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Transforming Probabilities With
Combinational Logic

Weikang Qian, Marc D. Riedel, Hongchao Zhou, and Jehoshua Bruck, Fellow, IEEE

Abstract—Schemes for probabilistic computation can exploit
physical sources to generate random values in the form of
bit streams. Generally, each source has a fixed bias and so
provides bits with a specific probability of being one. If many
different probability values are required, it can be expensive to
generate all of these directly from physical sources. This paper
demonstrates novel techniques for synthesizing combinational
logic that transforms source probabilities into different target
probabilities. We consider three scenarios in terms of whether
the source probabilities are specified and whether they can be
duplicated. In the case that the source probabilities are not
specified and can be duplicated, we provide a specific choice, the
set {0.4, 0.5}; we show how to synthesize logic that transforms
probabilities from this set into arbitrary decimal probabilities.
Further, we show that for any integer n ≥ 2, there exists a
single probability that can be transformed into arbitrary base-n
fractional probabilities. In the case that the source probabilities
are specified and cannot be duplicated, we provide two methods
for synthesizing logic to transform them into target probabilities.
In the case that the source probabilities are not specified, but once
chosen cannot be duplicated, we provide an optimal choice.

Index Terms—Logic synthesis, probabilistic logic, probabilistic
signals, random bit streams, stochastic bit streams.

I. Introduction and Background

MOST DIGITAL circuits are designed to map determin-
istic inputs of zero and one to deterministic outputs of

zero and one. An alternative paradigm is to design circuits
that operate on stochastic bit streams. Each stream represents
a real-valued number x (0 ≤ x ≤ 1) through a sequence
of random bits that have probability x of being one and
probability 1−x of being zero. Such circuits can be viewed as
constructs that accept real-valued probabilities as inputs and
compute real-valued probabilities as outputs.

Consider the example shown in Fig. 1. The bit streams A,
B, and C represent the values 0.8, 0.5, and 0.4, respectively.
Given that the input bit streams A and B are independent, an
AND gate performs multiplication. Indeed, the probability of
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obtaining a one in the output bit stream is the product of the
probabilities of obtaining a one in the input bit streams

c = P(C = 1) = P(A = 1 and B = 1)

= P(A = 1)P(B = 1) = a · b.

In prior work, we proposed a general method for synthesiz-
ing arbitrary polynomial functions through logical computation
on stochastic bit streams [1]. An example is shown in Fig. 2.
The circuit in the figure implements the polynomial g(x) =
1
4 − 1

2x + x2. The inputs consist of four independent stochastic
bit streams X1, X2, Z1, and Z2. The streams X1 and X2 are
variable inputs: both are set to one with the same probability
x, but they are set independently. The streams Z1 and Z2 are
constant inputs: they are set to one with probabilities 1

4 and 3
4 ,

respectively. We can verify that the probability of obtaining a
one in the output stochastic bit stream is g(x)

P(Y = 1) = P(Z1 = 1)P(X1 = 0)P(X2 = 0)

+P(Z2 = 1)P(X1 = 1)P(X2 = 1)

=
1

4
(1 − x)2 +

3

4
x2

=
1

4
− 1

2
x + x2 = g(x).

In this figure, with the input argument x = 1
2 , the output value

is g(x) = 1
4 , as expected.

A premise for such designs is the availability of stochastic
bit streams with the requisite probabilities. Such streams
can either be generated from physical random sources or
with pseudo-random constructs such as linear feedback shift
registers. Fig. 3 illustrates the process. In each clock cycle,
a random source generates a value R obeying a certain
probability density function f (R). A comparator compares the
value R with a constant value C: it outputs a one if R < C

and a zero otherwise. The output of the comparator is a stream
of random bits that have probability

p =
∫ C

−∞
f (R) dR (1)

of being one.
Generating stochastic bit streams entails significant cost in

terms of hardware resources. If the system employs pseudo-
random number generators such as linear feedback shift regis-
ters, most of the cost is incurred in the pseudo-random source
itself. The constant value can be generated relatively cheaply
using a simple register [2].

If the system exploits a physical mechanism, the random
source may be cheap but the constant value may be expensive

0278-0070/$26.00 c© 2011 IEEE



1280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2011

Fig. 1. AND gate multiplies the probabilities of obtaining a one in stochastic
bit streams. Here, the probabilities of obtaining a one in the input streams are
0.8 and 0.5. The probability of obtaining a one in the output bit stream is
0.8 × 0.5 = 0.4.

Fig. 2. Circuit implementing a polynomial g(x) = 1
4 − 1

2 x + x2 on stochastic
bit streams. The numbers in parentheses are the probabilities that the bits in
the corresponding stream are one.

Fig. 3. Generating stochastic bit streams from random or pseudo-random
sources.

to implement. For example, in [3], the authors described a
scheme for exploiting the intrinsic thermal noise of nanoscale
CMOS devices as the random source. This is inexpensive
to do. However, in their approach, the constant value C

corresponds to a supply voltage. Providing different supply
voltages is comparatively expensive. If the application requires
many stochastic bit streams with different probabilities, many
constant values are required. The cost of generating these
directly might be prohibitive.

This paper presents a synthesis strategy to mitigate this
issue: we describe a method for synthesizing combinational
logic to transform a set of stochastic bit streams representing
a limited number of probabilities into stochastic bit streams
representing other target probabilities.

It is convenient to treat stochastic bit streams mathemati-
cally as random Boolean variables. For what follows, we con-
sider combinational logic that has random Boolean variables as
inputs. When we say “a probability,” we mean the probability
of a random Boolean variable being one. When we say “a
circuit,” we mean a combinational circuit built with logic gates.

Example 1: Suppose that we have a set of source probabil-
ities S = {0.4, 0.5}. As illustrated in Fig. 4, we can transform
this set into new probabilities.

1) Given an input x with probability 0.4, an inverter will
have an output z with probability 0.6 since

P(z = 1) = P(x = 0) = 1 − P(x = 1). (2)

Fig. 4. Illustration of transforming a set of source probabilities into new
probabilities with logic gates. (a) Inverter implementing pz = 1 − px.
(b) AND gate implementing pz = px · py . (c) nor gate implementing
pz = (1 − px) · (1 − py).

2) Given inputs x and y with independent probabilities
0.4 and 0.5, an AND gate will have an output z with
probability 0.2 since

P(z = 1) = P(x = 1, y = 1)

= P(x = 1)P(y = 1). (3)

3) Given inputs x and y with independent probabilities
0.4 and 0.5, a NOR gate will have an output z with
probability 0.3 since

P(z = 1) = P(x = 0, y = 0) = P(x = 0)P(y = 0)

= (1 − P(x = 1))(1 − P(y = 1)).

Thus, using combinational logic, we obtain the set of proba-
bilities {0.2, 0.3, 0.6} from the set {0.4, 0.5}. �

Motivated by this example, we consider the problem of how
to synthesize combinational logic to transform a set of source
probabilities S = {p1, p2, . . . , pn} into a target probability q.
We assume that the probabilistic sources are all independent.
We consider three scenarios.

1) Scenario one: Suppose that we are generating stochastic
bit streams from physical random sources and that we
have the flexibility to construct a number of constant
value generators. This gives us the freedom to choose a
set of source probabilities S. The cost of the random
sources is negligible but the cost of generating the
constant values for the comparators is considerable. Ac-
cordingly, we seek to minimize the cardinality of the set
S. Note that we can produce multiple independent copies
of each source probability in S cheaply, since each copy
uses the same constant value. Thus, we assume that each
probability in the set S can be used an arbitrary number
of times. (We say that the probability can be duplicated.)
The problem is to find a small set S and to demonstrate
how to synthesize logic that transforms the values from
this set into an arbitrary target probability q.

2) Scenario two: Suppose that we are given a collection
of stochastic bit stream generators that produce a fixed
set S of source probabilities. We cannot adjust the
probabilities in S nor can we duplicate them; each source
probability can only be used once. (Although we cannot
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Fig. 5. Circuit synthesized by our algorithm to realize the decimal output
probability 0.119 from the input probabilities 0.4 and 0.5.

duplicate the values, the set S can be a multiset, i.e., one
that could contain multiple elements of the same value.)
The problem is how to synthesize logic that has input
probabilities taken from this fixed set S and produces an
output probability q.

