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a b s t r a c t

This paper presents two main results. The first result pertains
to uniform approximation with Bernstein polynomials. We show
that, given a power-form polynomial g , we can obtain a Bern-
stein polynomial of degree m with coefficients that are as close as
desired to the corresponding values of g evaluated at the points
0, 1

m , 2
m , . . . , 1, provided thatm is sufficiently large. The second re-

sult pertains to a subset of Bernstein polynomials: those with coef-
ficients that are all in the unit interval. We show that polynomials
in this subset map the open interval (0, 1) into the open interval
(0, 1) andmap the points 0 and 1 into the closed interval [0, 1]. The
motivation for this work is our research on probabilistic computa-
tionwith digital circuits. Our designmethodology, called stochastic
logic, is based on Bernstein polynomials with coefficients that cor-
respond to probability values; accordingly, the coefficientsmust be
values in the unit interval. The mathematics presented here pro-
vides a necessary and sufficient test for deciding whether polyno-
mial operations can be implemented with stochastic logic.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

TheWeierstrass Approximation Theorem is a famous theorem in mathematical analysis. It asserts
that every continuous function defined on a closed interval can be uniformly approximated as closely
as desired by a polynomial function [4].
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The Weierstrass Approximation Theorem. Let f be a continuous function defined on the closed interval
[a, b]. For any ϵ > 0, there exists a polynomial function p such that for all x in [a, b], we have

|f (x) − p(x)| < ϵ.

The theorem can be proved by a transformation with Bernstein polynomials [8]. By a linear
substitution, the interval [a, b] can be transformed into the unit interval [0, 1]. Thus, the original
statement of the theorem holds if and only if the theorem holds for every continuous function f
defined on the interval [0, 1].

A Bernstein polynomial of degree n is a polynomial expressed in the following form [1]:
n−

k=0

βk,nbk,n(x), (1)

where each βk,n, k = 0, 1, . . . , n, is a real number and

bk,n(x) =

n
k


xk(1 − x)n−k. (2)

The coefficients βk,n are called Bernstein coefficients and the polynomials b0,n(x), b1,n(x), . . . , bn,n(x)
are called Bernstein basis polynomials of degree n. Define the nth Bernstein polynomial for f to be

Bn(f ; x) =

n−
k=0

f

k
n


bk,n(x).

In 1912, Bernstein showed the following result [2,7]:

The Bernstein Theorem. Let f be a continuous function defined on the closed interval [0, 1]. For any
ϵ > 0, there exists a positive integer M such that for all x in [0, 1] and integer m ≥ M, we have

|f (x) − Bm(f ; x)| < ϵ.

Note that the function Bm(f ; x) is a polynomial on x. Thus, on the basis of the Bernstein Theorem,
the Weierstrass Approximation Theorem holds. Given a power-form polynomial g of degree n, it is
well known that for any m ≥ n, g can be uniquely converted into a Bernstein polynomial of degree
m [5]. Combining this fact with the Bernstein Theorem, we have the following corollary.

Corollary 1. Let g be a polynomial of degree n. For any ϵ > 0, there exists a positive integer M ≥ n such
that for all x in [0, 1] and integer m ≥ M, we have m−

k=0


βk,m − g


k
m


bk,m(x)

 < ϵ,

where β0,m, β1,m, . . . , βm,m satisfy g(x) =
∑m

k=0 βk,mbk,m(x).

In the first part of the paper, we prove a stronger result than this:

Theorem 1. Let g be a polynomial of degree n ≥ 0. For any ϵ > 0, there exists a positive integer M ≥ n
such that for all integers m ≥ M and k = 0, 1, . . . ,m, we haveβk,m − g


k
m

 < ϵ,

where β0,m, β1,m, . . . , βm,m satisfy g(x) =
∑m

k=0 βk,mbk,m(x).

(Combining Theorem 1 with the fact that
∑m

k=0 bk,m(x) = 1, we can easily prove Corollary 1.)
In the second part of the paper, we consider a subset of Bernstein polynomials: those with

coefficients that are all in the unit interval [0, 1].
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Definition 1. Define U to be the set of Bernstein polynomials with coefficients that are all in the unit
interval [0, 1]:

U =


p(x) | ∃ n ≥ 1, 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, such that p(x) =

n−
k=0

βk,nbk,n(x)


.

The question that we ask is: which polynomials can be converted into Bernstein polynomials in U?

Definition 2. Define the set V to be the set of polynomials which are either identically equal to 0 or
equal to 1, or map the open interval (0, 1) into (0, 1) and the points 0 and 1 into the closed interval
[0, 1], i.e.,

V = {p(x) | p(x) ≡ 0, or p(x) ≡ 1, or 0 < p(x) < 1, ∀x ∈ (0, 1) and 0 ≤ p(0), p(1) ≤ 1}.

We prove that the above two sets are equivalent:

Theorem 2.

V = U .

In what follows, we will refer to a Bernstein polynomial of degree n converted from a polynomial
g as ‘‘the Bernstein polynomial of degree n of g ’’. When we say that a polynomial is of degree n, we
mean that the power form of the polynomial is of degree n.

Example 1. Consider the polynomial g(x) = 3x − 8x2 + 6x3. It maps the open interval (0, 1) into
(0, 1) with g(0) = 0, g(1) = 1. Thus, g is in the set V . On the basis of Theorem 2, we have that g is in
the set U . We verify this by considering Bernstein polynomials of increasing degree.

• The Bernstein polynomial of degree 3 of g is

g(x) = b1,3(x) −
2
3
b2,3(x) + b3,3(x).

