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Abstract—High-level synthesis (HLS) transforms designs spec-
ified by high-level programming language into RTL designs. In
order to get the optimal designs, many design space exploration
(DSE) methods are proposed. However, most of them consider the
HLS tool as a black box, ignoring crucial information from the
synthesis process, particularly the scheduling step. In this work,
we propose to extract some useful information from scheduling to
guide the DSE and develop a genetic algorithm (GA)-based DSE
method based on our in-house HLS tool. The experimental results
show that our method can obtain more Pareto-optimal points
than the counterpart without using the scheduling information.
It also outperforms a traditional GA-based HLS DSE method by
using only a quarter of the total run time. For a large benchmark,
our method finds 95.7% Pareto-optimal designs by visiting only
0.18% total promising design points.

I. INTRODUCTION

Field-programmable gate array (FPGA) has shown its re-
markable ability as accelerator for various applications such
as deep learning and image processing. High-level synthesis
(HLS) methodology is proposed to automatically transform
a high-level source code into an register-transfer level (RTL)
design that is used to program FPGA.

Nowadays, several HLS tools such as Vivado HLS [1] and
LegUp [2] are available. They have many synthesis options
that can be controlled by users. These options are also called
knobs. We call a combination of knobs a design point, and all
the possible points form a design space. The design quality is
usually measured by multiple conflicting metrics, such as area
and latency. For such a multi-objective optimization problem,
we typically look for a set of design points that are Pareto-
optimal, which is achieved by design space exploration (DSE).

Various HLS DSE methods have been proposed in recent
years. For example, simulated annealing is used to generate
new designs incrementally from old ones based on a global
cost function [3]. A genetic algorithm (GA) is applied to do
DSE, which also uses machine learning (ML) to speed up the
process [4]. In another set of works, e.g., [5], analytical models
are proposed to replace the actual HLS process, and the design
space is explored heuristically. However, most methods have
no access to the internal information in HLS process that can
guide the DSE; they either use an HLS tool as a black-box or
an analytical model that needs to be carefully tuned to obtain
the quality of result to guide the DSE.

There are few works where the HLS tool is more integrated
with DSE. In [6], design space of a single loop is explored
within an HLS process by optimizing resource usage for each
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candidate initiation interval. Another work explores the design
space of multi-clock dataflow designs based on the bottleneck
model reported by their own HLS tool [7].

However, the potential of exploiting the information that
can be easily obtained from the scheduling step to efficiently
guide the DSE has not been well studied yet.

In this work, we propose a novel and efficient DSE method
that exploits the scheduling information. It is adapted from
the traditional GA and leverages our own HLS tool. The main
contributions of our work are listed as follows.

• We identify some useful information from scheduling that
can lead to a more efficient DSE. Such information can
give hints on the potential benefit of changing a knob, so
it can guide the DSE to search more promising points.

• We propose efficient methods to extract the above infor-
mation from the scheduling step. The extraction is done
during the synthesis process with almost no extra effort.

• We propose a novel DSE method adapted from GA,
which exploits the extracted scheduling information.

The experimental results show that our method is far better
than the counterpart without using the scheduling information.
Compared to a traditional GA-based method, our method
achieves 4× speed-up, while finding better Pareto set. For a
large benchmark, our method can find 95.7% Pareto-optimal
points by searching 0.18% of the promising design space.

II. BACKGROUND

A. High-Level Synthesis

The input of a typical HLS flow is an intermediate repre-
sentation (IR) compiled from a high-level source code and the
output is the corresponding RTL code. Four main steps of HLS
are allocation, scheduling, binding, and RTL generation [2].
The step most relevant to our work is scheduling. It assigns
each IR instruction to specific state(s), i.e., clock cycle(s).

To support the IR instructions, some types of functional
units (FUs), e.g., 64-bit signed multiplier, are available.
The FU types can be resource-constrained or resource-
unconstrained. The number of available hardware instances
for the former is specified and limited, while that for the
latter is not. In this work, three kinds of FU types, i.e.,
multipliers, dividers, and remainders, are considered to be
resource-constrained.

B. Area and Latency Estimation

In this work, we measure the quality of a hardware design
by two metrics: area and latency.



For area estimation, The total area is calculated as a
weighted sum given as Area = λ1NLUT + λ2NFF + λ3NDSP +
λ4NBRAM, where λi’s are hardware-dependent coefficients and
NLUT, NFF, NDSP, and NBRAM are the total numbers of look-up
tables, flip-flops, digital signal processing modules, and block
random-access memories, respectively [8].