3) Scenario three: Suppose that we are generating stochas-
tic bit streams with pseudo-random constructs such as
linear feedback shift registers and we have full freedom
to design the system. In this case, the cost of building
the random sources is considerable. Suppose that we es-
tablish a budget of n random sources. Thus, the number
of input stochastic bit streams is limited to n. Since it
is relatively cheap to generate different constant values,
we are able to choose n arbitrary source probabilities.
The problem is to find a set S of n probabilities such
that we can synthesize logic that transforms values from
this set into an arbitrary probability q. Again, the set S

can be a multiset. Since each probability in the source
set S corresponds to an individual random source, each
element of the set S can be used as an input probability
at most once.

To summarize, we consider scenarios that differ in respect to:

1) whether the set S is specified or not;
2) whether the probabilities from S can be duplicated or

not.

Specifically, in scenario one, the set S is not specified and
the probabilities from S can be duplicated. In scenario two,
the set S is specified and the probabilities from S cannot be
duplicated. In scenario three, the set S is not specified and
the probabilities from S cannot be duplicated.

Our contributions are as follows.

1) For scenario one, we demonstrate that a particular set
consisting of only two elements, S = {0.4, 0.5}, can be
transformed into arbitrary decimal probabilities. Further,
we propose an algorithm based on fraction factorization
to optimize the depth of the resulting circuit. Fig. 5
shows a circuit synthesized by our algorithm to realize
the decimal output probability 0.119 from the input
probabilities 0.4 and 0.5. The circuit consists of AND
gates and inverters: each AND gate performs a multi-
plication of its inputs and each inverter performs a one-
minus operation of its input.

2) Also for scenario one, we prove that for any given
integer n ≥ 2, there exists a set S consisting of a single
element that can be transformed into arbitrary base-n
fractional probabilities of the form m

nd , where m and d

are integers, satisfying that d ≥ 1 and 0 ≤ m ≤ nd .

3) For scenario two, we solve the problem by transforming
it into a linear 0-1 programming problem. Although
approximate, the solution is optimal in terms of the
difference between the target probability and the actual
output probability.

4) Also for scenario two, we provide a greedy algorithm.
Although the solution that it yields is not optimal, the
difference between the target probability and the actual
output probability is bounded. The algorithm runs very
efficiently, yielding a solution in O(n2) time, where n is
the cardinality of the set S.

5) For scenario three, we provide an optimal choice of
the set S. Specifically, we first define a quality measure
H(S) for each choice S consisting of arbitrary probabil-
ities. We prove that if the cardinality of S is n, then a
lower bound on H(S) is 1

4(22n −1) . Then we show that the
set of source probabilities

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n − 1}

achieves the lower bound.
II. Related Work

The task of analyzing circuits operating on probabilistic in-
puts is well understood [4]. Aspects such as signal correlations
of reconvergent paths must be taken into account. Algorithmic
details for such analysis were first fleshed out by the testing
community [5]. They have also found mainstream application
for tasks such as timing and power analysis [6], [7].

The problem of synthesizing circuits to transform a given
set of probabilities into a new set of probabilities appears in an
early set of papers by Gill [8], [9]. He focused on synthesizing
sequential state machines for this task.

Motivated by problems in neural computation, Jeavons et
al. considered the problem of transforming stochastic binary
sequences through what they call “local algorithms:” fixed
functions applied to concurrent bits in different sequences [10].
This is equivalent to performing operations on stochastic bit
streams with combinational logic, so in essence they were
considering the same problem as we are. Their main result was
a method for generating binary sequences with probability m

nd

from a set of stochastic binary sequences with probabilities in
the set { 1

n
, 2

n
, . . . , n−1

n
}. This is equivalent to our Theorem 2.

In contrast to the work of Jeavons et al., our primary focus is
on minimizing the number of source probabilities needed to
realize arbitrary base-n fractional probabilities.

The proponents of PCMOS discussed the problem of syn-
thesizing combinational logic to transform probability val-
ues [11]. These authors suggested using a tree-based circuit
to realize a set of target probabilities. This was positioned as
future work; no details were given.

Wilhelm and Bruck proposed a general framework for
synthesizing switching circuits to achieve a desired proba-
bility [12]. Switching circuits were originally discussed by
Shannon [13]. These consist of relays that are either open
or closed; the circuit computes a logical value of one if
there exists a closed path through the circuit. Wilhelm and
Bruck considered stochastic switching circuits, in which each
switch has a certain probability of being open or closed. They
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proposed an algorithm that generates the requisite stochastic
switching circuit to compute any binary probability.

Zhou and Bruck generalized Wilhelm and Bruck’s
work [14]. They considered the problem of synthesizing
a stochastic switching circuit to realize an arbitrary base-
n fractional probability m

nd from a probabilistic switch set
{ 1

n
, 2

n
, . . . , n−1

n
}. They showed that when n is a multiple of 2 or

3, such a realization is possible. However, for any prime num-
ber n greater than 3, there exists a base-n fractional probability
that cannot be realized by any stochastic switching circuit.

In contrast to the work of Gill, to that of Wilhelm and
Bruck, and to that of Zhou and Bruck, we consider combina-
tional circuits: memoryless circuits consisting of logic gates.
Our approach dovetails nicely with the circuit-level PCMOS
constructs. It is orthogonal to the switch-based approach of
Zhou and Bruck. Note that Zhou and Bruck assume that the
probabilities in the given set S can be duplicated. We also
consider the case where they cannot.

III. Scenario One: Set S Is Not Specified and the

Elements Can Be Duplicated

In this scenario, we assume that the set S of probabilities is
not specified. Once the set has been determined, each element
of the set can be used as an input probability an arbitrary
number of times. The inputs are all assumed to be independent.
As discussed in the introduction, we seek a set S of small size.

A. Generating Decimal Probabilities

In this section, we consider the case where the target
probabilities are represented as decimal numbers. The problem
is to find a small set S of source probabilities that can be
transformed into an arbitrary target decimal probability. We
provide a set S consisting of two elements.

Theorem 1: With circuits consisting of fanin-two AND
gates and inverters, we can transform the set of source
probabilities {0.4, 0.5} into an arbitrary decimal proba-
bility. �

Proof: First, we note that an inverter with a probabilistic
input gives an output probability equal to one minus the
input probability, as was shown in (2). An AND gate with
two independent inputs performs a multiplication of the input
probabilities, as was shown in (3). Thus, we need to prove:
with the two operations 1 − x and x · y, we can transform the
values from the set {0.4, 0.5} into arbitrary decimal fractions.
We prove this statement by induction on the number of digits
n after the decimal point.
Base case:

1) n = 0. The values 0 and 1 correspond to deterministic
inputs of zero and one, respectively.

2) n = 1. We can generate 0.1, 0.2, and 0.3 as follows:

0.1 = 0.4 × 0.5 × 0.5

0.2 = 0.4 × 0.5

0.3 = (1 − 0.4) × 0.5.

Since we can generate the decimal fractions
0.1, 0.2, 0.3, and 0.4, we can generate 0.6, 0.7, 0.8,

and 0.9 with an extra 1−x operation. Together with the
source value 0.5, we can transform the pair of values

0.4 and 0.5 into any decimal fraction with one digit
after the decimal point.

Inductive step:
Assume that the statement holds for all m ≤ (n−1). Consider
an arbitrary decimal fraction z with n digits after the decimal
point. Let u = 10n · z. Here u is an integer.

Consider the following four cases.

1) The case where 0 ≤ z ≤ 0.2.

a) The integer u is divisible by 2. Let w = 5z. Then
0 ≤ w ≤ 1 and w = (u/2) · 10−n+1, having at most
(n − 1) digits after the decimal point. Thus, based
on the induction hypothesis, we can generate w. It
follows that z can be generated as z = 0.4×0.5×w.

b) The integer u is not divisible by 2 and 0 ≤ z ≤ 0.1.
Let w = 10z. Then 0 ≤ w ≤ 1 and w = u · 10−n+1,
having at most (n − 1) digits after the decimal
point. Thus, based on the induction hypothesis, we
can generate w. It follows that z can be generated
as z = 0.4 × 0.5 × 0.5 × w.

c) The integer u is not divisible by 2 and 0.1 < z ≤
0.2. Let w = 2 − 10z. Then 0 ≤ w < 1 and
w = 2−u·10−n+1, having at most (n−1) digits after
the decimal point. Thus, based on the induction
hypothesis, we can generate w. It follows that z

can be generated as z = (1 − 0.5 × w) × 0.4 × 0.5.