Note that here the coefficient β2,3 = −
2
3 < 0.

• The Bernstein polynomial of degree 4 of g is

g(x) =
3
4
b1,4(x) +

1
6
b2,4(x) −

1
4
b3,4(x) + b4,4(x).

Note that here the coefficient β3,4 = −
1
4 < 0.

• The Bernstein polynomial of degree 5 of g(x) is

g(x) =
3
5
b1,5(x) +

2
5
b2,5(x) + b5,5(x).

Note that here all the coefficients are in [0, 1].

Since the Bernstein polynomial of degree 5 of g satisfies Definition 1, we conclude that g is in the
set U .

Example 2. Consider the polynomial g(x) =
1
4 −x+x2. Since g(0.5) = 0, thus g is not in the set V . On

the basis of Theorem 2, we have that g is not in the set U . We verify this. By contraposition, suppose
that there exist n ≥ 1 and 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

g(x) =

n−
k=0

βk,nbk,n(x).

Since g(0.5) = 0, therefore,
∑n

k=0 βk,nbk,n(0.5) = 0. Note that for all k = 0, 1, . . . , n, bk,n(0.5) > 0.
Thus, we have that for all k = 0, 1, . . . , n,βk,n = 0. Therefore, g(x) ≡ 0,which contradicts the original
assumption about g . Thus, g is not in the set U .



W. Qian et al. / European Journal of Combinatorics 32 (2011) 448–463 451

The remainder of the paper is organized as follows. In Section 2, we present some mathematical
preliminaries pertaining to Bernstein polynomials. In Section 3, we prove Theorem 1. On the basis of
this theorem, in Section 4, we prove Theorem 2. Finally, we conclude the paper with a discussion on
applications of these theorems to our research in probabilistic computation with digital circuits.

2. Properties of Bernstein polynomials

We list some pertinent properties of Bernstein polynomials.
(a) The positivity property:

For all k = 0, 1, . . . , n and all x in [0, 1], we have

bk,n(x) ≥ 0. (3)
(b) The partition of unity property:

The binomial expansion of the left-hand side of the equality (x + (1 − x))n = 1 shows that the
sum of all Bernstein basis polynomials of degree n is the constant 1, i.e.,

n−
k=0

bk,n(x) = 1. (4)

(c) Converting power-form coefficients to Bernstein coefficients:
The set of Bernstein basis polynomials b0,n(x), b1,n(x), . . . , bn,n(x) forms a basis of the vector space
of polynomials of real coefficients and degree nomore than n [5]. Each power basis function xj can
be uniquely expressed as a linear combination of the n + 1 Bernstein basis polynomials:

xj =

n−
k=0

σjkbk,n(x), (5)

for j = 0, 1, . . . , n. To determine the elements of the transformation matrix σ , we write

xj = xj(x + (1 − x))n−j

and perform a binomial expansion on the right-hand side. This gives

xj =

n−
k=j


k
j




n
j

bk,n(x),
for j = 0, 1, . . . , n. Therefore, we have

σjk =

σjk =


k
j


n
j

−1

, for j ≤ k

0, for j > k.
(6)

Suppose that a power-form polynomial of degree no more than n is

g(x) =

n−
k=0

ak,nxk (7)

and the Bernstein polynomial of degree n of g is

g(x) =

n−
k=0

βk,nbk,n(x). (8)

Substituting Eqs. (5) and (6) into Eq. (7) and comparing the Bernstein coefficients, we have

βk,n =

n−
j=0

aj,nσjk =

k−
j=0


k
j


n
j

−1

aj,n. (9)

Eq. (9) provides a means for obtaining Bernstein coefficients from power-form coefficients.
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(d) Degree elevation:
On the basis of Eq. (2), we have that for all k = 0, 1, . . . ,m,

1
m+1
k

bk,m+1(x) +
1

m+1
k+1

bk+1,m+1(x) = xk(1 − x)m+1−k
+ xk+1(1 − x)m−k

= xk(1 − x)m−k
=

1m
k

bk,m(x),

or

bk,m(x) =

m
k


m+1
k

bk,m+1(x) +

m
k


m+1
k+1

bk+1,m+1(x)

=
m + 1 − k
m + 1

bk,m+1(x) +
k + 1
m + 1

bk+1,m+1(x). (10)

Given a power-form polynomial g of degree n, for any m ≥ n, g can be uniquely converted into a
Bernstein polynomial of degreem. Suppose that the Bernstein polynomials of degreem and degree

m + 1 of g are
m∑

k=0
βk,mbk,m(x) and

m+1∑
k=0

βk,m+1bk,m+1(x), respectively. We have

m−
k=0

βk,mbk,m(x) =

m+1−
k=0

βk,m+1bk,m+1(x). (11)

Substituting Eq. (10) into the left-hand side of Eq. (11) and comparing the Bernstein coefficients,
we have

βk,m+1 =


β0,m, for k = 0

k
m + 1

βk−1,m +


1 −

k
m + 1


βk,m, for 1 ≤ k ≤ m

βm,m, for k = m + 1.

(12)

Eq. (12) provides ameans for obtaining the coefficients of the Bernstein polynomial of degreem+1
of g from the coefficients of the Bernstein polynomial of degreem of g . Wewill call this procedure
degree elevation.
For convenience, given a Bernstein polynomial g(x) =

∑n
k=0 βk,nbk,n(x), we can also express it as

g(x) =

n−
k=0

ck,nxk(1 − x)n−k, (13)

where

ck,n =

n
k


βk,n, (14)

for k = 0, 1, . . . , n. Substituting Eq. (14) into Eq. (12), we have

ck,m+1 =

c0,m, for k = 0
ck−1,m + ck,m, for 1 ≤ k ≤ m
cm,m, for k = m + 1.

