrix. We show in Theorem 6 a system
of linear equations between the numbers zΓ and the given intersection pattern. Then, we show in Theorem 7 a set of linear
inequalities on the numbers zΓ and the numbers of occurrences of the representative column patterns in the cube-variable
matrix. Finally, we show the main result of this paper in Theorem 8, which states that the combination of Theorems 4–7
gives a necessary and sufficient condition for the existence of a cube-variablematrix to satisfy the given intersection pattern.
The proof of Theorem 8 also indicates a way to synthesize a cube-variable matrix to satisfy the given intersection pattern.

4.2. The set of column patterns to compose the cube-variable matrix

In this section, we will show what kinds of column patterns can be presented in the matrix. Then, we will argue that we
only need to focus on a subset of the total 3λ column patterns to construct a cube-variable matrix.

First, we give a few definitions. In the general situation, some of the values vΓ ’s in the intersection pattern are zero and
the others are positive. Based on their values, we can split their indices into the following two sets.

Definition 8. Let the set P be the set of numbers Γ such that vΓ > 0 and let the set Z be the set of numbers Γ such that
vΓ = 0, i.e.,

P = {Γ |0 ≤ Γ ≤ 2λ − 1 and vΓ > 0},

Z = {Γ |0 ≤ Γ ≤ 2λ − 1 and vΓ = 0}. �

From the definition of P and Z , we have the following lemma, which gives a necessary condition on the existence of λ
cubes to satisfy the given intersection pattern.

Lemma 4. Suppose that a set of λ cubes c0, . . . , cλ−1 satisfies the given intersection pattern. Then, for any Γ ∈ P, CΓ ≠ 0 and
for any Γ ∈ Z, CΓ = 0. �

Proof. Since the set of λ cubes c0, . . . , cλ−1 satisfies the given intersection pattern, we have that for any 0 ≤ Γ ≤ 2λ − 1,
V (CΓ ) = vΓ . By Definition 8, for any Γ ∈ P , V (CΓ ) = vΓ > 0, which indicates that CΓ ≠ 0; for any Γ ∈ Z ,
V (CΓ ) = vΓ = 0, which indicates that CΓ = 0. �

For any Γ ∈ P , since vΓ > 0, we define a number kΓ as follows:

Definition 9. For any Γ ∈ P , define kΓ = log2(vΓ ). �

As we stated in Section 2, for any 0 ≤ Γ ≤ 2λ − 1, vΓ ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}. Therefore, for any
Γ ∈ P , kΓ is an integer and kΓ ∈ {0, 1, . . . , n}. Note that since v0 = 2n, we have k0 = n.

We further define a number of subsets of the sets P and Z based on the number of ones in the binary representation of a
number Γ .

Definition 10. For an integer a ≥ 0, define ∥a∥ to be the number of ones in the binary representation of a. More formally,
suppose that a can be represented as a =

k−1
i=0 ai2i with all ai ∈ {0, 1}. Then, ∥a∥ =

k−1
i=0 ai.

For any 0 ≤ i ≤ λ, let the set Pi be the set of numbers Γ such that the number of ones in the binary representation of Γ
is i and vΓ > 0; let the set Zi be the set of Γ such that the number of ones in the binary representation of Γ is i and vΓ = 0,
i.e.,

Pi = {Γ |0 ≤ Γ ≤ 2λ − 1, ∥Γ ∥ = i, and vΓ > 0},

Zi = {Γ |0 ≤ Γ ≤ 2λ − 1, ∥Γ ∥ = i, and vΓ = 0}. �

In our treatment, two important sets are P2 and Z2. The set P2 indicates all pairs of cubes which are not disjoint and the
set Z2 indicates all pairs of cubes which are disjoint.



22 W. Qian et al. / Discrete Applied Mathematics 193 (2015) 11–38

Example 5. Consider a 4-cube intersection problem with v0 = 64, v1 = 4, v2 = 8, v3 = 2, v4 = 16, v5 = 2, v6 =

0, v7 = 0, v8 = 8, v9 = 1, v10 = 0, v11 = 0, v12 = 0, v13 = 0, v14 = 0, v15 = 0. In binary representation, those
indices 0 ≤ Γ ≤ 15 with ∥Γ ∥ = 2 are (0011)2, (0101)2, (0110)2, (1001)2, (1010)2, (1100)2. From the values of vΓ ’s, we
can obtain P2 = {(0011)2, (0101)2, (1001)2} and Z2 = {(0110)2, (1010)2, (1100)2}. This indicates that the pairs of cubes
(c0, c1), (c0, c2), and (c0, c3) are non-disjoint; the pairs of cubes (c1, c2), (c1, c3), and (c2, c3) are disjoint. �

Now, we are ready to show what kinds of column patterns can be present in the cube-variable matrix. It depends on
which pairs of cubes should be disjoint and which pairs of cubes should be non-disjoint. In other words, it depends on the
sets P2 and Z2. The intuition is that if the given intersection pattern indicates that ci · cj ≠ 0, then those column patterns that
have a 0 at the ith entry and a 1 at the jth entry cannot be present in the matrix. On the other hand, some kinds of column
patterns must be present at least once in the matrix. For example, if the given intersection pattern indicates that ci · cj = 0,
then at least one of the column patterns that have a 0 at the ith entry and a 1 at the jth entry or have a 1 at the ith entry and
a 0 at the jth entry must be present in the matrix.

In what follows, we will first introduce the compatible column pattern set for a number Γ ∈ Z2. Based on that, we will
further introduce the representative compatible column pattern set for a number Γ ∈ Z2. Later on, we will show that the
column patterns in the representative compatible column pattern set for each Γ ∈ Z2 can be present in the cube-variable
matrix.

Definition 11. Suppose that Γ ∈ Z2 and Γ = 2i
+ 2j, where 0 ≤ i < j ≤ λ − 1. The compatible column pattern set for Γ

is the set of column vectorsW of length λwith entries being either 0, 1, or ∗, such that

1. (Wi,Wj) = (0, 1) or (1, 0),
2. for any number L ∈ P2 such that L = 2k

+ 2l, where 0 ≤ k < l ≤ λ − 1, the situation that (Wk,Wl) = (0, 1) or (1, 0)
does not happen. �

It is not hard to see that if a cube-variable column vector is in the compatible column pattern set for a Γ ∈ Z2, then the
negation of that cube-variable column vector is also in that set. Therefore, we define the representative compatible column
pattern set as follows.

Definition 12. The representative compatible column pattern set ρΓ for Γ ∈ Z2 is a set of cube-variable column vectors in
the compatible column pattern set for Γ with their first non-∗ entry being 0. �

Example 6. Consider the previous 4-cube intersection problem shown in Example 5. We have derived that

P2 = {(0011)2, (0101)2, (1001)2},
Z2 = {(0110)2, (1010)2, (1100)2}.

Now we will derive the compatible column pattern set for Γ = (0110)2 ∈ Z2. Note that in our representation, when we
represent an intersection of the cubes using the notation CΓ , where the binary representation of Γ is (γλ−1 . . . γ0)2, the
rightmost bit in the binary representation of Γ corresponds to the first cube c0, while the leftmost bit corresponds to the
last cube cλ−1. However, for a cube-variable columnvectorW = (W0,W1, . . . ,Wλ−1)

T , the leftmost entry in this transposed
representation corresponds to the first cube c0, while the rightmost entry corresponds to the last cube cλ−1.

Based on Definition 11, a vector W = (W0,W1,W2,W3)
T in the compatible column pattern set for Γ = (0110)2 ∈ Z2

should satisfy that

1. (W1,W2) = (0, 1) or (1, 0),
2. the following six situations,which are obtainedbasedon the set P2, do not happen: (W0,W1) = (0, 1), (W0,W1) = (1, 0),
(W0,W2) = (0, 1), (W0,W2) = (1, 0), (W0,W3) = (0, 1), and (W0,W3) = (1, 0).

If (W1,W2) = (0, 1), then W0 can be neither 0 nor 1; otherwise, it violates the second condition above. Thus, W0 can
only be ∗. Similarly,W0 can only be ∗ if (W1,W2) = (1, 0). In both cases,W3 can be 0, 1, or ∗.

Thus, the compatible column pattern set for Γ = (0110)2 ∈ Z2 is

{(∗, 0, 1, 0)T , (∗, 0, 1, 1)T , (∗, 0, 1, ∗)T , (∗, 1, 0, 0)T , (∗, 1, 0, 1)T , (∗, 1, 0, ∗)T }.

Based on Definition 12, the representative compatible column pattern set for Γ = (0110)2 is

{(∗, 0, 1, 0)T , (∗, 0, 1, 1)T , (∗, 0, 1, ∗)T }. �

Definition 13. We define the set Y as the union of the representative compatible column pattern sets ρΓ for all Γ ∈ Z2,
i.e., Y =


Γ ∈Z2

ρΓ . We define the set F = Y ∪ Ψ , where Ψ is given in Definition 5. �

Now we are going to state an important claim in this section, which says that we only need to focus on those column
patterns in the set F to construct a cube-variable matrix that satisfies the intersection pattern.
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Lemma 5. If there exists a cube-variable matrix D that satisfies the given intersection pattern, then there exists another matrix
D′ which also satisfies the given intersection pattern and each column of which is in the set F . �

Proof. First, we argue that for any column of D which contains both a 0 and a 1, the column is in the compatible column
pattern set for a certain Γ ∈ Z2.

Suppose that a column r(0 ≤ r ≤ n − 1) of D has the ith entry being 0 and the jth entry being 1, where 0 ≤ i, j ≤ λ− 1
and i ≠ j. Then, ci · cj = 0. Since the matrix D satisfies the given intersection pattern, we have v2i+2j = V (ci · cj) = 0.
Therefore, the number 2i

+ 2j is in the set Z2. Now consider any L ∈ P2. Suppose that L = 2k
+ 2l, where 0 ≤ k < l ≤ λ− 1.