2) The case where 0.2 < z ≤ 0.4.

a) The integer u is divisible by 4. Let w = 2.5z. Then
0 < w ≤ 1 and w = (u/4) · 10−n+1, having at most
(n − 1) digits after the decimal point. Thus, based
on the induction hypothesis, we can generate w.
It follows that z can be generated as z = 0.4 × w.

b) The integer u is not divisible by 4 but is divisible
by 2. Let w = 2 − 5z. Then 0 ≤ w < 1 and
w = 2 − (u/2) · 10−n+1, having at most (n − 1)
digits after the decimal point. Thus, based on
the induction hypothesis, we can generate w. It
follows that z can be generated as z = (1−0.5×w)
× 0.4.

c) The integer u is not divisible by 2 and 0.2 < u ≤
0.3. Let w = 10z − 2. Then 0 < w ≤ 1 and
w = u·10−n+1−2, having at most (n−1) digits after
the decimal point. Thus, based on the induction
hypothesis, we can generate w. It follows that z

can be generated as z = (1 − (1 − 0.5 × w) × 0.5)
× 0.4.

d) The integer u is not divisible by 2 and 0.3 < u ≤
0.4. Let w = 4 − 10z. Then 0 ≤ w < 1 and
w = 4−u·10−n+1, having at most (n−1) digits after
the decimal point. Thus, based on the induction
hypothesis, we can generate w. It follows that z

can be generated as z = (1 − 0.5 × 0.5 × w)
× 0.4.

3) The case where 0.4 < z ≤ 0.5. Let w = 1 − 2z. Then
0 ≤ w < 0.2 and w falls into case 1. Thus, we can
generate w. It follows that z can be generated as z =
0.5 × (1 − w).
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Algorithm 1 Synthesize a circuit consisting of AND gates and
inverters that transforms the probabilities from the set {0.4, 0.5} into
a target decimal probability.

1: {Given an arbitrary decimal probability 0 ≤ z ≤ 1.}
2: Initialize ckt;
3: while GetDigits(z) > 1 do
4: (ckt, z) ⇐ ReduceDigit(ckt, z);
5: ckt ⇐ AddBaseCkt(ckt, z); {Base case: z has at most one

digit after the decimal point.}
6: return ckt;

4) The case where 0.5 < z ≤ 1. Let w = 1 − z. Then
0 ≤ w < 0.5 and w falls into one of the above three
cases. Thus, we can generate w. It follows that z can be
generated as z = 1 − w.

For all of the above cases, we proved that we can transform
the pair of values 0.4 and 0.5 into z with the two operations
1 − x and x · y. Thus, we proved the statement for all m ≤ n.
By induction, the statement holds for all integers n.

Based on the proof above, we derive an algorithm to
synthesize a circuit that transforms the probabilities from the
set {0.4, 0.5} into an arbitrary decimal probability z. This is
shown in Algorithm 1.

The function GetDigits(z) in Algorithm 1 returns the
number of digits after the decimal point of z. The algorithm
iterates until z has at most one digit after the decimal point.
During each iteration, it calls the function ReduceDigit(ckt, z).
This function, shown in Algorithm 2, converts z into a number
w with one less digit after the decimal point than z. It is
implemented based on the inductive step in the proof
of Theorem 1. Finally, the algorithm calls the function
AddBaseCkt(ckt, z) to add logic gates to realize a number z

with at most one digit after the decimal point; this corresponds
to the base case of the proof.

The function ReduceDigit(ckt, z) in Algorithm 2 builds
the circuit from the output back to the inputs. During its
construction, the circuit always has a single dangling input.
Initially, the circuit is just a wire connecting an input to
the output. The function AddInverter(ckt) attaches an inverter
to the dangling input creating a new dangling input. The
function AddAND(ckt, p) attaches a fanin-two AND gate to
the dangling input; one of the AND gate’s inputs is the
new dangling input; the other is set to a random source of
probability p. In Algorithm 2, Lines 3–4 correspond to Case
4 in the proof, Lines 5–7 correspond to Case 3, Lines 8–15
correspond to Case 1, and Lines 16–26 correspond to Case 2.

The area complexity of the synthesized circuit is linear in
the number of digits after the target value’s decimal point,
since at most 3 AND gates and 3 inverters are needed to
generate a value with n digits after the decimal point from a
value with (n−1) digits after the decimal point.1 The number
of AND gates in the synthesized circuit is at most 3n.

Example 2: We show how to generate the probability value

1In Case 3, z is transformed into w = 1 − 2z where w falls in Case 1(a).
Thus, we actually need only 3 AND gates and 1 inverter for Case 3. For the
other cases, it is not hard to see that we need at most 3 AND gates and 3
inverters.

Algorithm 2 ReduceDigit(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal
probability 0 ≤ z ≤ 1.}

2: n ⇐ GetDigits(z);
3: if z > 0.5 then {Case 4}
4: z ⇐ 1 − z; AddInverter(ckt);
5: if 0.4 < z ≤ 0.5 then {Case 3}
6: z ⇐ z/0.5; AddAND(ckt, 0.5);
7: z ⇐ 1 − z; AddInverter(ckt);
8: if z ≤ 0.2 then {Case 1}
9: z ⇐ z/0.4; AddAND(ckt, 0.4);

10: z ⇐ z/0.5; AddAND(ckt, 0.5);
11: if GetDigits(z) < n then
12: go to END;
13: if z > 0.5 then
14: z ⇐ 1 − z; AddInverter(ckt);
15: z = z/0.5; AddAND(ckt, 0.5);
16: else {Case 2: 0.2 < z ≤ 0.4}
17: z ⇐ z/0.4; AddAND(ckt, 0.4);
18: if GetDigits(z) < n then
19: go to END;
20: z ⇐ 1 − z; AddInverter(ckt);
21: z ⇐ z/0.5; AddAND(ckt, 0.5);
22: if GetDigits(z) < n then
23: go to END;
24: if z > 0.5 then
25: z ⇐ 1 − z; AddInverter(ckt);
26: z = z/0.5; AddAND(ckt, 0.5);
27: END: return ckt, z;

Fig. 6. Circuit transforming the set of source probabilities {0.4, 0.5} into a
decimal output probability of 0.757.

0.757. Based on Algorithm 1, we can derive a sequence of
operations that transform 0.757 to 0.7

0.757
1−⇒ 0.243

/0.4⇒ 0.6075
1−⇒ 0.3925

/0.5⇒ 0.785
1−⇒ 0.215

/0.5⇒ 0.43

0.43
/0.5⇒ 0.86

1−⇒ 0.14
/0.4⇒ 0.35

/0.5⇒ 0.7.

Since 0.7 can be realized as 0.7 = 1 − (1 − 0.4) × 0.5, we
obtain the circuit shown in Fig. 6. (Note that here we use a
black dot to represent an inverter.) �

Remarks.

1) One may question the usefulness of synthesizing a cir-
cuit that generates arbitrary decimal fractions. Wilhelm
and Bruck proposed a scheme for synthesizing switching
circuits that generate arbitrary binary probabilities [12].
By mapping every switch connected in series to an
AND gate and every switch connected in parallel to an
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Fig. 7. Illustration of balancing to reduce the depth of the circuit. Here a and
b are primary inputs. (a) Circuit before balancing. (b) Circuit after balancing.

OR gate, we can easily derive a combinational circuit
that generates an arbitrary binary probability. Since
any decimal fractional value can be approximated by
a binary fractional value, we can build combinational
circuits implementing decimal probabilities this way.
However, the circuits synthesized by our procedure are
less costly in terms of area.
To see this, consider a decimal fraction q with n digits.
The circuit that Algorithm 1 synthesizes to generate q

has at most 3n AND gates. For the approximation error
of the binary fraction for q to be below 1/10n, the num-
ber of digits m of the binary fraction should be greater
than n log2 10. In [12], it is proved that the minimal
number of probabilistic switches needed to generate a
binary fraction of m digits is m. Assuming that we
build an equivalent combinational circuit consisting of
AND gates and inverters, we need m − 1 AND gates to
implement the binary fraction.2 Thus, the combinational
logic realizing the binary approximation needs more
than n log2 10 ≈ 3.32n AND gates. This is more than
the number of AND gates in the circuit synthesized by
our procedure.