(15)

3. A proof of Theorem 1

Suppose that the polynomial g is of degree n. Applying Eq. (15) recursively, we can express ck,m as
a linear combination of c0,n, c1,n, . . . , cn,n.
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Lemma 1. Let g be a polynomial of degree n. For any m ≥ n, suppose that the Bernstein polynomial of
degree m of g is g(x) =

∑m
k=0 ck,mx

k(1 − x)m−k. Let ck,m = 0 for all k < 0 and all k > m. Then for all
k = 0, 1, . . . ,m, we have

ck,m =

m−n−
i=0


m − n

i


ck−m+n+i,n. (16)

Proof. We prove the lemma by induction onm − n.

Base case: For m − n = 0, the right-hand side of Eq. (16) reduces to


0
0


ck,n = ck,m, so the equation

holds.
Inductive step: Suppose that Eq. (16) holds for somem ≥ n and all k = 0, 1, . . . ,m. Considerm + 1.
Since we assume that c−1,m = cm+1,m = 0, Eq. (15) can be written as

ck,m+1 = ck−1,m + ck,m, (17)

for all k = 0, . . . ,m+ 1. With our convention that ci,n = 0 for all i < 0 and i > n, it is easily seen that

c−1,m = 0 =

m−n−
i=0


m − n

i


c−1−m+n+i,n, cm+1,m = 0 =

m−n−
i=0


m − n

i


cm+1−m+n+i,n.

Combining this with the induction hypothesis, we conclude that for all k = −1, 0, . . . ,m,m + 1,

ck,m =

m−n−
i=0


m − n

i


ck−m+n+i,n. (18)

On the basis of Eqs. (17) and (18), for all k = 0, 1, . . . ,m + 1, we have

ck,m+1 =

m−n−
i=0


m − n

i


ck−1−m+n+i,n +

m−n−
j=0


m − n

j


ck−m+n+j,n.

In the first sum, we change the summation index to j = i − 1. We obtain

ck,m+1 =

m−n−1−
j=−1


m − n
j + 1


ck−m+n+j,n +

m−n−
j=0


m − n

j


ck−m+n+j,n

=


m − n

0


ck−m+n−1,n +

m−n−1−
j=0

[
m − n
j + 1


+


m − n

j

]
ck−m+n+j,n +


m − n
m − n


ck,n.

Applying the basic formula


r
q


=


r−1
q−1


+


r−1
q


, we obtain

ck,m+1 = ck−m+n−1,n +

m−n−1−
j=0


m + 1 − n

j + 1


ck−m+n+j,n + ck,n

=

m+1−n−
i=0


m + 1 − n

i


ck−m−1+n+i,n.

Thus Eq. (16) holds form + 1. By induction, it holds for allm ≥ k. �

Remark. Eq. (16) can be formulated as

ck,m =

min{k,n}−
i=max{0,k−m+n}


m − n
k − i


ci,n, (19)
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for all m ≥ n and k = 0, 1, . . . ,m. Indeed, in Eq. (16), first use the basic formula


r
q


=


r

r−q


and

then change the summation index to j = k − m + n + i to obtain

ck,m =

m−n−
i=0


m − n

m − n − i


ck−m+n+i,n =

k−
j=k−m+n


m − n
k − j


cj,n.

Note that cj,n ≠ 0 implies 0 ≤ j ≤ n. This yields Eq. (19).

Lemma 2. Let n be a positive integer. For all integer m, k and i such that

m > n, 0 ≤ k ≤ m, max{0, k − m + n} ≤ i ≤ min{k, n}, (20)

we have


k
m

i 
1 −

k
m

n−i

−

m−n
k−i

m
k

  ≤
n2

m
. (21)

Proof. For simplicity, we define δ = ( k
m )i(1 −

k
m )n−i

−


m−n
k−i


(m

k )
. Nowm−n

k−i

m
k

 =
(m − n)!

(k − i)!(m − n − k + i)!
·
k!(m − k)!

m!

=
k(k − 1) · · · (k − i + 1)(m − k)(m − k − 1) · · · (m − n − k + i + 1)

m(m − 1) · · · (m − n + 1)

=

i−1∏
j=0

k − j
m − j

·

n−i−1∏
j=0

m − k − j
m − i − j

=

i−1∏
j=0


1 −

m − k
m − j


·

n−i−1∏
j=0


1 −

k − i
m − i − j


. (22)

We obtain an upper bound for


m−n
k−i


(m

k )
by replacing j in Eq. (22) with its least value, 0:m−n

k−i

m
k

 ≤

i−1∏
j=0


1 −

m − k
m


·

n−i−1∏
j=0


1 −

k − i
m − i


=


k
m

i m − k
m − i

n−i

.

We need the following simple inequality: for real numbers 0 ≤ x ≤ y ≤ 1 and a non-negative
integer l,

yl − xl = (y − x)
l−1−
j=0

yjxl−1−j
≤ (y − x)l. (23)

From Eq. (20), we obtain 0 ≤ i ≤ min{k, n} ≤ k ≤ m and so we can use Eq. (23) for

0 ≤ x =
m − k
m

≤
m − k
m − i

= y ≤ 1, l = n − i ≥ 0.