Since a necessary condition for the cube-variable matrix to satisfy the given intersection pattern is that for L ∈ P2, C L
≠ 0,

thus the situation that Dkr = 0 and Dlr = 1 or Dkr = 1 and Dlr = 0 cannot happen. Therefore, the column r of D is in the
compatible column pattern set for the number (2i

+ 2j) ∈ Z2.
We can construct a D′ from D as follows. For any column 0 ≤ r ≤ λ− 1:

1. If D·r contains only 1’s and ∗’s, we let D′
·r be D·r . Then D′

·r is in the set Ψ .
2. If D·r contains only 0’s and ∗’s, we let D′

·r be the negation of the column D·r . Then D′
·r is in the set Ψ .

3. If D·r contains both a 0 and a 1 and the first non-∗ entry of D·r is 0, we let D′
·r be D·r . Then, there exists a Γ ∈ Z2 such that

D′
·r is in the compatible column pattern set forΓ . Further, since the first non-∗ entry ofD′

·r is 0,D
′
·r is in the representative

compatible column pattern set for Γ , ρΓ .
4. If D·r contains both a 0 and a 1 and the first non-∗ entry of D·r is 1, we let D′

·r be the negation of the column D·r . Then,
there exists a Γ ∈ Z2 such that D′

·r is in the compatible column pattern set for Γ . Further, since the first non-∗ entry of
D′

·r is 0, D
′
·r is in the representative compatible column pattern set for Γ , ρΓ .

Then, by the above construction, each column of D′ is in the set F . Further, D′ is obtained from D by column negations.
Thus, by Lemma 2, D′ also satisfies the given intersection pattern. �

Based on Lemma 5, we only need to answer whether there exists a cube-variable matrix with columns from the set F to
satisfy the given intersection pattern. The following lemma states that if such a matrix exists, then for each Γ ∈ Z2, at least
one of the column vectors from the set ρΓ must be present in that matrix.

Lemma 6. If a cube-variable matrix D with columns from the set F satisfies the given intersection pattern, then for any Γ ∈ Z2,
there exists a column in D which is in the set ρΓ . �

Proof. For any Γ ∈ Z2, suppose that Γ = 2i
+ 2j, where 0 ≤ i < j ≤ λ − 1. Since the cube-variable matrix satisfies the

given intersection pattern, therefore, V (ci · cj) = vΓ = 0. Consequently, we have ci · cj = 0. Thus, there must exist a column
r in D, such that Dir = 0 and Djr = 1 or Dir = 1 and Djr = 0. Now consider any L ∈ P2. Suppose that L = 2k

+ 2l, where
0 ≤ k < l ≤ λ− 1. Since a necessary condition for the cube-variable matrix to satisfy the given intersection pattern is that
for the L ∈ P2, C L

≠ 0, the situation that Dkr = 0 and Dlr = 1 or Dkr = 1 and Dlr = 0 cannot happen. Therefore, the column
r of D is in the compatible column pattern set for Γ . Further, since all the columns of D are in the set F , then column r must
be in the representative compatible column pattern set for Γ , ρΓ . �

4.3. A few necessary conditions on the intersection pattern

In this section, we show a few necessary conditions on the given intersection pattern so that there exists a set of cubes
to satisfy that intersection pattern. These statements will play an important role later in proving a necessary and sufficient
condition for the existence of a set of cubes to satisfy the given intersection pattern. We first have the following theorem on
those numbers vΓ > 0 in the intersection pattern.

Theorem 4. Suppose that there exists a set of λ cubes c0, . . . , cλ−1 that satisfies the intersection pattern (v0, . . . , v2λ−1). For
any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ L, we have vΓ > 0. �

Proof. Based on Definitions 2 and 7, for any 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ L, we have C L
⊆ CΓ . Therefore,

0 < vL = V (C L) ≤ V (CΓ ) = vΓ . �

For example, suppose that in a 4-cube intersection problem we are given v11 > 0. If there exist 4 cubes to satisfy the
given intersection pattern, then since v11 = V (c0c1c3) > 0, we must have c0c1c3 ≠ 0. Therefore, we have v1 = V (c0) > 0,
v2 = V (c1) > 0, v8 = V (c3) > 0, v3 = V (c0c1) > 0, v9 = V (c0c3) > 0, and v10 = V (c1c3) > 0.

If a set of cubes is pairwise non-disjoint, then the intersection of all those cubes is also non-disjoint, as shown by the
following lemma.

Lemma 7. If a set of r cubes cl0 , . . . , clr−1(3 ≤ r ≤ λ, 0 ≤ l0 < · · · < lr−1 ≤ λ − 1) is pairwise non-disjoint, i.e., for any
0 ≤ i < j ≤ r − 1, cli · clj ≠ 0, then their intersection

r−1
i=0 cli is nonempty. �
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Proof. By contraposition, suppose that
r−1

i=0 cli = 0. Consider the cube-variable matrix on these r cubes. Since their
intersection is empty, there exists a column in the matrix that contains both a 0 and a 1. The cube corresponding to the
0 entry and the cube corresponding to the 1 entry are disjoint. This contradicts the assumption that the given set of cubes
is pairwise non-disjoint. �

Alternatively, Lemma 7 can be stated on the numbers vΓ ’s. This gives another necessary condition for the existence of a
set of cubes to satisfy the given intersection pattern.

Theorem 5. Suppose that there exists a set of λ cubes c0, . . . , cλ−1 that satisfies the given intersection pattern (v0, . . . , v2λ−1).
If a set of r(3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ − 1 satisfies the condition that for any 0 ≤ i < j ≤ r − 1,
v
(2li+2lj ) > 0, then for the number L =

r−1
i=0 2li , vL > 0. �

Proof. Since the set of λ cubes c0, . . . , cλ−1 satisfies the given intersection pattern (v0, . . . , v2λ−1), therefore for any
0 ≤ i < j ≤ r − 1, V (cli · clj) = v

(2li+2lj ). Given that for any 0 ≤ i < j ≤ r − 1, v
(2li+2lj ) > 0, we have cli · clj ≠ 0.

This means that the set of r cubes cl0 , . . . , clr−1(3 ≤ r ≤ λ, 0 ≤ l0 < · · · < lr−1 ≤ λ − 1) is pairwise non-disjoint. By

Lemma 7, their intersection
r−1

i=0 cli is nonempty. Therefore, for the number L =
r−1

i=0 2li , vL = V
r−1

i=0 cli

> 0. �

For example, suppose that in a 4-cube intersection problem we are given v3 > 0, v9 > 0, and v10 > 0. If there exist
4 cubes to satisfy the given intersection pattern, then since V (c0c1) > 0, V (c0c3) > 0, and V (c1c3) > 0, we must have
v11 = V (c0c1c3) > 0.

If both the conditions in Theorems 4 and 5 are satisfied, then we have the following lemma, which will play an important
role in proving the necessary and sufficient condition later.

Lemma 8. Suppose that an intersection pattern (v0, . . . , v2λ−1) satisfies that

1. For any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ L, vΓ > 0.
2. For any set of r(3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ−1, if it satisfies the condition that for any 0 ≤ i < j ≤ r −1,
v
(2li+2lj ) > 0, then for the number L =

r−1
i=0 2li , vL > 0.

From the intersection pattern (v0, . . . , v2λ−1), we obtain the sets P, Z , P2, and Z2 by applying Definitions 8 and 10.
Now suppose that a set of λ nonempty cubes c0, . . . , cλ−1 satisfies the condition that for any Γ ∈ P2, CΓ ≠ 0 and for any

Γ ∈ Z2, CΓ = 0. Then, this set of cubes will satisfy the condition that for any Γ ∈ P, CΓ ≠ 0 and for any Γ ∈ Z, CΓ = 0. �

Proof. Based on Definitions 8 and 10, it is not hard to see that the sets P0, . . . , Pλ form a partition of the set P and that the
sets Z0, . . . , Zλ form a partition of the set Z . Thus, we only need to prove that for all 0 ≤ k ≤ λ, the set of cubes satisfies the
condition that for any Γ ∈ Pk, CΓ ≠ 0 and for any Γ ∈ Zk, CΓ = 0.

We first consider the case that k = 0. As we stated in Section 2, v0 = 2n > 0. Thus, P0 = {0} and Z0 = φ. Since C0
= 1,

thus we have that for any Γ ∈ P0, CΓ ≠ 0. Since Z0 = φ, the statement that for any Γ ∈ Z0, CΓ = 0 also holds.
Now we consider the case that k = 1. Since we assumed in Section 2 that for any 0 ≤ i ≤ λ − 1, v2i > 0, therefore,

P1 = {2i
|i = 0, . . . , λ − 1} and Z1 = φ. Since c0, . . . , cλ−1 are all nonempty, thus we have that for any Γ ∈ P1, CΓ ≠ 0.

Since Z1 = φ, the statement that for any Γ ∈ Z1, CΓ = 0 also holds.
When k = 2, the statement that the set of cubes satisfies the condition that for any Γ ∈ P2, CΓ ≠ 0 and for any Γ ∈ Z2,

CΓ = 0 obviously holds.
Now we consider the case that k ≥ 3. First, we consider any L ∈ Pk. Suppose that L =

r−1
i=0 2li , where 3 ≤ r ≤ λ and

0 ≤ l0 < · · · < lr−1 ≤ λ− 1. Then, for any 0 ≤ i < j ≤ r − 1, (2li + 2lj) ⊑ L. Since vL > 0 and (2li + 2lj) ⊑ L, based on the
condition 1 on the intersection pattern, we have v

(2li+2lj ) > 0. Since ∥2li + 2lj∥ = 2, thus (2li + 2lj) ∈ P2. By the assumption

that for any Γ ∈ P2, CΓ ≠ 0, we have that C (2
li+2lj )

= cli · clj ≠ 0. Note that the numbers i and j are arbitrary. Thus, the r
cubes cl0 , . . . , clr−1 are pairwise non-disjoint. By Lemma 7, then C L

=
r−1

i=0 cli ≠ 0. Therefore, for any L ∈ Pk, C L
≠ 0.