2) In many applications, we need to generate many dif-
ferent target probabilities. To make these target prob-
abilities independent, we can generate each of them
from a different collection of input probabilities. It is
inexpensive to generate different collections of input
probabilities taking values from the source set, since we
can generate independent copies of each probability in
the source set cheaply.

B. Reducing the Depth

The circuits produced by Algorithm 1 have a linear topology
(i.e., each gate adds to the depth of the circuit). For practical
purposes, we want circuits with shallower depth. In this
section, we explore two kinds of optimizations for reducing
the depth.

The first kind of optimization is at the logic level. The circuit
synthesized by Algorithm 1 is composed of inverters and
AND gates. We can reduce its depth by properly repositioning
certain AND gates, as illustrated in Fig. 7. We refer to such
optimization as balancing.

The second kind of optimization is at a higher level, based
on the factorization of the decimal fraction. We use the
following example to illustrate the basic idea.

2Of course, an OR gate can be converted into an AND gate with inverters
at both the inputs and the output.

Fig. 8. Synthesizing combinational logic to generate the probability 0.49.
(a) Circuit synthesized through Algorithm 1. (b) Circuit synthesized based on
fraction factorization.

Example 3: Suppose we want to generate the decimal
probability value 0.49.

Method based on Algorithm 1: We can derive the following
transformation sequence:

0.49
/0.5⇒ 0.98

1−⇒ 0.02
/0.4⇒ 0.05

/0.5⇒ 0.1.

The synthesized circuit is shown in Fig. 8(a). Notice that the
circuit is balanced; it has five AND gates and a depth of four.3

Method based on factorization: Notice that 0.49 = 0.7 × 0.7.
Thus, we can generate the probability 0.7 twice and feed
these values into an AND gate. The synthesized circuit is
shown in Fig. 8(b). Compared to the circuit in Fig. 8(a), both
the number of AND gates and the depth of the circuit are
reduced. �

Algorithm 3 shows the procedure that synthesizes the
circuit based on the factorization of the decimal fraction.
The factorization is actually carried out on the numerator. A
crucial function is PairCmp(al, ar, bl, br), which compares the
integer factor pair (al, ar) with the pair (bl, br) and returns a
positive (negative) value if the pair (al, ar) is better (worse)
than the pair (bl, br). Algorithm 4 shows how the function
PairCmp(al, ar, bl, br) is implemented.

The quality of a factor pair (al, ar) should reflect the depth
of the circuit that generates the original probability based
on that factorization. For this purpose, we define a function
EstDepth(x) to estimate the depth of the circuit that generates
the decimal fraction with a numerator x. If 1 ≤ x ≤ 9, the
corresponding fraction is x/10. EstDepth(x) is set as the depth
of the circuit that generates the fraction x/10, which is

EstDepth(x) =

⎧⎨
⎩

0 x = 4, 5, 6
1 x = 2, 3, 7, 8
2 x = 1, 9.

When x ≥ 10, we use a simple heuristic to estimate the
depth: we let EstDepth(x) = �log10(x)	+1. The intuition behind
this is that the depth of the circuit is a monotonically increasing
function of the number of digits of x. The estimated depth of
the circuit that generates the original fraction based on the
factor pair (al, ar) is

max{EstDepth(al), EstDepth(ar)} + 1. (4)

3When counting depth, we ignore inverters.
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Algorithm 3 ProbFactor(ckt, z)

1: {Given a partial circuit ckt and an arbitrary decimal
probability 0 ≤ z ≤ 1.}

2: n ⇐ GetDigits(z);
3: if n ≤ 1 then
4: ckt ⇐ AddBaseCkt(ckt, z);
5: return ckt;
6: u ⇐ 10nz; (ul, ur) ⇐ (1, u); {u is the numerator of the

fraction z}
7: for each factor pair (a, b) of u do
8: if PairCmp(ul, ur, a, b) < 0 then
9: (ul, ur) ⇐ (a, b); {Choose the best factor pair for z}

10: w ⇐ 10n − u; (wl, wr) ⇐ (1, w);
11: for each factor pair (a, b) of w do
12: if PairCmp(wl, wr, a, b) < 0 then
13: (wl, wr) ⇐ (a, b); {Choose the best factor pair for

1 − z}
14: if PairCmp(ul, ur, wl, wr) < 0 then
15: (ul, ur) ⇐ (wl, wr); z ⇐ w/10n;
16: AddInverter(ckt);
17: if IsTrivialPair(ul, ur) then {ul = 1 or ur = 1}
18: (ckt, z) ⇐ ReduceDigit(ckt, z);
19: ckt ⇐ ProbFactor(ckt, z);
20: return ckt;
21: nl ⇐ �log10(ul)	; nr ⇐ �log10(ur)	;
22: if nl + nr > n then {Unable to factor z into two decimal

fractions in the unit interval}
23: (ckt, z) ⇐ ReduceDigit(ckt, z);
24: ckt ⇐ ProbFactor(ckt, z);
25: return ckt;
26: zl ⇐ ul/10nl ; zr ⇐ ur/10nr ;
27: cktl ⇐ ProbFactor(cktl, zl);
28: cktr ⇐ ProbFactor(cktr, zr);
29: Connect the input of ckt to an AND gate with two inputs

as cktl and cktr;
30: if nl + nr < n then
31: AddExtraLogic(ckt, n − nl − nr);
32: return ckt;

The function PairCmp(al, ar, bl, br) essentially compares
the quality of pair (al, ar) and pair (bl, br) based on (4). Further
details are given in Algorithm 4.

In Algorithm 3, Lines 2–5 correspond to the trivial fractions.
If the fraction z is non-trivial, Lines 6–9 choose the best factor
pair (ul, ur) of u, where u is the numerator of the fraction z.
Lines 10–13 choose the best factor pair (wl, wr) of w, where
w is the numerator of the fraction 1 − z. Finally, Lines 14–16
choose the better factor pair of (ul, ur) and (wl, wr). Here, we
consider the factorization on both z and 1 − z, since in some
cases the latter might be better than the former. An example
is z = 0.37. Note that 1 − z = 0.63 = 0.7 × 0.9; this has a
better factor pair than z itself.

After obtaining the best factor pair, we check whether we
can use it. Lines 17–20 check whether the factor pair (ul, ur)
is trivial; a factor pair is considered trivial if ul = 1 or
ur = 1. If the best factor pair is trivial, we call the function

Algorithm 4 PairCmp(al, ar, bl, br)

1: {Given two integer factor pairs (al, ar) and (bl, br)}
2: cl ⇐ EstDepth(al); cr ⇐ EstDepth(ar);
3: dl ⇐ EstDepth(bl); dr ⇐ EstDepth(br);
4: Order(cl, cr); {Order cl and cr, so that cl ≤ cr}
5: Order(dl, dr); {Order dl and dr, so that dl ≤ dr}
6: if cr < dr then {The circuit w.r.t. the first pair has smaller

depth}
7: return 1;
8: else if cr > dr then {The circuit w.r.t. the first pair has

larger depth}
9: return -1;

10: else
11: if cl < dl then {The circuit w.r.t. the first pair has fewer

ANDs}
12: return 1;
13: else if cl > dl then {The circuit w.r.t. the first pair has

more ANDs}
14: return -1;
15: else
16: return 0;

ReduceDigit(ckt, z) in Algorithm 2 to transform z into a new
value with one less digit after the decimal point. Then we
perform factorization on the new value.

If the best factor pair is non-trivial, Lines 21–25 continue
to check whether the factor pair can be transformed into two
decimal fractions in the unit interval. Let nl be the number of
digits of the integer ul and nr be the number of digits of the
integer ur. If nl +nr > n, where n is the number of digits after
the decimal point of z, then it is impossible to use the factor
pair (ul, ur) to factorize z. For example, consider z = 0.143.
Although we could factorize 143 as 11×13, we cannot use the
factor pair (11, 13) since the factorization 0.11 × 1.3 and the
factorization 1.1 × 0.13 both contain a fraction larger than 1;
a probability value can never be larger than 1.