We obtain

δ =


k
m

i 
1 −

k
m

n−i

−

m−n
k−i

m
k

 ≥


k
m

i


m − k
m

n−i

−


m − k
m − i

n−i


= −


k
m

i


m − k
m − i

n−i

−


m − k
m

n−i


≥ −


k
m

i m − k
m − i

−
m − k
m


(n − i) = −


k
m

i
(m − k)i(n − i)

(m − i)m
.
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Since 0 ≤
k
m ≤ 1, 0 ≤

m−k
m−i ≤ 1, and 0 ≤ i ≤ n, we obtain

−


k
m

i
(m − k)i(n − i)

(m − i)m
≥ −

i(n − i)
m

> −
n2

m
.

Therefore,

δ =


k
m

i 
1 −

k
m

n−i

−

m−n
k−i

m
k

 > −
n2

m
. (24)

Similarly, we obtain a lower bound for


m−n
k−i


(m

k )
by replacing the index j in Eq. (22) with i in the first

product and with n − i in the second product, obtainingm−n
k−i

m
k

 =

i−1∏
j=0


1 −

m − k
m − j


·

n−i−1∏
j=0


1 −

k − i
m − i − j



≥

i−1∏
j=0


1 −

m − k
m − i


·

n−i−1∏
j=0


1 −

k − i
m − n



=


k − i
m − i

i m − n − k + i
m − n

n−i

≥


k − i
m − i

i m − n − k + i
m − n + i

n−i

.

Thus, proceeding as above, we have

δ =


k
m

i 
1 −

k
m

n−i

−

m−n
k−i

m
k

 ≤


k
m

i m − k
m

n−i

−


k − i
m − i

i m − n − k + i
m − n + i

n−i

=


k
m

i

−


k − i
m − i

i


m − k
m

n−i

+


m − k
m

n−i

−


m − n − k + i
m − n + i

n−i


k − i
m − i

i

.

Due to Eq. (20), we have

0 ≤
k − i
m − i

≤
k
m

≤ 1, 0 ≤
m − n − k + i
m − n + i

≤
m − k
m

≤ 1,

and so we obtain

δ ≤


k
m

i

−


k − i
m − i

i

+


m − k
m

n−i

−


m − n − k + i
m − n + i

n−i

. (25)

Applying Eq. (23) twice to the right-hand side of Eq. (25), we obtain

δ ≤ i


k
m

−
k − i
m − i


+ (n − i)


m − k
m

−
m − n − k + i
m − n + i


=

i2

m
·
m − k
m − i

+
(n − i)2

m
·

k
m − n + i

.

From Eq. (20), we have

0 ≤
m − k
m − i

≤ 1, 0 ≤
k

m − n + i
≤ 1.
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Therefore,

δ =


k
m

i 
1 −

k
m

n−i

−

m−n
k−i

m
k

 ≤
i2 + (n − i)2

m
≤

ni + n(n − i)
m

=
n2

m
. (26)

Eqs. (24) and (26) together yield Eq. (21). �

Now we give a proof of Theorem 1.

Theorem 1. Let g be a polynomial of degree n ≥ 0. For any ϵ > 0, there exists a positive integer M ≥ n
such that for all integer m ≥ M and k = 0, 1, . . . ,m, we haveβk,m − g


k
m

 < ϵ,

where β0,m, β1,m, . . . , βm,m satisfy that g(x) =
∑m

k=0 βk,mbk,m(x).
Proof. For n = 0, g is a constant polynomial. Suppose that g(x) = y, where y is a constant value.
We select M = 1. Then, for all integers m ≥ M and all integers k = 0, 1, . . . ,m, we have βk,m =

y = g
 k
m


. Thus, the theorem holds.

For n > 0, we select M such that M > max{ n2
ϵ

∑n
i=0 |ci,n|, 2n}, where the real numbers c0,n,

c1,n, . . . , cn,n satisfy

g(x) =

n−
i=0

ci,nxi(1 − x)n−i. (27)

Now consider anym ≥ M . Since

2n ≤ max


n2

ϵ

n−
i=0

|ci,n|, 2n


< M ≤ m,

we havem − n > n. Consider the following three cases for k.
1. The case where n ≤ k ≤ m − n. Here max{0, k − m + n} = 0 and min{k, n} = n. Thus, the

summation indices in Eq. (19) range from 0 to n. Therefore,

βk,m =
ck,mm
k

 =

n−
i=0

m−n
k−i

m
k

 ci,n. (28)

Substituting xwith k
m in Eq. (27), we have

g


k
m


=

n−
i=0

ci,n


k
m

i 
1 −

k
m

n−i

. (29)

By Lemma 2, since 0 < n < m and 0 ≤ k ≤ m, Eq. (21) holds for all 0 = max{0, k − m + n} ≤ i ≤

min{k, n} = n. Thus, by Eqs. (21), (28) and (29) and the well-known inequality |
∑

xi| ≤
∑

|xi|,
we haveβk,m − g


k
m

 =

 n−
i=0

m−n
k−i

m
k

 −


k
m

i 
1 −

k
m

n−i

ci,n


≤

n−
i=0


m−n

k−i

m
k

 −


k
m

i 
1 −

k
m

n−i
 |ci,n| ≤

n2

m

n−
i=0

|ci,n|.