Now we consider any L ∈ Zk. Suppose that L =
r−1

i=0 2li , where 3 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ− 1. We argue
that there exist two numbers 0 ≤ u < v ≤ r−1, such that v(2lu+2lv ) = 0. Otherwise, for any 0 ≤ i < j ≤ r−1, v

(2li+2lj ) > 0.
Then, based on the condition 2 on the intersection pattern, we have vL > 0. This contradicts the assumption that L ∈ Zk.
Thus, there exist two numbers 0 ≤ u < v ≤ r − 1, such that v(2lu+2lv ) = 0. Since ∥2lu + 2lv∥ = 2, thus (2lu + 2lv ) ∈ Z2. By
the assumption that for any Γ ∈ Z2, CΓ = 0, we have that C (2

lu+2lv )
= clu · clv = 0. Thus, C L

=
r−1

i=0 cli = 0. Therefore, for
any L ∈ Zk, C L

= 0. �
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4.4. A necessary and sufficient condition

In this section, we will show a necessary and sufficient condition for the existence of a set of cubes to satisfy the given
intersection pattern. As a byproduct, the proof provides a way of synthesizing a set of cubes to satisfy the given intersection
pattern. Based on Lemma 5, we only need to consider cube-variable matrix that consists of column patterns in the set F
(defined in Definition 13). The basic idea to solve the general case problem is similar to that applied in the special case —we
will establish relations between the intersection pattern and the numbers of times that those column patterns of the set F
occur in the cube-variable matrix.

First, we introduce an important concept: the root column vector.

Definition 14. Given a column vector W with each element in the set {0, 1, ∗}, define its root column vector t(W ) as the
column vector obtained fromW by replacing the 0 entries inW with 1’s and keeping the other entries inW unchanged. �

For example, given a column vector (0, 1, ∗, 0)T , its root column vector is (1, 1, ∗, 1)T . The root column vector connects
the column patterns in the set F to those in the set Ψ (defined in Definition 5). As we will show later, with the aid of the
root column vector, we can establish a relation between those positive values in the intersection pattern (i.e., those vΓ ’s for
Γ ∈ P) and the numbers of times that those column patterns of the set F occur in the cube-variable matrix.

If we replace each column of a cube-variable matrix by its root column vector, we will obtain a root cube-variable matrix
of the original matrix, defined below.

Definition 15. Given a cube-variable matrix D of a set of λ cubes c0, . . . , cλ−1, we define its root cube-variable matrix t(D)
as the cube-variable matrix formed by replacing each column in Dwith its root column vector. The set of cubes c ′

0, . . . , c
′

λ−1
corresponding to the root cube-variable matrix is called the set of root cubes to the original set of cubes. �

For example, the root cube-variable matrix of the matrix
1 0 ∗

0 ∗ 1


is


1 1 ∗

1 ∗ 1


.

The set of root cubes is c ′

0 = x0x1 and c ′

1 = x0x2.
Based on the definition of the set of root cubes, we have the following lemma.

Lemma 9. Suppose that a set of cubes c0, . . . , cλ−1 satisfies the intersection pattern (v0, . . . , v2λ−1). Further, suppose that the
root cubes to the cubes c0, . . . , cλ−1 are c ′

0, . . . , c
′

λ−1. Then, for any Γ ∈ P, we have V (C ′Γ ) = V (CΓ ) = vΓ . �

Proof. If Γ = 0, then obviously, V (C ′0) = V (C0) = 2n
= v0. Now consider any Γ ∈ P such that Γ ≠ 0. By the definition

of the set P , we have vΓ > 0. Since the set of cubes c0, . . . , cλ−1 satisfies the intersection pattern (v0, . . . , v2λ−1), we have
V (CΓ ) = vΓ > 0. Suppose that CΓ represents the intersection of a set of cubes cl0 , . . . , clr−1 , where 1 ≤ r ≤ λ and
0 ≤ l0 < · · · < lr−1 ≤ λ− 1. Then, the intersection of cl0 , . . . , clr−1 is nonempty.

Let the cube-variable matrix corresponding to the set of cubes cl0 , . . . , clr−1 be DΓ and the cube-variable matrix
corresponding to the set of cubes c ′

l0
, . . . , c ′

lr−1
be D′

Γ . Based on the definition of the root cubes, each column of the matrix
D′
Γ contains only 1’s and ∗’s. Therefore, the intersection of c ′

l0
, . . . , c ′

lr−1
is also nonempty.

It is not hard to see that D′
Γ is the root cube-variable matrix of DΓ . Therefore, the twomatrices D′

Γ and DΓ have the same
number of columns that contain all ∗’s, i.e., columns of the form (∗, ∗, . . . , ∗)T . Now consider the number of ∗’s in the cube-
variable row vector of the intersection CΓ . Since CΓ is nonempty, that number should be equal to the number of columns
in the matrix DΓ that contain all ∗’s. The same claim applies to C ′Γ . Therefore, the number of ∗’s in the cube-variable row
vector of C ′Γ equals that in the cube-variable row vector of CΓ . By Lemma 1, we have V (C ′Γ ) = V (CΓ ) = vΓ . �

Example 7. Consider the following 3 cubes on 3 variables x0, x1, x2:

c0 = x0, c1 = x̄0x1, c2 = x1x2.

They satisfy the intersection pattern

v0 = 8, v1 = 4, v2 = 2, v3 = 0, v4 = 2, v5 = 1, v6 = 1, v7 = 0.

The set P defined on the above intersection pattern is

P = {0, 1, 2, 4, 5, 6}.

The root cubes correspond to c0, c1, c2 are

c ′

0 = x0, c ′

1 = x0x1, c ′

2 = x1x2.

It is not hard to verify that for any Γ ∈ P , V (C ′Γ ) = V (CΓ ) = vΓ . For example, for Γ = 6, we have

V (C ′Γ ) = V (c ′

1c
′

2) = 1 = V (CΓ ) = V (c1c2) = v6. �
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Since the root cube-variable matrix t(D) only contains column patterns in the set Ψ (defined in Definition 5), we can
apply the definition of zΓ (shown in Definition 6) to t(D), which is the number of occurrences of the column pattern ψΓ in
the matrix t(D). Further, for any Γ ∈ P , we can define kΓ according to Definition 9. The following theorem characterizes
the relation between zΓ ’s and kΓ ’s.

Theorem 6. If there exists a cube-variable matrix D that satisfies a given intersection pattern (v0, . . . , v2λ−1), then for any L ∈ P,
we have 

0≤Γ≤2λ−1:Γ⊒L

zΓ = kL,

where zΓ ’s are defined on the root cube-variablematrix t(D) of D according to Definition 6 and kL’s are defined in Definition 9. �

Proof. Consider a set of cubes c0, . . . , cλ−1 that satisfies the intersection pattern (v0, . . . , v2λ−1). By Lemma 9, the
corresponding set of root cubes c ′

0, . . . , c
′

λ−1 has the following property: for any Γ ∈ P , V (C ′Γ ) = vΓ = 2kΓ . By applying
the same reasoning used in proving Theorem 2 to the cube-variable matrix t(D) (which corresponds to the set of cubes
c ′

0, . . . , c
′

λ−1), we can prove the claim that for any L ∈ P ,
0≤Γ≤2λ−1:Γ⊒L

zΓ = kL. �

Example 8. Consider the set of 3 cubes on 3 variables x0, x1, x2 shown in Example 7:

c0 = x0, c1 = x̄0x1, c2 = x1x2.

Their cube-variable matrix D is1 ∗ ∗

0 1 ∗

∗ 1 1


.

They satisfy the intersection pattern

v0 = 8, v1 = 4, v2 = 2, v3 = 0, v4 = 2, v5 = 1, v6 = 1, v7 = 0.

The set P defined on the above intersection pattern is

P = {0, 1, 2, 4, 5, 6}.

The root cube-variable matrix t(D) of the matrix D is1 ∗ ∗

1 1 ∗

∗ 1 1


.

The matrix t(D) can be represented in terms of ψΓ as
ψ4 ψ1 ψ3


.

We can get the number of occurrences of each pattern ψΓ in the matrix t(D) as

z1 = z3 = z4 = 1, z0 = z2 = z5 = z6 = z7 = 0.

It is not hard to verify that for any L ∈ P ,
0≤Γ≤7:Γ⊒L

zΓ = kL.

For example, for Γ = 1, on the one hand, we have
0≤Γ≤7:Γ⊒1

zΓ = z1 + z3 + z5 + z7 = 2.

On the other hand, from the intersection pattern, we have k1 = log2 v1 = 2. Therefore, we have
0≤Γ≤7:Γ⊒1

zΓ = k1. �
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Based on the definition of the root column vector, we can regroup the elements in the set Y (defined in Definition 13)
according to their root column vectors, which results in the following definition. The relation between the elements in the
set Y and their root column vectors will be used later to derive a set of inequalities on the numbers of occurrences of the
elements of the set F in the cube-variable matrix (See Theorem 7).

Definition 16. We define the set M to be the set of numbers 0 ≤ Γ ≤ 2λ − 1 such that there exists an element in the set
Y , whose root column vector is ψΓ , i.e.,

M = {Γ |0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ }.

DefineM as M = {Γ |0 ≤ Γ ≤ 2λ − 1,Γ ∉ M}.
For any Γ ∈ M , we define the set YΓ to be the set of elements in the set Y such that their root column vectors are ψΓ ,

i.e., YΓ = {W |W ∈ Y and t(W ) = ψΓ }. �

Notice that the sets YΓ (Γ ∈ M) form a partition of the set Y .

Example 9. For the intersection pattern shown in Example 5, we have P2 = {3, 5, 9} and Z2 = {6, 10, 12}. According to
Definition 12, the representative compatible column pattern sets for the numbers in Z2 are

ρ6 = {(∗, 0, 1, 0)T , (∗, 0, 1, 1)T , (∗, 0, 1, ∗)T },

ρ10 = {(∗, 0, 0, 1)T , (∗, 0, 1, 1)T , (∗, 0, ∗, 1)T },

ρ12 = {(∗, 0, 1, 0)T , (∗, 0, 0, 1)T , (∗, ∗, 0, 1)T }.