Finally, if it is possible to use the best factor pair, Lines
26–29 synthesize two circuits for fractions ul/10nl and
ur/10nr , respectively, and then combine these two circuits
with an AND gate. Lines 30–31 check whether n > nl + nr.
If this is the case, we have

z = u/10n = ul/10nl · ur/10nr · 0.1n−nl−nr .

We need to add an extra AND gate with one input probability
as 0.1n−nl−nr and the other input probability as ul/10nl ·
ur/10nr . The extra logic is added through the function
AddExtraLogic(ckt, m).

C. Empirical Validation

We empirically validate the effectiveness of the synthesis
scheme that was presented in the previous section. For logic-
level optimization, we use the “balance” command of the
synthesis tool ABC [15]. We find that it is very effective in
reducing the depth of tree-style circuits.4

4We find that the other synthesis commands of ABC such as “rewrite” do
not affect the depth or the number of AND gates of a tree-style AND-inverter
graph.
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TABLE I

Comparison of the Basic Synthesis Scheme, the Basic Synthesis Scheme With Balancing, and the Factorization-Based Synthesis

Scheme With Balancing

Number Basic Basic+Balance Factor+Balance
of Digits #AND Depth #AND Depth Runtime #AND Depth Runtime #AND Imprv. (%) Depth Imprv. (%)

n a1 d1 (ms) a2 d2 (ms) 100(a1 − a2)/a1 100(d1 − d2)/d1

2 3.67 3.67 3.67 2.98 0.22 3.22 2.62 0.22 12.1 11.9
3 6.54 6.54 6.54 4.54 0.46 5.91 3.97 0.66 9.65 12.5
4 9.47 9.47 9.47 6.04 1.13 8.57 4.86 1.34 9.45 19.4
5 12.43 12.43 12.43 7.52 0.77 11.28 5.60 0.94 9.21 25.6
6 15.40 15.40 15.40 9.01 1.09 13.96 6.17 1.48 9.36 31.5
7 18.39 18.39 18.39 10.50 0.91 16.66 6.72 1.28 9.42 35.9
8 21.38 21.38 21.38 11.99 0.89 19.34 7.16 1.35 9.55 40.3
9 24.37 24.37 24.37 13.49 0.75 22.05 7.62 1.34 9.54 43.6
10 27.37 27.37 27.37 14.98 1.09 24.74 7.98 2.41 9.61 46.7
11 30.36 30.36 30.36 16.49 0.92 27.44 8.36 2.93 9.61 49.3
12 33.35 33.35 33.35 17.98 0.73 30.13 8.66 4.13 9.65 51.8

Fig. 9. Average number of AND gates and depth of the circuits versus n.

Table I compares the quality of the circuits generated by
three different schemes. The first scheme, called “Basic,”
is based on Algorithm 1. It generates a linear-style circuit.
The second scheme, called “Basic+Balance,” combines Al-
gorithm 1 and the logic-level balancing algorithm. The third
scheme, called “Factor+Balance,” combines Algorithm 3 and
the logic-level balancing algorithm. We perform experiments
on a set of target decimal probabilities that have n digits after
the decimal point and average the results. Table I shows the
results for n ranging from 2 to 12. When n ≤ 5, we synthesize
circuits for all possible decimal probabilities with n digits after
the decimal point. When n ≥ 6, we randomly choose 100 000
decimal probabilities with n digits after the decimal point as
the synthesis targets. We show the average number of AND
gates, the average depth, and the average CPU runtime.

From Table I, we can see that both the “Basic+Balance”
and the “Factor+Balance” synthesis schemes have only
millisecond-order CPU runtimes. Compared to the “Ba-
sic+Balance” scheme, the “Factor+Balance” scheme reduces
the average number of AND gates by 10% and the average
depth by more than 10%, for all n. The percentage of reduction
of the average depth increases with increasing n. For n = 12,
the average depth of the circuits is reduced by more than 50%.

In Fig. 9, we plot the average number of AND gates and the
average depth of the circuits versus n for the “Basic+Balance”
and “Factor+Balance” schemes. The figure shows that the
“Factor+Balance” scheme is clearly superior. The average
number of AND gates in the circuits synthesized by both

schemes increases linearly with n. The average depth of
the circuits synthesized by the “Basic+Balance” scheme also
increases linearly with n. In contrast, the average depth of the
circuits synthesized by the “Factor+Balance” scheme increases
logarithmically with n.

D. Generating Base-n Fractional Probabilities

In Section III-A, we showed that there exists a pair of
probabilities that can be transformed into an arbitrary decimal
probability. In [16], we showed that we can further reduce
the number of source probabilities down to one: there exists
a real number 0 ≤ r ≤ 1 that can be transformed into
an arbitrary decimal probability with combinational logic.
However, this number r is an irrational root of a polynomial.
Here, we generalize this result. We show that for any integer
n ≥ 2, there exists a real number 0 ≤ r ≤ 1 that can be
transformed into an arbitrary base-n fractional probability m

nd

with combinational logic.
First, we show that we can transform a set of probabilities

{ 1
n
, 2

n
, . . . , n−1

n
} into an arbitrary base-n fractional probabil-

ity m
nd .

Theorem 2: Let n ≥ 2 be an integer. For any integers d ≥ 1
and 0 ≤ m ≤ nd , we can transform the set of probabilities
{ 1

n
, 2

n
, . . . , n−1

n
} into a base-n fractional probability m

nd with a
circuit having 2d − 1 inputs. �

Proof: We prove the above claim by induction on d.
Base case: When d = 1, we can obtain each base-n fractional
probability m

n
(0 ≤ m ≤ n) directly from an input since the

input probability set is { 1
n
, . . . , n−1

n
} and the probabilities 0

and 1 correspond to deterministic values of zero and one,
respectively.
Inductive step: Assume the claim holds for d−1. Now consider
any integer 0 ≤ m ≤ nd . We can write m as m = and−1 + b

with an integer 0 ≤ a < n and an integer 0 ≤ b ≤ nd−1.
Consider a multiplexer with data input x1 and x2, selecting

input s, and output y, as shown in Fig. 10. The Boolean
function of the multiplexer is

y = (x1 ∧ s) ∨ (x2 ∧ ¬s).5

By the induction hypothesis, we can transform the set of
probabilities { 1

n
, 2

n
, . . . , n−1

n
} into the probability b

nd−1 with a

5When discussing Boolean functions, we use ∧, ∨, and ¬ to represent
logical AND, OR, and negation, respectively. We adopt this convention since
we use + and · to represent arithmetic addition and multiplication, respectively.
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Fig. 10. Circuit generating the base-n fractional probability m

nd , where m is
written as m = and−1 + b with 0 ≤ a < n and 0 ≤ b ≤ nn−1. The circuit Q

in the figure generates the base-n fractional probability b

nd−1 .

circuit Q that has 2d − 3 inputs. In order to generate the
output probability m

nd , we let the inputs x1 and x2 of the
multiplexer have probability a+1

n
and a

n
, respectively, and we

connect the input s to the output of a circuit Q that generates
the probability b

nd−1 , as shown in Fig. 10. Note that the inputs
to x1 and x2 are either probabilistic inputs with a value from
the set { 1

n
, . . . , n−1

n
}, or deterministic inputs of zero or one.

With the primary inputs of the entire circuit being independent,
all the inputs of the multiplexer are also independent. The
probability that y is one is

P(y = 1) = P(x1 = 1, s = 1) + P(x2 = 1, s = 0)

= P(x1 = 1)P(s = 1) + P(x2 = 1)P(s = 0)

=
a + 1

n

b

nd−1
+

a

n

(
1 − b

nd−1

)

=
and−1 + b

nd
=

m

nd
.

Therefore, we can transform the set of probabilities
{ 1

n
, 2

n
, . . . , n−1

n
} into the probability m

nd with a circuit that has
2d − 3 + 2 = 2d − 1 inputs. Thus, the claim holds for d. By
induction, the claim holds for all d ≥ 1.
Remarks.

1) An equivalent result to Theorem 2 can be found in [10].
There it is couched in information theoretic language
in terms of concurrent operations on random binary
sequences.