Since n2
ϵ

∑n
i=0 |ci,n| < M ≤ m, we have

n2

m

n−
i=0

|ci,n| < ϵ. (30)

Therefore, for all n ≤ k ≤ m − n, we have |βk,m − g( k
m )| < ϵ.
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2. The case where 0 ≤ k < n. Since m > 2n, we have k − m + n < k − n < 0. Thus, max{0, k −

m+n} = 0 andmin{k, n} = k. Thus, the summation indices in Eq. (19) range from0 to k. Therefore,

βk,m =
ck,mm
k

 =

k−
i=0

m−n
k−i

m
k

 ci,n. (31)

When k + 1 ≤ i ≤ n, we have that 1 ≤ k + 1 ≤ i and so


k
m

i 
1 −

k
m

n−i
 =


k
m

 


k
m

i−1 
1 −

k
m

n−i
 ≤

k
m

<
n
m

≤
n2

m
. (32)

By Lemma 2, since 0 < n < m and 0 ≤ k ≤ m, Eq. (21) holds for all 0 = max{0, k − m + n} ≤ i ≤

min{k, n} = k. Thus, by Eqs. (21) and (29)–(32) and the inequality |
∑

xi| ≤
∑

|xi|, we haveβk,m − g


k
m

 =

 k−
i=0

m−n
k−i

m
k

 ci,n −

n−
i=0


k
m

i 
1 −

k
m

n−i

ci,n


=

 k−
i=0

m−n
k−i

m
k

 −


k
m

i 
1 −

k
m

n−i

ci,n −

n−
i=k+1


k
m

i 
1 −

k
m

n−i

ci,n


≤

k−
i=0


m−n

k−i

m
k

 −


k
m

i 
1 −

k
m

n−i
 |ci,n| +

n−
i=k+1




k
m

i 
1 −

k
m

n−i
 |ci,n|

≤
n2

m

n−
i=0

|ci,n| < ϵ.

3. The case wherem−n < k ≤ m. Sincem > 2n, we have n < m−n < k. Thus, max{0, k−m+n} =

k − m + n and min{k, n} = n. Now, the summation indices in Eq. (19) range from k − m + n to n.
Therefore,

βk,m =
ck,mm
k

 =

n−
i=k−m+n

m−n
k−i

m
k

 ci,n. (33)

When 0 ≤ i ≤ k − m + n − 1, we have that 1 ≤ m + 1 − k ≤ n − i. Thus,


k
m

i 
1 −

k
m

n−i
 =


1 −

k
m

 


k
m

i 
1 −

k
m

n−i−1
 ≤

m − k
m

<
n
m

≤
n2

m
. (34)

By Lemma2, since 0 < n < m and 0 ≤ k ≤ m, Eq. (21) holds for all k−m+n = max{0, k−m+n} ≤

i ≤ min{k, n} = n. Thus, by Eqs. (21), (29), (30), (33) and (34) and the inequality |
∑

xi| ≤
∑

|xi|,
we haveβk,m − g


k
m

 =

 n−
i=k−m+n

m−n
k−i

m
k

 ci,n −

n−
i=0


k
m

i 
1 −

k
m

n−i

ci,n


=

 n−
i=k−m+n

m−n
k−i

m
k

 −


k
m

i 
1 −

k
m

n−i

ci,n −

k−m+n−1−
i=0


k
m

i 
1 −

k
m

n−i

ci,n


≤

n−
i=k−m+n


m−n

k−i

m
k

 −


k
m

i 
1 −

k
m

n−i
 |ci,n| +

k−m+n−1−
i=0




k
m

i 
1 −

k
m

n−i
 |ci,n|

≤
n2

m

n−
i=0

|ci,n| < ϵ.
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In conclusion, ifm ≥ M , then for all k = 0, 1, . . . ,m, we haveβk,m − g


k
m

 < ϵ. �

4. A proof of Theorem 2

We demonstrate that the sets U and V defined in the introduction – see Definitions 1 and 2 – are
one and the same. We demonstrate that U ⊆ V and V ⊆ U separately. First, we prove the former –
the easier one. Then we use Theorem 1 to prove the latter.

Theorem 3.
U ⊆ V .

Proof. Let n ≥ 1 and βk,n = 0, for all 0 ≤ k ≤ n. Then the polynomial p(x) =
∑n

k=0 βk,nbk,n(x) = 0.
Letn ≥ 1 andβk,n = 1, for all 0 ≤ k ≤ n. Then, by Eq. (4), the polynomial p(x) =

∑n
k=0 βk,nbk,n(x) = 1.

Thus 0 ∈ U and 1 ∈ U . From the definition of V , 0 ∈ V and 1 ∈ V .
Now consider any polynomial p ∈ U such that p ≢ 0 and p ≢ 1. There exist n ≥ 1 and

0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

p(x) =

n−
k=0

βk,nbk,n(x).

From Eqs. (3) and (4) and the fact that 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1, for all x in [0, 1], we have

0 ≤ p(x) =

n−
k=0

βk,nbk,n(x) ≤

n−
k=0

bk,n(x) = 1.

We further claim that for all x in (0, 1), we must have 0 < p(x) < 1. By contraposition, we assume
that there exists a 0 < x0 < 1 such that p(x0) ≤ 0 or p(x0) ≥ 1. Since for 0 < x0 < 1, we have
0 ≤ p(x0) ≤ 1, thus p(x0) = 0 or 1.

We first consider the case where p(x0) = 0. Since 0 < x0 < 1, it is not hard to see that for all
k = 0, 1, . . . , n, bk,n(x0) > 0. Thus, p(x0) = 0 implies that for all k = 0, 1, . . . , n, βk,n = 0. In this
case, for any real number x, p(x) =

∑n
k=0 βk,nbk,n(x) = 0, which contradicts the assumption that

p(x) ≢ 0.
Similarly, in the case where p(x0) = 1, we can show that p(x) ≡ 1, which contradicts the

assumption that p(x) ≢ 1. In both cases, we get a contradiction; this proves the claim that for all
x in (0, 1), 0 < p(x) < 1.