Thus, according to Definition 13, we have

Y = ρ6 ∪ ρ10 ∪ ρ12

= {(∗, 0, 1, 0)T , (∗, 0, 0, 1)T , (∗, 0, 1, 1)T , (∗, ∗, 0, 1)T , (∗, 0, ∗, 1)T , (∗, 0, 1, ∗)T }.

The set of root column vectors for all the vectors in Y is

{(∗, 1, 1, 1)T , (∗, ∗, 1, 1)T , (∗, 1, ∗, 1)T , (∗, 1, 1, ∗)T }.

Thus, based on the definition of the setM , we have

M = {1, 3, 5, 9}.

Based on the definition of the set YΓ , we have Y1 = {(∗, 0, 1, 0)T , (∗, 0, 0, 1)T , (∗, 0, 1, 1)T }, Y3 = {(∗, ∗, 0, 1)T }, Y5 =

{(∗, 0, ∗, 1)T }, and Y9 = {(∗, 0, 1, ∗)T }. �

As we showed in Section 4.2, to solve the general case λ-cube intersection problem, we only need to consider cube-
variable matrix that consists of column patterns in the set F = Y ∪ Ψ . Indeed, we only need to determine the number of
occurrences of each element of the set F in the cube-variable matrix. For this purpose, we define as a variable the number
of occurrences of each element of the set Y in the cube-variable matrix. In fact, we define such a number on each partition
YΓ of Y , as stated by the following definition.

Definition 17. For any Γ ∈ M , we let the |YΓ | elements in the set YΓ be δΓ ,0, . . . , δΓ ,|YΓ |−1. For any Γ ∈ M and any
0 ≤ i ≤ |YΓ |−1, we definewΓ ,i to be the number of occurrences of the column pattern δΓ ,i in the cube-variablematrix. �

The following theorem establishes a set of linear inequalities on wΓ ,i’s and zΓ ’s, where the zΓ ’s are defined on the root
cube-variable matrix according to Definition 6.

Theorem 7. Suppose that there exists a cube-variable matrix D that satisfies the given intersection pattern, whose columns are
from the set F . Then, we have that for any Γ ∈ M,

|YΓ |−1
i=0

wΓ ,i ≤ zΓ , (11)

where zΓ ’s are defined on the root cube-variable matrix t(D) according to Definition 6. We also have that for any L ∈ Z2,
Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

wΓ ,i ≥ 1, (12)

i.e., at least one column in the matrix D belongs to the representative compatible column pattern set for L, ρL. �
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Proof. Consider any Γ ∈ M . Based on the definition of wΓ ,i,
|YΓ |−1

i=0 wΓ ,i is the total number of times that the column
patterns in the set YΓ occur in the matrix D. For those columns belonging to the set YΓ , their root column vector is ψΓ .
Therefore, in the root cube-variable matrix t(D), the number of occurrences of the column pattern ψΓ must be larger than
the total number of times that the column patterns in the set YΓ occur in the matrix D, i.e.,

zΓ ≥

|YΓ |−1
i=0

wΓ ,i.

By Lemma 6, for any L ∈ Z2, there exists a column in D which is in the set ρL. Suppose that the column is of the form
δΓ ∗,i∗ ∈ ρL, where Γ ∗

∈ M and 0 ≤ i∗ ≤ |YΓ ∗ | − 1. Then, we have

1 ≤ wΓ ∗,i∗ ≤


Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

wΓ ,i. �

Example 10. For the intersection pattern given in Example 5, based on Definition 17 and the result shown in Example 9, we
have

δ1,0 = (∗, 0, 1, 0)T , δ1,1 = (∗, 0, 0, 1)T , δ1,2 = (∗, 0, 1, 1)T ,

δ3,0 = (∗, ∗, 0, 1)T , δ5,0 = (∗, 0, ∗, 1)T , δ9,0 = (∗, 0, 1, ∗)T .

The set of equations shown in Eq. (11) for all Γ ∈ M in this example is
w1,0 + w1,1 + w1,2 ≤ z1
w3,0 ≤ z3
w5,0 ≤ z5
w9,0 ≤ z9.

Based on the representative compatible column pattern sets shown in Example 9, we have

ρ6 = {δ1,0, δ1,2, δ9,0},

ρ10 = {δ1,1, δ1,2, δ5,0},

ρ12 = {δ1,0, δ1,1, δ3,0}.

Thus, the set of equations shown in Eq. (12) for all L ∈ Z2 in this example is
w1,0 + w1,2 + w9,0 ≥ 1
w1,1 + w1,2 + w5,0 ≥ 1
w1,0 + w1,1 + w3,0 ≥ 1. �

Finally, combining the conditions of Theorems 4–7, we can derive a major result in this section, which gives a necessary
and sufficient condition for the existence of a cube-variable matrix to satisfy the given intersection pattern.

Theorem 8. There exists a cube-variable matrix D that satisfies the given intersection pattern (v0, . . . , v2λ−1) if and only if

1. For any 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ L, vΓ > 0.
2. For any set of r(3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ−1, if it satisfies the condition that for any 0 ≤ i < j ≤ r −1,
v
(2li+2lj ) > 0, then for the number L =

r−1
i=0 2li , vL > 0.

3. The system of equations on unknowns z̃Γ ’s (for all 0 ≤ Γ ≤ 2λ − 1) and w̃Γ ,i’s (for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1)
0≤Γ≤2λ−1:Γ⊒L

z̃Γ = kL, for all L ∈ P (13)

|YΓ |−1
i=0

w̃Γ ,i ≤ z̃Γ , for all Γ ∈ M (14)
Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

w̃Γ ,i ≥ 1, for all L ∈ Z2 (15)

has a non-negative integer solution. �

Proof. ‘‘only if’’ part: Statement 1 in the theorem is due to Theorem 4 and Statement 2 in the theorem is due to
Theorem 5.



W. Qian et al. / Discrete Applied Mathematics 193 (2015) 11–38 29

Since D satisfies the given intersection pattern, then by Lemma 5, there exists another matrix D′ which also satisfies the
given intersection pattern and each column of which is in the set F . For any 0 ≤ Γ ≤ 2λ − 1, let z̃Γ = zΓ , where zΓ ’s
are defined on the root cube-variable matrix t(D′) according to Definition 6. For any Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1, let
w̃Γ ,i = wΓ ,i, wherewΓ ,i’s are defined on the matrix D′ according to Definition 17. By Theorems 6 and 7, the set of numbers
z̃Γ and w̃Γ ,i satisfies the system of equations (13)–(15). Since z̃Γ is the number of occurrences of the column pattern ψΓ
in the root cube-variable matrix t(D′) and w̃Γ ,i is the number of occurrences of the column pattern δΓ ,i in the matrix D′,
therefore, z̃Γ ’s and w̃Γ ,i’s are all non-negative integers. Thus, the system of equations (13)–(15) has a non-negative integer
solution.

‘‘if’’ part: Let a non-negative integer solution to the system of equations (13)–(15) be z̃Γ = zΓ , for all 0 ≤ Γ ≤ 2λ−1, and
w̃Γ ,i = wΓ ,i, for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1. Since for all 0 ≤ Γ ≤ 2λ − 1, zΓ ≥ 0, for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1,
wΓ ,i ≥ 0, and for all Γ ∈ M ,

|YΓ |−1
i=0 wΓ ,i ≤ zΓ , then, we can construct a cube-variable matrix D as follows:

1. For all Γ ∈ M , the matrix contains zΓ columns of the form ψΓ .

2. For all Γ ∈ M , the matrix contains

zΓ −

|YΓ |−1
i=0 wΓ ,i


columns of the form ψΓ .

3. For all Γ ∈ M and all 0 ≤ i ≤ |YΓ | − 1, the matrix containswΓ ,i columns of the form δΓ ,i.

All columns of the matrix D are in the set F . Next, we prove that the matrix D satisfies the given intersection pattern, i.e., for
all 0 ≤ Γ ≤ 2λ − 1, V (CΓ ) = vΓ .

We first show that for any L ∈ Z2, C L
= 0 and for any L ∈ P2, C L

≠ 0. For any L ∈ Z2, suppose that L = 2i
+ 2j, where

0 ≤ i < j ≤ λ− 1. Since
Γ ∈M,0≤k≤|YΓ |−1:

δΓ ,k∈ρL

wΓ ,k ≥ 1,

there exists a Γ ∗
∈ M and a 0 ≤ k∗

≤ |YΓ ∗ | − 1, such that δΓ ∗,k∗ ∈ ρL and wΓ ∗,k∗ ≥ 1. Therefore, the matrix D contains a
column vector W which is from the set ρL. Based on the definition of ρL, Wi = 0 and Wj = 1, or Wi = 1 and Wj = 0. Thus,
we have C L

= ci · cj = 0. Thus, for any L ∈ Z2, C L
= 0.

Now consider any L ∈ P2. Suppose that L = 2i
+ 2j, where 0 ≤ i < j ≤ λ− 1. We argue that C L

= ci · cj ≠ 0. Otherwise,
ci · cj = 0. Therefore, there exists a column r in D, such Dir = 0 and Djr = 1 or Dir = 1 and Djr = 0. Since all the columns of D
are in the set F , thus the column D·r must be in the set Y . However, based on the definition of the representative compatible
column pattern set, each elementW in the set Y satisfies that for the L ∈ P2, the situation thatWi = 0 andWj = 1 orWi = 1
and Wj = 0 does not happen. Therefore, the column D·r does not belong to the set Y . We get a contradiction. Thus, for any
L ∈ P2, we have C L

≠ 0.
Note that the given intersection pattern satisfies the conditions of Lemma 8 and the set of cubes obtained from thematrix

D satisfies the condition that for any Γ ∈ Z2, CΓ = 0 and for any Γ ∈ P2, CΓ ≠ 0. Therefore, based on Lemma 8, the set
of cubes satisfies the condition that for any Γ ∈ Z , CΓ = 0 and for any Γ ∈ P , CΓ ≠ 0. Thus, for all these Γ ∈ Z ,
V (CΓ ) = 0 = vΓ .