2) Our proof of Theorem 2 is constructive. It shows that we
can synthesize a chain of d − 1 multiplexers to generate
a base-n fractional probability m

nd .
3) If some of the inputs to the chain of multiplexers are

deterministic zeros or ones, we can further simplify
the circuit. In such cases, the number of inputs of the
entire circuit and the area of the circuit can be further
reduced.

Next, we prove a theorem about the existence of a single
real value that can be transformed into any value in a given
set of rational probabilities through combinational logic.

Theorem 3: For any finite set of rational probabilities R =
{p1, p2, . . . , pM}, there exists a real number 0 < r < 1 that
can be transformed into probabilities in the set R through
combinational logic. �

Proof: We only need to prove that the statement is
true under the condition that for all 1 ≤ i ≤ M, 0 ≤
pi ≤ 0.5. In fact, given a general set of probabilities R =
{p1, p2, . . . , pM}, we can derive a new set of probabilities

R∗ = {p∗
1, p

∗
2, . . . , p∗

M}, such that for all 1 ≤ i ≤ M

p∗
i =

{
pi, if pi ≤ 0.5
1 − pi, if pi > 0.5.

Then, for all 1 ≤ i ≤ M, the element p∗
i of R∗ satisfies

that 0 ≤ p∗
i ≤ 0.5. Once we prove that there exists a real

number 0 < r < 1 which can be transformed into any of the
probabilities in the set R∗, then any probability in the original
set R can also be generated from this value r: to generate
pi = p∗

i , we use the same circuit that generates the probability
p∗

i ; to generate pi = 1 − p∗
i , we append an inverter to the

output.
Therefore, we assume that for all 1 ≤ i ≤ M, 0 ≤ pi ≤

0.5. Further, without loss of generality, we can assume that
0 ≤ p1 < · · · < pM ≤ 0.5. Since probability 0 can be
realized trivially by a deterministic value of zero, we assume
that p1 > 0. Since p1, . . . , pM are rational probabilities,
there exist positive integers a1, . . . , aM and b such that for
all 1 ≤ i ≤ M, pi = ai

b
. Since 0 < p1 < · · · < pM ≤ 0.5, we

have 0 < a1 < · · · < aM ≤ b
2 .

First, it is not hard to see that there exists a positive integer

h such that 2h−1 > aMh+1. For k = 1, . . . , h, let ck =

⌊(
h

k

)
aM

⌋
,

where x� represents the largest integer less than or equal to x.

We will prove

aM

h∑
k=1

ck > 2h−1. (5)

In fact

2h − aM

h∑
k=1

ck =
h∑

k=0

(
h

k

)
−

h∑
k=1

⌊(
h

k

)
aM

⌋
aM

= 1 +
h∑

k=1

((
h

k

)
aM

−
⌊(

h

k

)
aM

⌋)
aM.

Since x − x� < 1, we have

2h − aM

h∑
k=1

ck < 1 +
h∑

k=1

aM = aMh + 1 < 2h−1

or aM

h∑
k=1

ck > 2h−1.

Now consider the polynomial f (x) =
h∑

k=1

ckx
k(1 − x)h−k.

Note that f (0) = 0 and f (0.5) =
1

2h

h∑
k=1

ck. Based on (5) and

the fact that aM ≤ b
2 , we have

f (0.5) >
1

2aM

≥ 1

b
.

Thus, f (0) = 0 < 1
b

< f (0.5). Based on the continuity of the
polynomial f , there exists a real number 0 < r < 0.5 < 1
such that f (r) = 1

b
.

For all i = 1, . . . , M, set li,0 = 0. For all i = 1, . . . , M and
all k = 1, 2, . . . , h, set li,k = aick. Since for all k = 1, . . . , h,
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ck is an integer and 0 ≤ ck ≤
(
h

k

)
aM

, then for all i = 1, . . . , M

and all k = 1, 2, . . . , h, li,k is an integer and 0 ≤ li,k = aick ≤
aMck ≤ (

h

k

)
.

For k = 0, 1, . . . , h, let Ak = {(a1, a2, . . . , ah) ∈ {0, 1}h :∑h
i=1 ai = k} (i.e., Ak consists of h-tuples over {0, 1} having

exactly k ones). For any 1 ≤ i ≤ M, consider a circuit with
h inputs realizing a Boolean function that takes exactly li,k
values 1 on each Ak (k = 0, 1, . . . , h). If we set all the input
probabilities to be r, then the output probability is

po =
h∑

k=0

li,kr
k(1 − r)h−k =

h∑
k=1

aickr
k(1 − r)h−k

= aif (r) =
ai

b
.

Thus, we can transform r into any number in the set
{p1, . . . , pM} through combinational logic.

Theorems 2 and 3 lead to the following corollary.
Corollary 1: Given an integer n ≥ 2, there exists a real

number 0 < r < 1 which can be transformed into any base-n
fractional probability m

nd (d and m are integers with d ≥ 1 and
0 ≤ m ≤ nd) through combinational logic. �

Proof: Based on Theorem 3, there exists a real number
0 < r < 1 which can be transformed into any probability
in the set { 1

n
, 2

n
, . . . , n−1

n
}. Further, based on Theorem 2, the

statement in the corollary holds.

IV. Scenario Two: Set S Is Specified and the

Elements Cannot Be Duplicated

The problem considered in this scenario is: given a set S =
{p1, p2, . . . , pn} and a target probability q, construct a circuit
that, given inputs with probabilities from S, produces an output
with probability q. Each element of S can be used as an input
probability no more than once.

A. An Optimal Solution

In this section, we show an optimal solution to the problem
based on linear 0-1 programming. With the assumption that
the probabilities cannot be duplicated, we are building a
circuit with n inputs, the ith input of which has probability
pi. (If a probability is not used, then the corresponding input
is just a dummy.)

Our method is based on a truth table for n variables. Each
row of the truth table is annotated with the probability that
the corresponding input combination occurs. Assume that the
n variables are x1, x2, . . . , xn and xi has probability pi. Then,
the probability that the input combination x1 = a1, x2 =
a2, . . . , xn = an (ai ∈ {0, 1}, for i = 1, . . . , n) occurs is

P(x1 = a1, x2 = a2, . . . , xn = an) =
n∏

i=1

P(xi = ai).

A truth table for a two-input XOR gate is shown in Table II.
The fourth column is the probability that each input combina-
tion occurs. Here P(x = 1) = px and P(y = 1) = py.

The output probability is the sum of the probabilities of
input combinations that produce an output of one. Assume that
the probability of the ith input combination, corresponding to
minterm mi, is ri (0 ≤ i ≤ 2n − 1) and that the output of

TABLE II

Truth Table for a Two-Input XOR Gate

x y z Probability
0 0 0 (1 − px)(1 − py)
0 1 1 (1 − px)py

1 0 1 px(1 − py)
1 1 0 pxpy

the circuit corresponding to the ith input combination is zi

(zi ∈ {0, 1}, 0 ≤ i ≤ 2n − 1). Then, the output probability is

po =
2n−1∑
i=0

ziri. (6)

For the example in Table II, the output probability is

po = r1 + r2 = (1 − px)py + px(1 − py).

Thus, constructing a circuit with output probability q is
equivalent to determining the zi such that (6) evaluates to q.
In the general case, depending on the values of pi and q, it is
possible that q cannot be exactly realized by any circuit. The
problem then is to determine the zi such that the difference
between the value of (6) and q is minimized. We can formulate
this as the following optimization problem:

Find zi that minimizes
∣∣∣∑2n−1

i=0 ziri − q

∣∣∣ (7)

such that zi ∈ {0, 1} for i = 0, 1, . . . , 2n − 1. (8)

This optimization problem can be converted into a linear 0-
1 programming problem that can be solved using standard
techniques.

If the solution to the above optimization problem has zi =
1, then the Boolean function should contain the minterm mi;
otherwise, it should not. A circuit implementing the solution
can be readily synthesized.6

B. A Suboptimal Solution

The above solution is simple and optimal; it works well
when n is small. However, when n is large, there are two
difficulties with the implementation that might make it imprac-
tical. First, the solution is based on linear 0-1 programming,
which is NP-hard. Therefore, the computational complexity
will become significant. Second, if an application-specific
integrated circuit is designed to implement the solution of the
optimization problem, the circuit may need as many as O(2n)
gates in the worst case. This may be too costly for large n.