Therefore, for any polynomial p ∈ U such that p ≢ 0 and p ≢ 1, we have p ∈ V . Since we showed
at the outset that 0 ∈ U , 1 ∈ U , 0 ∈ V and 1 ∈ V , thus, for any polynomial p ∈ U , we have p ∈ V .
Therefore, U ⊆ V . �

Next we prove the claim that V ⊆ U . We will first show that each of four possible different
categories of polynomials in the set V are in the set U . The different categories are tackled in
Theorems 4 and 5 and Corollaries 2 and 3.

Theorem 4. Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1) with 0 ≤

g(0), g(1) < 1. Then g ∈ U.
Proof. Since g is continuous on the closed interval [0, 1], it attains its maximum value Mg on [0, 1].
Since g(x) < 1, for all x ∈ [0, 1], we have Mg < 1.

Let ϵ1 = 1−Mg > 0. By Theorem 1, there exists a positive integerM1 ≥ n such that for all integers
m ≥ M1 and k = 0, 1, . . . ,m, we have |βk,m − g( k

m )| < ϵ1, where β0,m, β1,m, . . . , βm,m satisfy that
g(x) =

∑m
k=0 βk,mbk,m(x). Thus, for allm ≥ M1 and all k = 0, 1, . . . ,m,

βk,m < g


k
m


+ ϵ1 ≤ Mg + 1 − Mg = 1. (35)
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Denote by r themultiplicity of 0 as a root of g(x) (where r = 0 if g(0) ≠ 0) and by s themultiplicity
of 1 as a root of g(x) (where s = 0 if g(1) ≠ 0). We can factorize g(x) as

g(x) = xr(1 − x)sh(x), (36)

where h(x) is a polynomial, satisfying that h(0) ≠ 0 and h(1) ≠ 0.
We show that h(0) > 0. By contraposition, suppose that h(0) ≤ 0. Since h(0) ≠ 0, we have

h(0) < 0. By the continuity of the polynomial h(x), there exists some 0 < x∗ < 1 such that h(x∗) < 0.
Thus, g(x∗) = x∗r(1 − x∗)sh(x∗) < 0. However, g(x) > 0, for all x ∈ (0, 1). Therefore, h(0) > 0.
Similarly, we have h(1) > 0.

Since g(x) > 0 for all x in (0, 1), we have h(x) =
g(x)

xr (1−x)s > 0 for all x in (0, 1). In view of the fact
that h(0) > 0 and h(1) > 0, we have h(x) > 0, for all x in [0, 1]. Since h(x) is continuous on the closed
interval [0, 1], it attains its minimum valuemh on [0, 1]. Clearly,mh > 0.

Let ϵ2 = mh > 0. By Theorem 1, there exists a positive integer M2 ≥ n − r − s, such that for all
integers d ≥ M2 and k = 0, 1, . . . , d, we have |γk,d − h( k

d )| < ϵ2, where γ0,d, γ1,d, . . . , γd,d satisfy
that

h(x) =

d−
k=0

γk,dbk,d(x). (37)

Thus, for all d ≥ M2 and all k = 0, 1, . . . , d,

γk,d > h

k
d


− ϵ2 ≥ mh − mh = 0.

Combining Eqs. (36) and (37), we have

g(x) = xr(1 − x)sh(x) = xr(1 − x)s
d−

k=0

γk,dbk,d(x)

= xr(1 − x)s
d−

k=0

γk,d


d
k


xk(1 − x)d−k

=

d−
k=0

γk,d


d
k




d+r+s
k+r

 d + r + s
k + r


xk+r(1 − x)d+s−k

=

d+r−
k=r

γk−r,d


d

k−r




d+r+s
k

 bk,d+r+s(x)

=

d+r+s−
k=0

βk,d+r+sbk,d+r+s(x),

where βk,d+r+s are the coefficients of the Bernstein polynomial of degree d + r + s of g and

βk,d+r+s =


0, for 0 ≤ k < r and d + r < k ≤ d + r + s
γk−r,d


d

k−r




d+r+s
k

 > 0, for r ≤ k ≤ d + r.

Thus, whenm = d + r + s ≥ M2 + r + s, we have for all k = 0, 1, . . . ,m,

βk,m ≥ 0. (38)

According to Eqs. (35) and (38), if we select an m0 ≥ max{M1,M2 + r + s}, then g(x) can be
expressed as a Bernstein polynomial of degreem0:

g(x) =

m0−
k=0

βk,m0bk,m0(x),

with 0 ≤ βk,m0 ≤ 1, for all k = 0, 1, . . . ,m0. Therefore, g ∈ U . �



460 W. Qian et al. / European Journal of Combinatorics 32 (2011) 448–463

Theorem 5. Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1)with g(0) = 0
and g(1) = 1. Then g ∈ U.

Proof. Denote by r the multiplicity of 0 as a root of g(x). We can factorize g(x) as

g(x) = xrh(x), (39)

where h(x) is a polynomial satisfying h(0) ≠ 0. By a reasoning similar to that in the proof of Theorem4,
we obtain h(0) > 0. Since for all x in (0, 1], h(x) =

g(x)
xr > 0, we have for all x in [0, 1], h(x) > 0.

Since h(x) is continuous on the closed interval [0, 1], it attains itsminimumvaluemh on [0, 1]. Clearly,
mh > 0.

Let ϵ1 = mh > 0. By Theorem 1, there exists a positive integerM1 ≥ n− r such that for all integers
d ≥ M1 and k = 0, 1, . . . , d, we have |γk,d − h( k

d )| < ϵ1, where γ0,d, γ1,d, . . . , γd,d satisfy

h(x) =

d−
k=0

γk,dbk,d(x). (40)

Thus, for all d ≥ M1 and all k = 0, 1, . . . , d,

γk,d > h

k
d


− ϵ1 ≥ mh − mh = 0.