Next, we will prove that for all L ∈ P , V (C L) = vL. When L = 0, we have V (C0) = 2n
= v0.

For any L ∈ P and L > 0, L can be represented as L =
r−1

j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ− 1. The
number of ∗’s in the cube-variable row vector of C L is the number of columns in D, whose entries on the rows l0, l1, . . . , lr−1
are all ∗’s. Due to our construction, each column of the matrix D is either of the form ψΓ or of the form δΓ ,i. Based on
Definitions 5 and 7, a column pattern ψΓ has all entries on the rows l0, l1, . . . , lr−1 being ∗’s if and only if Γ ⊒ L. Since the
root column vector of δΓ ,i is ψΓ , thus for any Γ ∈ M and any 0 ≤ i ≤ |YΓ | − 1, the column pattern δΓ ,i has all entries
on the rows l0, l1, . . . , lr−1 being ∗’s if and only if Γ ⊒ L. Therefore, the number of columns in D that has ∗’s on the rows
l0, l1, . . . , lr−1 is


Γ ∈M:

Γ⊒L

zΓ +


Γ ∈M:

Γ⊒L


zΓ −

|YΓ |−1
i=0

wΓ ,i


+


Γ ∈M:

Γ⊒L

|YΓ |−1
i=0

wΓ ,i =


0≤Γ≤2λ−1:Γ⊒L

zΓ .

Since zΓ ’s let Eq. (13) hold, the right-hand side of the above equation is equal to kL. Therefore, the number of ∗’s in the
cube-variable row vector of C L is kL. Since C L is nonempty, by Lemma 1, V (C L) = 2kL . Thus, for any L ∈ P and L > 0,
V (C L) = 2kL = vL.

In summary, for any 0 ≤ Γ ≤ 2λ − 1, V (CΓ ) = vΓ . Thus, the matrix D satisfies the given intersection pattern. �

Note that when all the three statements in the above theorem hold, the above proof provides a way to synthesize a cube-
variable matrix to satisfy the given intersection pattern. Indeed, suppose that a non-negative integer solution to the system
of equations (13)–(15) is z̃Γ = zΓ , for all 0 ≤ Γ ≤ 2λ − 1, and w̃Γ ,i = wΓ ,i, for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1. Then, we
can construct a cube-variable matrix that satisfies the given intersection pattern as follows:
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1. For all Γ ∈ M , the matrix contains zΓ columns of the form ψΓ .
2. For all Γ ∈ M , the matrix contains


zΓ −

|YΓ |−1
i=0 wΓ ,i


columns of the form ψΓ .

3. For all Γ ∈ M and all 0 ≤ i ≤ |YΓ | − 1, the matrix containswΓ ,i columns of the form δΓ ,i.

Example 11. Given v0 = 64, v1 = 4, v2 = 8, v3 = 0, v4 = 16, v5 = 2, v6 = 2, v7 = 0, v8 = 8, v9 = 1, v10 = 2, v11 =

0, v12 = 0, v13 = 0, v14 = 0, v15 = 0, determinewhether there exists a set of four cubes c0, . . . , c3 on 6 variables x0, . . . , x5
that satisfies the intersection pattern (v0, . . . , v15).
Solution: First, it is not hard to check that both Statement 1 and Statement 2 in Theorem 8 hold for the given pattern.

Now we check whether Statement 3 in Theorem 8 holds. For the given intersection pattern, we have P =

{0, 1, 2, 4, 5, 6, 8, 9, 10}, Z = {3, 7, 11, 12, 13, 14, 15}, and

k0 = 6, k1 = 2, k2 = 3, k4 = 4, k5 = 1,
k6 = 1, k8 = 3, k9 = 0, k10 = 1.

Notice that Z2 = {3, 12}. The corresponding representative compatible column pattern sets are ρ3 = {(0, 1, ∗, ∗)T } and
ρ12 = {(∗, ∗, 0, 1)T }, respectively. Thus, we have

Y =


Γ ∈Z2

ρΓ = {(0, 1, ∗, ∗)T , (∗, ∗, 0, 1)T }.

Since the root column vector of (0, 1, ∗, ∗)T isψ12 and the root column vector of (∗, ∗, 0, 1)T isψ3, we haveM = {3, 12}.
We can partition the set Y as Y3 = {(∗, ∗, 0, 1)T } and Y12 = {(0, 1, ∗, ∗)T }.

Based on Definition 17, the element in the set Y3 is defined as δ3,0 = (∗, ∗, 0, 1)T and the element in the set Y12 is defined
as δ12,0 = (0, 1, ∗, ∗)T . Notice that ρ3 = {δ12,0} and ρ12 = {δ3,0}.

We can derive the system of equations (13)–(15) for this example as

15
i=0

z̃i = 6

z̃1 + z̃3 + z̃5 + z̃7 + z̃9 + z̃11 + z̃13 + z̃15 = 2
z̃2 + z̃3 + z̃6 + z̃7 + z̃10 + z̃11 + z̃14 + z̃15 = 3
z̃4 + z̃5 + z̃6 + z̃7 + z̃12 + z̃13 + z̃14 + z̃15 = 4
z̃5 + z̃7 + z̃13 + z̃15 = 1
z̃6 + z̃7 + z̃14 + z̃15 = 1
15
i=8

z̃i = 3

z̃9 + z̃11 + z̃13 + z̃15 = 0
z̃10 + z̃11 + z̃14 + z̃15 = 1
w̃3,0 ≤ z̃3
w̃12,0 ≤ z̃12
w̃3,0 ≥ 1
w̃12,0 ≥ 1.

Note that the first 9 equations correspond to Eq. (13), the next 2 equations correspond to Eq. (14), and the last 2 equations
correspond to Eq. (15).

The above system of equations has a non-negative solution

z̃3 = 1, z̃4 = 1, z̃7 = 1, z̃10 = 1, z̃12 = 2,
z̃0 = z̃1 = z̃2 = z̃5 = z̃6 = z̃8 = z̃9 = z̃11 = z̃13 = z̃14 = z̃15 = 0,
w̃3,0 = 1, w̃12,0 = 1.

Thus, Statement 3 in Theorem 8 also holds. Therefore, there exists a cube-variable matrix that satisfies the given
intersection pattern. We can construct a cube-variable matrix that satisfies the given intersection pattern based on the
above non-negative solution as follows:
1. For all Γ ∈ M , the matrix contains z̃Γ columns of the form ψΓ . Since M = {3, 12}, we have M = {0, 1, 2, 4,

5, . . . , 11, 13, 14, 15}. Thus, thematrix contains one column of the patternψ4 = (1, 1, ∗, 1)T , one column of the pattern
ψ7 = (∗, ∗, ∗, 1)T , and one column of the pattern ψ10 = (1, ∗, 1, ∗)T .

2. For all Γ ∈ M , the matrix contains

z̃Γ −

|YΓ |−1
i=0 w̃Γ ,i


columns of the form ψΓ . In this example, M = {3, 12}. Based

on the non-negative solution, we have that for Γ = 3,

z̃Γ −

|YΓ |−1
i=0

w̃Γ ,i = z̃3 − w̃3,0 = 0;
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for Γ = 12,

z̃Γ −

|YΓ |−1
i=0

w̃Γ ,i = z̃12 − w̃12,0 = 1.

Therefore, the matrix contains one column of the pattern ψ12 = (1, 1, ∗, ∗)T .
3. For all Γ ∈ M and all 0 ≤ i ≤ |YΓ | − 1, the matrix contains w̃Γ ,i columns of the form δΓ ,i. In this example,M = {3, 12}.

Based on the non-negative solution, the matrix contains one column of the pattern δ3,0 = (∗, ∗, 0, 1)T and one column
of the pattern δ12,0 = (0, 1, ∗, ∗)T .

Consequently, a matrix that satisfies the given intersection pattern is1 ∗ 1 1 ∗ 0
1 ∗ ∗ 1 ∗ 1
∗ ∗ 1 ∗ 0 ∗

1 1 ∗ ∗ 1 ∗


and the corresponding cubes are

c0 = x0x2x3x̄5, c1 = x0x3x5, c2 = x2x̄4, c3 = x0x1x4.

It is not hard to verify that the set of cubes c0, . . . , c3 satisfies the given intersection pattern. �

5. Implementation

In this section, we will discuss the implementation of the procedure to solve the λ-cube intersection problem, based on
the theoretical results in Section 4.

5.1. Checking Statement 1 in Theorem 8

We can represent Statement 1 in Theorem 8 in an alternative way, as shown by the following theorem.

Theorem 9. The following two statements are equivalent:

1. The intersection pattern (v0, . . . , v2λ−1) satisfies the condition that for any number 0 ≤ L ≤ 2λ − 1, if vL > 0, then for any
number 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ L, vΓ > 0.

2. The intersection pattern (v0, . . . , v2λ−1) satisfies the condition that for any 1 ≤ k ≤ λ and any number L ∈ Pk, if a number
0 ≤ Γ ≤ 2λ − 1 satisfies that ∥Γ ∥ = k− 1 and Γ ⊑ L, then vΓ > 0. (Note that the operator ∥ · ∥ and the set Pk are defined
in Definition 10.) �

Proof. Statement 1 ⇒ Statement 2: Consider any L ∈ Pk, where 1 ≤ k ≤ λ. By the definition of Pk, we have vL > 0. Since
Statement 1 holds, therefore, for any 0 ≤ Γ ≤ 2λ − 1 such that ∥Γ ∥ = k − 1 and Γ ⊑ L, we have vΓ > 0. Thus, Statement
2 holds.