In this section, we provide a greedy algorithm that yields
suboptimal results. However, the difference between the output
probability of the circuit that it synthesizes and the target
probability q is bounded. The algorithm has good performance
both in terms of its run-time and the size of the resulting
circuit.

The idea of the greedy algorithm is that we construct a group
of n+2 circuits C0, C1, . . . , Cn+1 such that the circuit Ck (0 ≤
k ≤ n) has k probabilistic inputs and one deterministic input

6In particular, a field-programmable gate array (FPGA) can be configured
for the task. For an FPGA with n-input lookup tables, the ith configuration
bit of the table would be set to zi, for i = 0, 1, . . . , 2n − 1.
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of either zero or one and the circuit Cn+1 has n probabilistic
inputs and two deterministic inputs of either zero or one. For
all 0 ≤ k ≤ n, the circuit Ck+1 is constructed from Ck by
replacing one input of Ck with a two-input gate.

The circuit C0 is constructed by connecting a single input
x0 directly to the output. The input x0 is either a deterministic
value of zero or one. Thus, the probability pi0 of the input x0

being a one is either 0 or 1. The choice of setting pi0 to 0 or
1 depends on which one is closer to the value q. If q < 1 − q,
we set pi0 to 0; otherwise, we set it to 1. In order for the
circuit C0 to realize the exact probability q, there is an ideal
value p∗

i0
that should replace the value pi0 . It is not hard to

see that p∗
i0

= q.
Now we assume that the Boolean function of the circuit Ck

(0 ≤ k ≤ n−1) is fk(x0, x1, . . . , xk) and the input probabilities
are P(x0 = 1) = pi0 , P(x1 = 1) = pi1 , . . . , P(xk = 1) = pik ,
where pi0 ∈ {0, 1} and pi1 , . . . , pik ∈ S. Let p∗

ik
be an ideal

value such that if we replace pik by p∗
ik

and keep the remaining
input probabilities unchanged then the output probability of Ck

is exactly equal to q.
Our idea for constructing the circuit Ck+1 is to replace the

input xk of the circuit Ck with a single gate with inputs xk and
xk+1. Thus, the Boolean function of the circuit Ck+1 is

fk+1(x0, . . . , xk+1) = fk(x0, . . . , xk−1, gk+1(xk, xk+1))

where gk+1(xk, xk+1) is a Boolean function on two variables.
We keep the probabilities of the inputs x0, x1, . . . , xk the
same as those of the circuit Ck. We choose the probability
of the input xk+1 from the remaining choices of the set S

such that the output probability of the newly added single
gate is the closest to p∗

ik
. Assume that the probability of the

input xk+1 is pik+1 . In order to construct the circuit Ck+2 in the
same way, we also calculate an ideal probability p∗

ik+1
such

that if we replace pik+1 by p∗
ik+1

and keep the remaining input
probabilities unchanged then the output probability of the
circuit Ck+1 is exactly equal to q.

To make things easy, we only consider AND gates and OR
gates as the choices for the newly added gate. The choice
depends on whether p∗

ik
> pik . When p∗

ik
> pik , we choose

an OR gate to replace the input xk of the circuit Ck. The first
input of the OR gate connects to xk and the second to xk+1 or
to the negation of xk+1. The probability of the input xk is kept
as pik . The probability of the input xk+1 is chosen from the set
S\{pi1 , . . . , pik }. Thus, the first input probability of the OR
gate is pik and the second is chosen from the set

Sk+1 = {p|p = pj or 1 − pj, pj ∈ S\{pi1 , . . . , pik }}.
For an OR gate with two input probabilities a and b, its output
probability is

a + b − ab = a + (1 − a)b.

The second input probability of the OR gate is chosen as p

in the set Sk+1 such that the output probability of the OR gate
pik + (1 − pik )p is the closest to p∗

ik
. Equivalently, p is the

value in the set Sk+1 that is the closest to the value
p∗

ik
− pik

1 − pik

.

We have two cases for p.

1) The case where p = pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik }. We set the second input of the OR gate

to be xk+1 and set its probability as P(xk+1 = 1) = pik+1 .
The ideal value p∗

ik+1
should set the output probability of

the OR gate to be p∗
ik

, so it satisfies that

pik + (1 − pik )p
∗
ik+1

= p∗
ik

(9)

or
p∗

ik+1
=

p∗
ik

− pik

1 − pik

.

2) The case where p = 1 − pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik }. We set the second input of the OR gate
to be ¬xk+1 and set its probability as P(xk+1 = 1) = pik+1 .
The ideal value p∗

ik+1
should set the output probability of

the OR gate to be p∗
ik

, so it satisfies that

pik + (1 − pik )(1 − p∗
ik+1

) = p∗
ik

(10)

or

p∗
ik+1

=
1 − p∗

ik

1 − pik

.

When p∗
ik

≤ pik , we choose an AND gate to replace the
input xk of the circuit Ck. The first input of the AND gate
connects to xk and the second connects to xk+1 or to the
negation of xk+1. The probability of the input xk is kept as
pik . The probability of the input xk+1 is chosen from the set
S\{pi1 , . . . , pik }. Similar to the case where p∗

ik
> pik , the

second input probability of the AND gate is chosen as a value
p in the set Sk+1 such that the value p ·pik is the closest to p∗

ik
.

Equivalently, p is the value in the set Sk+1 that is the closest

to the value
p∗

ik

pik

. We have two cases for p.

1) The case where p = pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik }. We set the second input of the AND
gate to be xk+1 and set its probability as P(xk+1 = 1) =

pik+1 . The ideal value p∗
ik+1

satisfies p∗
ik+1

=
p∗

ik

pik

.

2) The case where p = 1 − pik+1 , for some pik+1 ∈
S\{pi1 , . . . , pik }. We set the second input of the AND
gate to be ¬xk+1 and set its probability as P(xk+1 = 1) =
pik+1 . The ideal value p∗

ik+1
satisfies

p∗
ik+1

= 1 − p∗
ik

pik

.

Iteratively, using the procedure above, we can construct
circuits C1, C2, . . . , Cn. Finally, we construct a circuit Cn+1,
which is built from Cn by replacing its input xn with an OR
gate or an AND gate with two inputs xn and xn+1. We keep
the probabilities of the inputs x0, . . . , xn the same as those of
the circuit Cn. The input xn+1 is set to a deterministic value of
zero or one. Thus, the probability of the input xn+1 is either
zero or one. The choice of either an OR gate or an AND gate
depends on whether p∗

in
> pin . When p∗

in
> pin , we choose an

OR gate. The ideal probability value for the input xn+1 is

p∗
in+1

=
p∗

in
− pin

1 − pin

. (11)
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When p∗
in

≤ pin , we choose an AND gate. The ideal proba-
bility value for the input xn+1 is

p∗
in+1

=
p∗

in

pin

. (12)

The choice of setting the input xn+1 to a deterministic value
of zero or one depends on which one is closer to the value
p∗

in+1
. If |p∗

in+1
| < |1−p∗

in+1
|, then we set the input xn+1 to zero;

otherwise, we set it to one.
There is no evidence to show that the difference between

the output probability of the circuit and q decreases as the
number of inputs increases. Thus, we choose the one with
the smallest difference among the circuits C0, . . . , Cn+1 as
the final construction. It is easy to see that this algorithm
completes in O(n2) time. For all 1 ≤ k ≤ n + 1, the circuit
Ck has k fanin-two gates. Thus, the final solution contains at
most n + 1 fanin-two logic gates.

The following theorem shows that the difference between
the target probability q and the output probability of the circuit
synthesized by the greedy algorithm is bounded.

Theorem 4: In scenario two, given a set
S = {p1, p2, . . . , pn} and a target probability q, let p

be the output probability of the circuit constructed by the
greedy algorithm. We have

|p − q| ≤ 1

2

n∏
k=1

max{pk, 1 − pk}. �

Due to space constraints, we omit the proof here.
Example 4: Given a set of input probabilities S =

{0.4, 0.7, 0.8} and a target probability q = 0.63, we show how
to synthesize a circuit to generate the target probability based
on the greedy algorithm.