Combining Eqs. (39) and (40), we have

g(x) = xrh(x) = xr
d−

k=0

γk,dbk,d(x) = xr
d−

k=0

γk,d


d
k


xk(1 − x)d−k

=

d−
k=0

γk,d


d
k




d+r
k+r

 
d + r
k + r


xk+r(1 − x)d−k

=

d+r−
k=r

γk−r,d


d

k−r




d+r
k

 bk,d+r(x)

=

d+r−
k=0

βk,d+rbk,d+r(x),

where βk,d+r are the coefficients of the Bernstein polynomial of degree d + r of g and

βk,d+r =


0, for 0 ≤ k < r
γk−r,d


d

k−r




d+r
k

 > 0, for r ≤ k ≤ d + r.

Thus, whenm = d + r ≥ M1 + r , we have for all k = 0, 1, . . . ,m,

βk,m ≥ 0. (41)

Let

g∗
= 1 − g(x). (42)

Then g∗ maps the open interval (0, 1) into (0, 1) with g∗(0) = 1, g∗(1) = 0. Denote by s the
multiplicity of 1 as a root of g∗(x). Thus, we can factorize g∗(x) as

g∗(x) = (1 − x)sh∗(x), (43)

where h∗(x) is a polynomial satisfying that h∗(1) ≠ 0. As in the proof of Theorem 4, we obtain
h∗(1) > 0. Since for all x in [0, 1), h∗(x) =

g∗(x)
(1−x)s > 0, we have for all x ∈ [0, 1], h∗(x) > 0. Since

h∗(x) is continuous on the closed interval [0, 1], it attains its minimum value m∗

h on [0, 1]. Clearly,
m∗

h > 0.
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Let ϵ2 = m∗

h > 0. By Theorem 1, there exists a positive integerM2 ≥ n− s such that for all integers
q ≥ M2 and k = 0, 1, . . . , q, we have |γ ∗

k,q − h∗( k
q )| < ϵ2, where γ ∗

0,q, γ
∗

1,q, . . . , γ
∗
q,q satisfy

h∗(x) =

q−
k=0

γ ∗

k,qbk,q(x). (44)

Thus, for all q ≥ M2 and all k = 0, 1, . . . , q,

γ ∗

k,q > h∗


k
q


− ϵ2 ≥ m∗

h − m∗

h = 0.

Combining Eqs. (42)–(44), we have

g(x) = 1 − g∗(x) = 1 − (1 − x)sh∗(x) = 1 − (1 − x)s
q−

k=0

γ ∗

k,qbk,q(x)

= 1 − (1 − x)s
q−

k=0

γ ∗

k,q

q
k


xk(1 − x)q−k

= 1 −

q−
k=0

γ ∗

k,q

 q
k

 q+s
k

 
q + s
k


xk(1 − x)q+s−k.

Further using Eq. (4), we obtain

g(x) =

q+s−
k=0

bk,q+s(x) −

q−
k=0

γ ∗

k,q

 q
k

 q+s
k

 bk,q+s(x) =

q+s−
k=0

βk,q+sbk,q+s(x),

where the βk,q+s’s are the coefficients of the Bernstein polynomial of degree q + s of g:

βk,q+s =

1 −
γ ∗

k,q

 q
k

 q+s
k

 < 1, for 0 ≤ k ≤ q

1, for q < k ≤ q + s.

Thus, whenm = q + s ≥ M2 + s, we have for all k = 0, 1, . . . ,m,

βk,m ≤ 1. (45)

According to Eqs. (41) and (45), if we select anm0 ≥ max{M1 + r,M2 + s}, then g(x) can be expressed
as a Bernstein polynomial of degreem0:

g(x) =

m0−
k=0

βk,m0bk,m0(x),

with 0 ≤ βk,m0 ≤ 1, for all k = 0, 1, . . . ,m0, Therefore, g ∈ U . �

Lemma 3. If a polynomial p is in the set U, then the polynomial 1 − p is also in the set U.

Proof. Since p is in the set U , there exist n ≥ 1 and 0 ≤ β0,n, β1,n, . . . , βn,n ≤ 1 such that

p(x) =

n−
k=0

βk,nbk,n(x).

By Eq. (4), we have

1 − p(x) =

n−
k=0

bk,n(x) −

n−
k=0

βk,nbk,n(x) =

n−
k=0

(1 − βk,n)bk,n(x) =

n−
k=0

γk,nbk,n(x),

where γk,n = 1−βk,n satisfying 0 ≤ γk,n ≤ 1, for all k = 0, 1, . . . , n. Therefore, 1−p is in the setU . �

Corollary 2. Let g be a polynomial of degree nmapping the open interval (0, 1) into (0, 1)with 0 < g(0),
g(1) ≤ 1. Then g ∈ U.
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Proof. Let polynomial h = 1 − g . Then h maps (0, 1) into (0, 1) with 0 ≤ h(0), h(1) < 1. By
Theorem 4, h ∈ U . By Lemma 3, g = 1 − h is also in the set U . �

Corollary 3. Let g be a polynomial of degree n mapping the open interval (0, 1) into (0, 1)with g(0) = 1
and g(1) = 0. Then g ∈ U.
Proof. Let the polynomial h = 1 − g . Then h maps (0, 1) into (0, 1) with h(0) = 0, h(1) = 1. By
Theorem 5, h ∈ U . By Lemma 3, g = 1 − h is also in the set U . �

Combining Theorems 4 and 5, Corollaries 2 and 3, we show that V ⊆ U .