Statement 2 ⇒ Statement 1: When L = 0, we have v0 = 2n > 0. Notice that the only 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ 0
is Γ = 0. Thus, for any 0 ≤ Γ ≤ 2λ − 1 such that Γ ⊑ 0, we have vΓ > 0.

Now consider any 1 ≤ L ≤ 2λ − 1 such that vL > 0. Suppose that ∥L∥ = r . Then, 1 ≤ r ≤ λ and L ∈ Pr . For any Γ
such that 0 ≤ Γ ≤ 2λ − 1 and Γ ⊑ L, suppose that ∥Γ ∥ = t . Then, we have 0 ≤ t ≤ r . We can find r − t + 1 numbers
Γt , . . . ,Γr , such that Γt = Γ , Γr = L, and for any t ≤ k ≤ r − 1, ∥Γk∥ = k and Γk ⊑ Γk+1. Since Statement 2 holds and
vΓr = vL > 0, we can see that for any t ≤ k ≤ r − 1, vΓk > 0. In particular, vΓ = vΓt > 0. Thus, for any 0 ≤ Γ ≤ 2λ − 1
such that Γ ⊑ L, we have vΓ > 0. This concludes the proof. �

BasedonTheorem9, in order to checkwhether Statement 1 in Theorem8holds,weonly need to checkwhether Statement
2 in Theorem 9 holds. Thus, whether Statement 1 in Theorem 8 holds can be checked by a procedure shown in Algorithm 1.
The procedure begins by obtaining the sets P0, P1, . . . , Pλ from the intersection pattern (v0, . . . , v2λ−1) (Lines 2–6). Then,
starting from the set P1 and ending at the set Pλ, the procedure will check whether each number L in the set Pi satisfies the
condition that for any number 0 ≤ Γ ≤ 2λ − 1 such that ∥Γ ∥ = i − 1 and Γ ⊑ L, we have vΓ > 0 (Lines 7–12).

The time complexity of obtaining the sets P0, P1, . . . , Pλ (Lines 2–6) is

T1 = O(λ2λ),

because obtaining ∥Γ ∥ for each number Γ takes O(λ) time units and we need to perform that operation 2λ times.
The time complexity of checking Statement 2 in Theorem 9 (Lines 7–12) can be analyzed as follows. For each L ∈ Pi, we

need to obtain those Γ such that Γ ⊑ L and ∥Γ ∥ = i − 1, and check whether vΓ is positive or not (Lines 9–11). Given an
L ∈ Pi, there are i numbers Γ satisfying that Γ ⊑ L and ∥Γ ∥ = i−1. They can be obtained by replacing one ‘‘1’’ in the binary
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Fig. 3. An undirected graph constructed from the intersection pattern of Example 5.

representation of L by a ‘‘0’’. Therefore, the time complexity of Lines 9–11 is O(i). The total time complexity for checking
Statement 2 in Theorem 9 is

T2 =

λ
i=1

|Pi| · O(i),

where |Pi| is the cardinality of the set Pi. Based on the definition of Pi, we can see that the maximum number of elements in
Pi is bounded by the number of values with exactly i ones in their binary representations. Thus,

|Pi| ≤


λ

i


.

Therefore, the total time complexity for checking the statement is

T2 =

λ
i=1

|Pi| · O(i) ≤ O


λ

i=1

i

λ

i


= O


λ

i=1

λ


λ− 1
i − 1


= O


λ2λ−1

= O

λ2λ


.

The total time complexity of Algorithm 1 is

T1 + T2 = O(λ2λ).

Note that the input to the λ-cube intersection problem consists of N = 2λ numbers v0, . . . , v2λ−1. Thus, in terms of the
input size, the time complexity of Algorithm 1 is

O(N log2 N).

Algorithm 1 CheckRuleOne(λ, v): the procedure to check whether Statement 1 in Theorem 8 holds. It returns 1 if the
statement holds; otherwise, it returns 0.
1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1).}
2: for i ⇐ 0 to λ do
3: Pi ⇐ φ;
4: for Γ ⇐ 0 to 2λ − 1 do
5: if vΓ > 0 then
6: k ⇐ ||Γ ||; Pk ⇐ Pk ∪ {Γ };
7: for i ⇐ 1 to λ do
8: for all L ∈ Pi do
9: for all 0 ≤ Γ ≤ 2λ − 1 s.t. ||Γ || = i − 1 and Γ ⊑ L do
10: if vΓ = 0 then
11: return 0;
12: return 1;

5.2. Checking Statement 2 in Theorem 8

Whether Statement 2 in Theorem 8 holds can be checked by representing the given intersection pattern by an undirected
graph and listing all maximal cliques of the undirected graph.

For a given intersection pattern on λ cubes, we can construct an undirected graph G(N, E) from that pattern, where N is
a set of λ nodes n0, . . . , nλ−1 and E is a set of edges. There is an edge between the nodes ni and nj (0 ≤ i < j ≤ λ − 1) if
and only if the number (2i

+ 2j) is in the set P2.
For example, we can represent the intersection pattern shown in Example 5 by the undirected graph shown in Fig. 3.
In graph theory, a clique in an undirected graph G(N, E) is defined as a subset Q of the node set N , such that for every

two nodes in Q , there exists an edge connecting the two. A maximal clique is a clique that cannot be extended by including
one more adjacent node.

For an intersection pattern, if a set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · < lr−1 ≤ λ − 1 satisfies that for
any 0 ≤ i < j ≤ r − 1, v

(2li+2lj ) > 0, then, the set of nodes nl0 , . . . , nlr−1 forms a clique of the undirected graph
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constructed from the intersection pattern. Thus, Statement 2 in Theorem 8 can be stated in another way as: For any clique
Q = {nl0 , . . . , nlr−1} of size r in the undirected graph constructed from the intersection pattern, where 3 ≤ r ≤ λ and
0 ≤ l0 < · · · < lr−1 ≤ λ− 1, we have vL > 0, where L =

r−1
i=0 2li .

The following theorem shows that if Statement 1 in Theorem 8 holds, then to check whether Statement 2 holds, we only
need to focus on all maximal cliques of the undirected graph G(N, E).

Theorem 10. If Statement 1 in Theorem 8 holds, then Statement 2 in Theorem 8 holds if and only if for any maximal clique
Q ∗

= {nd0 , . . . , ndt−1} of size t (3 ≤ t ≤ λ and 0 ≤ d0 < · · · < dt−1 ≤ λ − 1) in the undirected graph constructed from the
intersection pattern, we have vL∗ > 0, where L∗

=
t−1

i=0 2di . �

Proof. The ‘‘only if’’ part of the above theorem is obvious. We now prove the ‘‘if’’ part. Consider any clique Q = {nl0 , . . . ,
nlr−1} in the undirected graph G(N, E). By the definition of maximal clique, Q is contained in a maximal clique Q ∗

=

{nd0 , . . . , ndt−1}, where r ≤ t ≤ λ, 0 ≤ d0 < · · · < dt−1 ≤ λ − 1. Since the clique Q is contained in the clique Q ∗,
we have Q ⊆ Q ∗. Let L =

r−1
i=0 2li and L∗

=
t−1

i=0 2di . Thus, we have L ⊑ L∗. By our assumption, for the maximal clique
Q ∗, we have vL∗ > 0. Now by another assumption that Statement 1 in Theorem 8 holds, we can obtain vL > 0. Thus, for any
cliqueQ = {nl0 , . . . , nlr−1} in the undirected graph G(N, E), we have vL > 0. Therefore, Statement 2 in Theorem 8 holds. �

Therefore, if Statement 1 in Theorem 8 holds, thenwhether Statement 2 in Theorem 8 holds can be answered by checking
whether all vL’s corresponding to all maximal cliques in the undirected graph G(N, E) are positive. The problem of listing
all maximal cliques in an undirected graph is a classical problem in graph theory and can be solved, for example, by the
Born–Kerbosch algorithm [2].

Assuming that Statement 1 in Theorem 8 holds, then whether Statement 2 in Theorem 8 holds can be checked by the
procedure shown in Algorithm 2. The procedure begins by constructing an undirected graph based on the intersection
pattern (Lines 2–6). The time complexity is O(λ2). Then, it obtains all maximal cliques and checks whether each vL
corresponding to eachmaximal clique is positive or not (Lines 7–12). Theworst-case time complexity for finding allmaximal
cliques in a graph of λ nodes is O(3λ/3) [8]. Given a maximal clique, the time complexity to obtain its corresponding L (Lines
8–10) is O(λ). Therefore, the time complexity of Lines 7–12 is O(λ3λ/3) = O(λ2λ). In summary, the total time complexity
for Algorithm 2 is O(λ2)+ O(λ2λ) = O(λ2λ) = O(N log2 N), where N is the input size.

Algorithm 2 CheckRuleTwo(λ, v): the procedure to check whether Statement 2 in Theorem 8 holds under the assumption
that Statement 1 in Theorem 8 holds. It returns 1 if the statement holds; otherwise, it returns 0.
1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1).}
2: N ⇐ {n0, . . . , nλ−1}; E ⇐ φ;
3: for i ⇐ 0 to λ− 1 do
4: for j ⇐ i + 1 to λ− 1 do
5: if v(2i+2j) > 0 then
6: E ⇐ E ∪ {e(ni, nj)}; {Add an edge between the node ni and the node nj into the edge set E.}
7: for allmaximal clique Q in the graph G(N, E) do
8: L ⇐ 0;
9: for all node ni in Q do
10: L ⇐ L + 2i; {Construct the number L corresponding to the maximal clique Q .}
11: if vL = 0 then
12: return 0;
13: return 1;

5.3. Checking Statement 3 in Theorem 8

The following theorem shows that to check whether the system of equations (13)–(15) has a non-negative solution, we
only need to check whether an alternative system of equations with fewer unknowns and equations has a non-negative
solution.