For the circuit C0, since 1−q < q, we set its input x0 to be a
deterministic value of one, or, equivalently, pi0 = 1. The circuit
C0 is shown in Fig. 11(a). The ideal value p∗

i0
= q = 0.63.

Since p∗
i0

< pi0 , to construct the circuit C1, we replace the
input x0 of the circuit C0 by an AND gate. The probability of
the first input of the AND gate is 1. The probability p of the
second input of the AND gate is chosen from the set

S1 = {0.2, 0.3, 0.4, 0.6, 0.7, 0.8}

so that it is the closest to the value p∗
i0
/pi0 = 0.63. Thus, we

choose p = 0.6. Notice that p = 1 − 0.4. We set the second
input of the AND gate to be ¬x1 and set its probability as
P(x1 = 1) = pi1 = 0.4. The ideal value p∗

i1
= 1−p∗

i0
/pi0 = 0.37.

The circuit C1 is shown in Fig. 11(b). (Again, we use a black
dot to represent an inverter.)

Iteratively, we can get circuit C2, C3, and C4 as those shown
in Fig. 11(c), (d), and (e), respectively. The ideal values p∗

i2
=

0.925, p∗
i3

= 0.625, and p∗
i4

= 0.893. The circuit whose output
probability is the closest to the target probability 0.63 is the
circuit C3. Thus, we choose C3 as the final construction. Since
the input x0 of C3 is a deterministic value of one, we can
further optimize C3. The final result is shown in Fig. 11(f).

Fig. 11. Group of circuits synthesized by the greedy algorithm to gen-
erate the target probability q = 0.63 from the set of input probability
S = {0.4, 0.7, 0.8}. The black dots in the figure represent inverters. (a) Circuit
C0. (b) Circuit C1. (c) Circuit C2. (d) Circuit C3. (e) Circuit C4. (f) Final
construction.

V. Scenario Three: Set S Is Not Specified and the

Elements Cannot Be Duplicated

In scenario two, when solving the optimization problem,
the minimal difference

∣∣∣∑2n−1
i=0 ziri − q

∣∣∣ is actually a function
of q, which we denote as h(q). That is

h(q) = min
∀i,zi∈{0,1}

∣∣∣∣∣
2n−1∑
i=0

ziri − q

∣∣∣∣∣ . (13)

Assume that q is uniformly distributed on the unit interval.
The mean of h(q) for q ∈ [0, 1] is solely determined by the
set S. We can see that the smaller the mean is, the better the
set S is for generating arbitrary probabilities. Thus, the mean
of h(q) is a good measure for the quality of S. We will denote
it as H(S). That is

H(S) =
∫ 1

0
h(q) dq. (14)

The problem considered in this scenario is: given an integer
n, choose the n elements of the set S so that they produce a
minimal H(S).

Note that the only difference between scenario two and
scenario three is that in scenario three, we are able to choose
the elements of S. When constructing circuits, each element
of S is still constrained to be used no more than once. As
in scenario two, we are constructing a circuit with n inputs
to realize each target probability. A circuit with n inputs has
a truth table of 2n rows. There are a total of 22n

different
truth tables for n inputs. For a given assignment of input
probabilities, we can get 22n

output probabilities.
Example 5: Consider the truth table shown in Table III.

Here, we assume that P(x = 1) = 4/5 and P(y = 1) = 2/3. The
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TABLE III

Truth Table for Two Variables

x y z Probability
0 0 z0 1/15
0 1 z1 2/15
1 0 z2 4/15
1 1 z3 8/15

The output column (z0z1z2z3) has a total of
16 different assignments.

corresponding probability of each input combination is given
in the fourth column. For different assignments (z0z1z2z3) of
the output column, we obtain different output probabilities. For
example, if (z0z1z2z3) = (1010), then the output probability is
5/15; if (z0z1z2z3) = (1011), then the output probability is
13/15. There are 16 different assignments for (z0z1z2z3), so
we can get 16 output probabilities. In this example, they are
0, 1/15, . . . , 14/15 and 1. �

Let N = 22n

. For a set S with n elements, call the N possible
probability values b1, b2, . . . , bN and assume that they are
arranged in increasing order. That is b1 ≤ b2 ≤ · · · ≤ bN .
Note that if the output column of the truth table consists of
all zeros, the output probability is 0. If it consists of all ones,
the output probability is 1. Thus, we have b1 = 0 and bN = 1.

The first question is: what is a lower bound for H(S)? We
have the following theorem.

Theorem 5: A lower bound for H(S) is
1

4(N − 1)
. �

Proof: Note that for a q satisfying bi ≤ q ≤ bi + bi+1

2
,

h(q) = q − bi; for a q satisfying
bi + bi+1

2
< q ≤ bi+1, h(q) =

bi+1 − q. Thus

H(S) =
∫ 1

0
h(q) dq

=
N−1∑
i=1

(∫ bi+bi+1
2

bi

(q − bi) dq +
∫ bi+1

bi+bi+1
2

(bi+1 − q) dq

)

=
1

4

N−1∑
i=1

(bi+1 − bi)
2.

(15)

Let ci = bi+1 − bi, for i = 1, . . . , N − 1. Since
∑N−1

i=1 ci =
bN − b1 = 1, by the Cauchy–Schwarz inequality, we have

H(S) =
1

4

N−1∑
i=1

c2
i ≥ 1

4(N − 1)

(
N−1∑
i=1

ci

)2

=
1

4(N − 1)
.

The second question is: can this lower bound for H(S) be
achieved? We will show that the lower bound is achieved for
the set

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n − 1}. (16)

In [16], we proved the following lemma.
Lemma 1: For a truth table on the inputs x1, . . . , xn ar-

ranged in the order xn, . . . , x1, let

P(xk = 1) =
22k−1

22k−1 + 1
for k = 1, . . . , n.

The probability of the ith input combination (0 ≤ i ≤ 2n − 1)

is
2i

22n − 1
. �

Based on Lemma 1, we will show that the set S in (16)
achieves the lower bound for H(S).

Theorem 6: The set S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n −

1} achieves the lower bound
1

4(N − 1)
for H(S). �

Proof: By Lemma 1, for the given set S, the probability

of the ith input combination (0 ≤ i ≤ 2n − 1) is
2i

22n − 1
.

Therefore, the set of N = 22n

possible probabilities is

R = {p|p =
2n−1∑
i=0

zi

2i

22n − 1
, zi ∈ {0, 1}, ∀i = 0, . . . , 2n − 1}.

It is not hard to see that the N possible probabilities in
increasing order are

b0 = 0, b1 =
1

N − 1
, . . . , bi =

i

N − 1
, . . . , bN−1 = 1.

(Example 5 shows the situation for n = 2. We can see that with
the set S = {2/3, 4/5}, we can get 16 possible probabilities:
0, 1/15, . . . , 14/15 and 1.)

Thus, by (15), we have H(S) =
1

4(N − 1)
.

To summarize, if we have the freedom to choose n real
numbers for the set S of source probabilities but each number
can be used only once, the best choice is

S = {p|p =
22k

22k + 1
, k = 0, 1, . . . , n − 1}.

With the optimal set S, the truth table for a target
probability q is easy to determine. First, round q to the

closest fraction in the form of
i

22n − 1
. Suppose the closest

fraction is
g(q)

22n − 1
. Then, the output of the ith row of the

truth table is set as the ith least significant digit of the binary
representation of g(q). Again, a circuit implementing this
solution can be readily synthesized.

VI. Conclusion

In this paper, we considered the problem of transforming
a set of input probabilities into a target probability with
combinational logic. The assumption that we make is that the
input probabilities are exact and independent. For example,
in synthesizing decimal output probabilities, we used multiple
independent copies of the exact input probabilities 0.4 and
0.5. Of course, if we use physical sources to generate the
input probabilities, there likely will be fluctuations. Also, the
probabilistic inputs will likely be correlated. A future direction
of research is how to design circuits that behave robustly in
spite of these realities.

In addition to the three scenarios that we presented, there
exists a fourth one that we have not considered: one in which
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the source probabilities are specified and can be duplicated.
In this scenario, we would not expect to generate the target
probability exactly. Thus, the problem is how to synthesize
an area or delay optimal circuit whose output probability is a
close approximation to the target value. We will address this
problem in future work.
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