Theorem 6.
V ⊆ U .

Proof. On the basis of the definition of V , for any polynomial p ∈ V , we have one of the following five
cases.
1. The case where p ≡ 0 or p ≡ 1. In the proof of Theorem 3, we have shown that 0 ∈ U and 1 ∈ U .

Thus p ∈ U .
2. The case where pmaps the open interval (0, 1) into (0, 1) with 0 ≤ p(0), p(1) < 1. By Theorem 4,

p ∈ U .
3. The case where pmaps the open interval (0, 1) into (0, 1) with 0 < p(0), p(1) ≤ 1. By Corollary 2,

p ∈ U .
4. The case where p maps the open interval (0, 1) into (0, 1) with p(0) = 0 and p(1) = 1. By

Theorem 5, p ∈ U .
5. The case where p maps the open interval (0, 1) into (0, 1) with p(0) = 1 and p(1) = 0. By

Corollary 3, p ∈ U .
In summary, for any polynomial p ∈ V , we have p ∈ U . Thus, V ⊆ U .

On the basis of Theorems 3 and 6, we have proved Theorem 2:

V = U . �

5. Discussion

We are interested in Bernstein polynomials with coefficients in the unit interval because this
concept has applications in the area of digital circuit design. Specifically, the concept is amathematical
prerequisite for a designmethodology that we have been advocating called stochastic logic [6,3,9]. We
provide a brief overview of this application and point the reader to further sources.

Stochastic logic implements Boolean functions with inputs that are random Boolean variables. A
Boolean function f on n variables x1, x2, . . . , xn is a mapping

f : {0, 1}n → {0, 1}.
With stochastic logic, the variables x1, x2, . . . , xn are a set of independent random Boolean variables,
i.e., for 1 ≤ i ≤ n, xi has a certain probability pi (0 ≤ pi ≤ 1) of being 1 and a probability 1 − pi of
being 0. With random Boolean variables as inputs, the output is also a random Boolean variable: the
function f has a certain probability po of being 1 and a probability 1 − po of being 0.

If implemented by digital circuitry, stochastic logic can be viewed as computation that transforms
input probabilities into output probabilities [3]. Given an arbitrary Boolean function f and a set of
input probabilities p1, p2, . . . , pn that correspond to the probabilities of the input random Boolean
variables being 1, the output probability po is a function on p1, p2, . . . , pn. In fact, we have shown
that the general form of the function is a multivariate polynomial on variables p1, . . . , pn with integer
coefficients and with the degree of each variable no more than 1 [9].

Example 3. Consider stochastic logic based on the Boolean function

f (x1, x2, x3) = (x1 ∧ x2) ∨ (¬x1 ∧ x3),

where ∧ means logical AND (conjunction), ∨ means logical OR (disjunction), and ¬ means logical
negation.
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The Boolean function f evaluates to 1 if and only if the 3-tuple (x1, x2, x3) takes values from the set
{(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)}. The probability of the output being 1 is

po = Pr(f = 1) = Pr(x1, x2, x3 : (x1, x2, x3) ∈ {(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)})
= Pr(x1 = 0, x2 = 0, x3 = 1) + Pr(x1 = 0, x2 = 1, x3 = 1)

+ Pr(x1 = 1, x2 = 1, x3 = 0) + Pr(x1 = 1, x2 = 1, x3 = 1).

If x1, x2, and x3 are independent random Boolean variables with probability p1, p2, and p3 of being 1,
respectively, then we obtain

po = (1 − p1)(1 − p2)p3 + (1 − p1)p2p3 + p1p2(1 − p3) + p1p2p3
= (1 − p1)p3 + p1p2
= p1p2 + p3 − p1p3, (46)

which confirms that the function computed by stochastic logic is a multivariate polynomial on
arguments p1, p2, and p3 with integer coefficients andwith the degree of each variable nomore than 1.

In design problems, we encounter univariate polynomials that have real coefficients and degree
greater than 1. Sometimes it is possible to implement these by setting some of the probabilities pi
to be a common variable x and the others to be constants. For example, if we set p1 = p3 = x and
p2 = 0.75 in Eq. (46), then we obtain the polynomial g(x) = 1.75x − x2. With different underlying
Boolean functions and different assignments of probability values, we can implement many different
univariate polynomials.

An interesting and yet practical question is: which univariate polynomials can be implemented by
stochastic logic? Define the setW to be the set of (univariate) polynomials that can be implemented.
We are interested in characterizing the setW .

In [9] we showed that U ⊆ W , i.e., if a polynomial can be expressed as a Bernstein polynomial
with all coefficients in the unit interval, then the polynomial can be implemented by stochastic logic.
In this paper, we proved that V = U . Thus, we have V ⊆ W .

Further, in [9] we showed thatW ⊆ V , i.e., if a polynomial can be implemented by stochastic logic,
then it is either identically equal to 0 or equal to 1, or it maps the open interval (0, 1) into the open
interval (0, 1) andmaps the points 0 and 1 into the closed interval [0, 1]. Therefore, we conclude that
W = V , i.e., a polynomial can be implemented by stochastic logic if and only if it is either identically
equal to 0 or equal to 1, or it maps the open interval (0, 1) into the open interval (0, 1) and maps the
points 0 and 1 into the closed interval [0, 1].

This necessary and sufficient conditions allows us to answer the question of whether any given
polynomial can be implemented by stochastic logic. On the basis of the mathematics, we have
proposed a constructive design method [9]. An overview of the method and its applications in circuit
designwill appear in a forthcoming ‘‘Research Highlights’’ article in Communications of the ACM [10].
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