Theorem 11. The system of equations (13)–(15) has a non-negative integer solution if and only if the system of equations on
unknowns ẑΓ ’s (for all Γ ∈ M) and ŵΓ ,i’s (for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1)

Γ ∈M,Γ⊒L

ẑΓ +


Γ ∈M,Γ⊒L

|YΓ |−1
i=0

ŵΓ ,i = kL, for all L ∈ P (16)


Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

ŵΓ ,i ≥ 1, for all L ∈ Z2 (17)

has a non-negative integer solution. �
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Proof. ‘‘if’’ part: Suppose that a non-negative integer solution to the system of equations (16) and (17) is
ẑΓ = zΓ , for all Γ ∈ M,
ŵΓ ,i = wΓ ,i, for all Γ ∈ M, 0 ≤ i ≤ |YΓ | − 1.

We let
z̃Γ = zΓ , for all Γ ∈ M,

z̃Γ =

|YΓ |−1
i=0

wΓ ,i, for all Γ ∈ M,

w̃Γ ,i = wΓ ,i, for all Γ ∈ M, 0 ≤ i ≤ |YΓ | − 1.

Then, it is not hard to see that z̃Γ ’s (for all 0 ≤ Γ ≤ 2λ − 1) and w̃Γ ,i’s (for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1) form a
non-negative integer solution to the system of equations (13)–(15).

‘‘only if’’ part: Suppose that a non-negative integer solution to the system of equations (13)–(15) is
z̃Γ = zΓ , for all 0 ≤ Γ ≤ 2λ − 1,
w̃Γ ,i = wΓ ,i, for all Γ ∈ M, 0 ≤ i ≤ |YΓ | − 1. (18)

We let
ẑΓ = zΓ , for all Γ ∈ M,

ŵΓ ,0 = zΓ −

|YΓ |−1
i=1

wΓ ,i, for all Γ ∈ M,

ŵΓ ,i = wΓ ,i, for all Γ ∈ M, 1 ≤ i ≤ |YΓ | − 1.

(19)

Then, for all Γ ∈ M , ẑΓ = zΓ ≥ 0 and for all Γ ∈ M, 1 ≤ i ≤ |YΓ | − 1, ŵΓ ,i = wΓ ,i ≥ 0. Since for all Γ ∈ M ,|YΓ |−1
i=0 wΓ ,i ≤ zΓ , then we have that for all Γ ∈ M ,

0 ≤ zΓ −

|YΓ |−1
i=0

wΓ ,i ≤ zΓ −

|YΓ |−1
i=1

wΓ ,i = ŵΓ ,0.

Therefore, the set of numbers ẑΓ ’s and ŵΓ ,i’s given by Eq. (19) is non-negative.
Based on Eqs. (13), (18), and (19), we have that for all L ∈ P ,


Γ ∈M,Γ⊒L

ẑΓ +


Γ ∈M,Γ⊒L

|YΓ |−1
i=0

ŵΓ ,i =


Γ ∈M,Γ⊒L

zΓ +


Γ ∈M,Γ⊒L

zΓ =


0≤Γ≤2λ−1,Γ⊒L

z̃Γ = kL. (20)

Since for all Γ ∈ M ,
|YΓ |−1

i=0 wΓ ,i ≤ zΓ , then we have that for all Γ ∈ M ,

ŵΓ ,0 = zΓ −

|YΓ |−1
i=1

wΓ ,i ≥ wΓ ,0. (21)

Based on Eqs. (21) and (19), we have that for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1,

ŵΓ ,i ≥ wΓ ,i. (22)

Combining Eq. (22) with Eqs. (15) and (18), we have that for all L ∈ Z2,

1 ≤


Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

w̃Γ ,i =


Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

wΓ ,i ≤


Γ ∈M,0≤i≤|YΓ |−1:

δΓ ,i∈ρL

ŵΓ ,i. (23)

Since both Eqs. (20) and (23) hold, we conclude that ẑΓ (for all Γ ∈ M) and ŵΓ ,i(for all Γ ∈ M, 1 ≤ i ≤ |YΓ | − 1) form
a non-negative integer solution to the system of equations (16) and (17). �

Based on Theorem 11, we can check whether Statement 3 in Theorem 8 holds by checking whether the system of
equations (16) and (17) has a non-negative solution. Note that the systemof equations (16) and (17) has |M| fewer unknowns
and |M| fewer inequalities than the original system of equations (13)–(15). Experimental results in Section 6 on a number
of benchmarks showed that on average the system of equations (16) and (17) has 17.1% fewer unknowns and 58.5% fewer
inequalities than the system of equations (13)–(15).
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The system of equations (16) and (17) is a set of linear equations and inequalities. Thus, it can be represented in matrix
form as

Azez⃗ + Awew⃗ = be,
Aww⃗ ≥ b, (24)

where Aze and Awe are (0, 1)-matrices obtained from Eq. (16), be is a column vector of kL’s, Aw is a (0, 1)-matrix obtained
from Eq. (17), b is a column vector of ones, z⃗ is a column vector of unknowns ẑΓ ’s, for all Γ ∈ M , and w⃗ is a column vector
of unknowns ŵΓ ,i’s, for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1.

Note that when the necessary and sufficient condition listed in Theorem 8 is satisfied, then we can construct a cube-
variable matrix that satisfies the given intersection pattern based on a non-negative integer solution to the system of
equations (16) and (17). Indeed, suppose that a non-negative integer solution is ẑΓ = zΓ , for all Γ ∈ M , and ŵΓ ,i = wΓ ,i,
for all Γ ∈ M and 0 ≤ i ≤ |YΓ | − 1. Then, we can construct a cube-variable matrix that satisfies the given intersection
pattern as follows:

1. For all Γ ∈ M , the matrix contains zΓ columns of the form ψΓ .
2. For all Γ ∈ M and all 0 ≤ i ≤ |YΓ | − 1, the matrix containswΓ ,i columns of the form δΓ ,i.

5.4. The procedure for solving the λ-cube intersection problem

Based on the above discussion, we give the procedure for solving the λ-cube intersection problem in Algorithm 3. In
the procedure, the function CheckRuleOne(λ, v) and the function CheckRuleTwo(λ, v) are shown in Algorithm 1 and 2,
respectively. The function RCCPS(Γ , λ, P2) returns the representative compatible column pattern set for a Γ ∈ Z2. The
function t(W ) is defined in Definition 14, which returns the root column vector of a column W . The function GetIndex(W )
takes a columnW ∈ Ψ and returns the index Γ such thatW = ψΓ . The function

SetEqn(P, Z2,M,M, {kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈ M})

returns thematricesAze, Awe, andAw and the columnvectors be and b shown in Eq. (24). The functionNonNegSln(Aze, Awe, be,
Aw, b) finds a non-negative integer solution to Eq. (24). If Eq. (24) has a non-negative integer solution, then the function
returns one such solution; otherwise, it returns φ. Given a non-negative solution (z⃗, w⃗) to Eq. (24), the function
SynCubes(z⃗, w⃗, λ) synthesizes a set of λ cubes that satisfies the given intersection pattern.

Algorithm 3 CubePattern(λ, v): the procedure to check whether there exists a set of λ cubes that satisfies the given
intersection pattern v = (v0, . . . , v2λ−1). If the answer is yes, the procedure returns a set of cubes that satisfies the
intersection pattern; otherwise, it returns φ.
1: {Given an integer λ ≥ 1 and a non-negative integer array v = (v0, . . . , v2λ−1), where each entry is from the set {0, 20, 21, . . . , 2n

}.}
2: if CheckRuleOne(λ, v) = 0 then return φ;
3: if CheckRuleTwo(λ, v) = 0 then return φ;
4: P ⇐ φ; P2 ⇐ φ; Z2 ⇐ φ; Y ⇐ φ; M ⇐ φ; M ⇐ φ;
5: for i ⇐ 0 to 2λ − 1 do {Obtain the set P and the values kΓ ’s.}
6: if vΓ > 0 then P ⇐ P ∪ {Γ }; kΓ ⇐ log2 vΓ ;
7: for i ⇐ 0 to λ− 1 do {Obtain the sets P2 and Z2.}
8: for j ⇐ i + 1 to λ− 1 do
9: if v(2i+2j) > 0 then P2 ⇐ P2 ∪ {2i

+ 2j
};

10: else Z2 ⇐ Z2 ∪ {2i
+ 2j

};
11: for all Γ ∈ Z2 do {Obtain the sets ρΓ ’s and Y .}
12: ρΓ ⇐ RCCPS(Γ , λ, P2); Y ⇐ Y ∪ ρΓ ;
13: for allW ∈ Y do {Obtain the setM .}
14: Γ ⇐ GetIndex(t(W )); M ⇐ M ∪ {Γ };
15: for Γ ⇐ 0 to 2λ − 1 do {Obtain the set M .}
16: if Γ ∉ M then M ⇐ M ∪ {Γ };
17: for all Γ ∈ M do
18: YΓ ⇐ φ;
19: for allW ∈ Y do {Obtain the sets YΓ ’s.}
20: Γ ⇐ GetIndex(t(W )); YΓ ⇐ YΓ ∪ {W };
21: (Aze, Awe, be, Aw, b) ⇐ SetEqn(P, Z2,M,M, {kL|L ∈ P}, {ρL|L ∈ Z2}, {YL|L ∈ M});
22: (z⃗, w⃗) ⇐ NonNegSln(Aze, Awe, be, Aw, b);
23: if (z⃗, w⃗) = φ then
24: return φ;
25: return SynCubes(z⃗, w⃗, λ);
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5.5. Time complexity analysis of Algorithm 3

In this section, we analyze the time complexity of Algorithm 3, the procedure to solve the λ-cube intersection problem.
As we have shown in Sections 5.1 and 5.2, the time complexities for the functions CheckRuleOne(λ, v) and

CheckRuleTwo(λ, v) are both O(λ2λ).
The time complexity of obtaining the set P and the values kΓ ’s (Lines 5–6) is O(2λ). The time complexity of obtaining the

sets P2 and Z2 (Lines 7–10) is O(λ2).
Now we analyze the time complexity of obtaining all the sets ρΓ ’s for all Γ ∈ Z2 (Lines 11–12). Since each element

in a representative compatible column pattern set ρΓ for a Γ ∈ Z2 is a length-λ vector composed of either 0, 1, or ∗, the
size of the set ρΓ is bounded by 3λ. The time complexity of obtaining such a set is O(3λ). Thus, the time complexity of
obtaining all the sets ρΓ ’s for all Γ ∈ Z2 (Lines 11–12) is O(λ23λ). Indeed, the worst case happens when P2 = φ and
Z2 = {Γ |0 ≤ Γ ≤ 2λ − 1, ∥Γ ∥ = 2}. In this case, we need to obtain O(λ2) sets ρΓ ’s; obtaining each set takes O(3λ) time
units.

Since each element in the set Y is a length-λ vector composed of either 0, 1, or ∗, the size of the set Y is bounded by 3λ. For
each element in the set Y , the time complexity of obtaining its root column vector and the index Γ is O(λ). Thus, the time
complexity of obtaining the setM (Lines 13–14) is O(λ3λ). Similarly, we can show that the time complexity of obtaining the
sets YΓ ’s for all Γ ∈ M (Lines 17–20) is O(λ3λ).

The time complexity of obtaining the setM (Lines 15–16) is O(2λ).
Now we analyze the time complexity of establishing Eq. (24) (Line 21). Note that the number of variables is equal to

|M| +


Γ ∈M

|YΓ | = |M| + |Y | = O(2λ)+ O(3λ) = O(3λ).

The number of equations and inequalities in Eq. (24) is equal to |P| + |Z2|. Note that

|P| + |Z2| ≤ |P| + |Z | = 2λ.

Thus, the sum of the numbers of entries in the matrices Aze, Awe, and Aw is bounded by 2λO(3λ) = O(6λ).
Putting all the above analysis together,we conclude thatwithout considering the time complexity in solving Eq. (24) (Line

22), the total time complexity of Algorithm 3 is O(6λ). Since the input size of the λ-cube intersection problem is N = 2λ, the
total time complexity of Algorithm 3 (without considering the time complexity in solving Eq. (24)) is O(N log2 6).

6. Experimental results

We tested our algorithm on two-level logic circuit benchmarks that accompany the two-level logic minimizer
Espresso [1]. For each benchmark, we ignored the output part of the cubes and just set the number of outputs to one. We
optimized each modified benchmark by Espresso and then generated an intersection pattern for the set of cubes in that
benchmark. This intersection pattern serves as the input to our program.2

We performed two sets of experiments to test our algorithm. In the first set of experiments, we tested our algorithm
on solving special cases. The main goal was to study the runtime of our algorithm. The benchmarks we tested are listed in
Table 1. Since just a few benchmarks generate a special intersection pattern with v2λ−1 > 0, wemanually created some test
cases from the existing ones. For example, the intersection of all cubes in the original benchmark mark1 is nonempty; it
gives a special case intersection pattern. We created a new benchmark called mark1_11 from mark1 by deleting five cubes
in mark1. Notice that by deleting some cubes from the original benchmark, the new benchmark still has the property that
the intersection of all its cubes is nonempty. The new test cases that we created are mark1_11, mark1_12, mark1_13,
mark1_14, mark1_15, shift_17, shift_18, shift_19, and shift_20.

The experimental results on solving the special case λ-cube intersection problems are shown in Table 1. The second
and the third column in the table list the number of cubes λ and the number of inputs n for each intersection problem,
respectively. The fourth column lists the number of unknowns zΓ ’s for each special case problem, which is equal to 2λ. We
solved the special case problem by applying Eq. (10). The fifth column of the table lists the runtime to solve each special case
problem. Not surprisingly, the runtime increases exponentially with the number of cubes λ. This is because the number of
unknowns zΓ ’s increases exponentially with λ. However, the input to our program is an intersection pattern consisting of
2λ numbers. Thus, in terms of the input size, the time complexity is linear. Further, for the benchmark shift, although the
number of unknowns is more than 2 million, our algorithm was able to obtain the solution in about 70 s.

In the second set of experiments, we tested our algorithm that solves the general case problems. According to Algorithm
3, solving the general case problems involves two major steps. The first step is to check Statements 1 and 2 in Theorem 8
and establish Eq. (24). The second step is to solve Eq. (24) to obtain a non-negative integer solution. Since Eq. (24) is a set of
linear equations and inequalities, it can be fed into a standard integer linear programming solver to obtain a non-negative
integer solution or prove that such a solution does not exist. For this reason, we only focused on the first step.We developed
a program that takes an intersection pattern, then checks Statements 1 and 2 in Theorem 8, and finally writes out Eq. (24).

2 The intersection pattern benchmarks, which are shown in Tables 1 and 2, together with the sets of cubes that generate the intersection patterns, can
be download from http://pan.baidu.com/s/1mgBn0yW.

http://pan.baidu.com/s/1mgBn0yW
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Table 1
The experimental results on solving the special case λ-cube intersection problems.

Circuit #cubes #inputs #unknowns Time (s)

newtpla2 9 10 512 0
in3 10 35 1024 0
mark1_11 11 20 2048 0.01
mark1_12 12 20 4096 0.04
mark1_13 13 20 8192 0.08
mark1_14 14 20 16384 0.2
mark1_15 15 20 32768 0.48
mark1 16 20 65536 1.18
shift_17 17 19 131072 1.73
shift_18 18 19 262144 3.19
shift_19 19 19 524288 7.84
shift_20 20 19 1048576 24.97
shift 21 19 2097152 71.33

Table 2
The experimental results on solving the general case λ-cube intersection problems. The time reported is the time for checking Statements 1 and 2 in
Theorem 8 and establishing Eq. (24). It does not include the time for solving Eq. (24).

Circuit #cubes #inputs #unknowns #equations Time (s)
Improved Basic Save (%) Naive Save (%) Improved Basic Save (%)
a b (b−a)/b c (c−a)/c d e (e−d)/e

sqn 4 7 16 18 11.1 81 80.2 11 13 15.4 0
luc 6 8 66 74 10.8 729 90.9 32 40 20.0 0
br2 6 12 228 284 19.7 729 68.7 22 78 71.8 0
newcpla2 8 7 258 354 27.1 6561 96.1 65 161 59.6 0
newill 8 8 672 790 14.9 6561 89.8 39 157 75.2 0
tms 8 8 262 308 14.9 6561 96.0 69 115 40.0 0
prom2 9 9 512 767 33.2 19683 97.4 265 520 49.0 0.02
br1 10 12 8108 9113 11.0 59049 86.3 58 1063 94.5 0.12
vg2 10 25 1294 2248 42.4 59049 97.8 71 1025 93.1 0.01
exps 12 8 4130 4434 6.9 531441 99.2 399 703 43.2 0.09
alu1 12 12 4096 4100 0.098 531441 99.2 1300 1304 0.31 0.61
exp 14 8 69470 85162 18.4 4782969 98.5 122 15814 99.2 1.8
newtpla 14 15 127908 144197 11.3 4782969 97.3 117 16406 99.3 3.95
Average 17.1 92.1 58.5

The experimental results on our program are shown in Table 2. The second and the third column in the table list
the number of cubes λ and the number of inputs n for each intersection problem, respectively. We call our method as
‘‘improved’’, which generates Eq. (24). We listed the number of unknowns and the number of equations generated through
the ‘‘improved’’ method for each benchmark. We compared the ‘‘improved’’ method with two other methods: the ‘‘basic’’
method, which establishes the system of equations (13)–(15), and the ‘‘naive’’ method, which takes all 3λ combinations of
column patterns as unknowns to set up equations. For each benchmark, we listed the number of unknowns needed by the
‘‘basic’’ method and the ‘‘naive’’ method and the number of equations needed by the ‘‘basic’’ method. We also listed the
percentage of saving of the ‘‘improved’’ method on these metrics over the other twomethods when proper. We can see that
the ‘‘improved’’ method greatly reduces the number of unknowns and the number of equations. On average, it reduces the
number of unknowns by 17.1% and the number of equations by 58.5% compared with the ‘‘basic’’ method. Compared with
the ‘‘naive’’ method, it reduces the number of unknowns by 92.1%. The last column in the table listed the runtime for the
‘‘improved’’ method. Note that it is the time for checking Statements 1 and 2 in Theorem 8 and establishing Eq. (24). It does
not include the time for solving Eq. (24).

7. Conclusion and future work

In this paper, we introduced a new problem, the λ-cube intersection problem: Given a set of numbers corresponding to
an intersection pattern of a set of λ cubes, we are asked to synthesize a set of cubes to satisfy the given intersection pattern,
or to show that there is no solution to the problem.We provide a rigorousmathematic treatment to this problem and derive
a necessary and sufficient condition for the existence of a set of cubes to satisfy the given intersection pattern. The problem
is reduced to checking whether a set of linear equations and inequalities has a non-negative integer solution.

As we mentioned in the introduction, a solution to the λ-cube intersection problem is an important step in solving the
arithmetic two-level minimization problem. In our future work, we will apply the techniques proposed in this paper to
develop a general solution to the arithmetic two-level minimization problem. For this purpose, we will look into another
important subproblem, that is, to derive intersection patterns (v0, . . . , v2λ−1) on λ cubes that covermminterms. The study
in this work has offered us several important properties that we can use to derive proper intersection patterns. For example,
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the numbers vΓ ’s must satisfy the Statements 1 and 2 in Theorem 8. Applying these properties will reduce the search
space significantly. Finally, although the formulated problem can be theoretically solved by an integer linear programming
(ILP) solver, the sizes of some large problems are beyond the capabilities of the state-of-the-art ILP solvers. However, we
also notice that the formulated problem only asks whether a set of linear equations and inequalities has a non-negative
integer solution. It does not have an objective function to optimize. Thus, it is not necessary to use an ILP solver to solve the
formulated problem. In our future work, we will study the special structure of the set of linear equations and inequalities
we derived in this paper and explore an efficient way to find a non-negative integer solution to it.
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