The total latency is the product of the clock period and the
number of clock cycles spent in running the design. In this
work, we assume that the clock period is a user-given input.
Thus, the latency is just measured by clock cycles obtained
from a one-time IR simulation and the state tables generated
for each design point. Note that the correctness of our latency
estimation is verified against the RTL simulation result.

C. Pareto-Optimal Design Point

A design point x in the whole design space S is said to
be Pareto-optimal if there does not exist another point y in S
with both less area and less latency than x. The set of Pareto-
optimal points is also called the Pareto-optimal set, or simply
Pareto set. The target of the DSE is to find the Pareto set. A
concept related to Pareto-optimality is rank, which is widely
used in GA. Rank-1 points are the Pareto-optimal points. For
i ≥ 2, rank-i points are the Pareto-optimal points in the space
with points in the first (i− 1) ranks removed.

III. METHODOLOGY

In this work, we consider the following problem: find as
many Pareto-optimal design points as possible in the area-
latency plane by visiting as few points as possible. For
simplicity, the types of knobs are limited to two in our
methodology elaboration. They are resource number and loop
pipelining, where resource number specifies the number of
available hardware instances for each resource-constrained FU
type and loop pipelining is applied to the inner-most loops.
However, the proposed DSE method can be generalized to
include other types of knobs such as loop unrolling and array
partitioning. We also consider loop unrolling in experiments.

A. Information from Scheduling for Guiding DSE

In HLS, the step most relevant to DSE is scheduling. Several
popular scheduling methods exist, including list scheduling [9]
and SDC scheduling [10]. Our HLS tool uses the former.

Based on the list scheduling procedure and the pipelining
procedure, we propose to extract two pieces of information
from the scheduling step to guide the DSE: conflict number
and pipeline gain. They correspond to the two types of avail-
able knobs, resource number and loop pipelining, respectively.
They are extracted by our HLS tool during the synthesis of
a design point x and give hints on the benefit of changing a
knob of x to reach a new design point.

1) Conflict Number: When an instruction is ready (i.e., all
of its predecessors have been finished) but cannot be scheduled
due to resource limit of the corresponding FU type T , a
conflict occurs for the FU type T . In this case, if the resource
number of T is increased, then the conflict is resolved and the
instruction can be scheduled, leading to a potential decrease of
the total latency. The conflict number of an FU type T is the

total number of conflicts occurred on T during the scheduling,
calculated as follows:

Conflict(T ) =
∑
b∈B

TotExTimes(b) · Conflictb(T ), (1)

where B is the set of all basic blocks, TotExTimes(b) is the
total number of times a basic block b ∈ B is executed, and
Conflictb(T ) is the number of conflicts occurred on T during
the scheduling of basic block b. Generally speaking, the more
conflicts an FU type has, the more critical it is to increase
its resource number, in order to reduce the latency. Thus, in
DSE, if we want to reach a new design point by increasing the
resource number of an FU type of an already-visited design
point x, we favor the FU type with more conflicts.

2) Pipeline Gain: If a loop has not been pipelined, the
pipeline gain of the loop is the expected reduction of the total
number of clock cycles when the loop is pipelined; otherwise,
it is 0. In DSE, if we want to reach a new design point by
pipelining a loop of an already-visited design point x, we favor
the loop with a larger pipeline gain. Consider a basic block
b that is a loop. We denote the number of times the entire
loop b is executed as ExTimes(b), the number of iterations of
the i-th (1 ≤ i ≤ ExTimes(b)) time the loop is executed as
Itersi(b), the number of clock cycles spent on one iteration
of b as Cycles(b), and the minimal initiation interval [11] as
II(b). By definition, the pipeline gain can be calculated as

Gain(b) =
ExTimes(b)∑

i=1

(Cycles(b)− II(b)) · (Itersi(b)− 1), (2)

where ExTimes(b) and Itersi(b) are obtained from a one-time
IR simulation. Cycles(b) is obtained just as the length of state
table without pipelining. The only extra effort to obtain the
gain is to estimate II(b) under the resource constraint, which
can be obtained efficiently by calling part of the pipelining
procedure during the synthesis of design point x.

B. Proposed DSE Flow

In this section, we describe the proposed DSE flow using
the extracted information from scheduling. We first describe a
function HLS(x) used in the flow. Then, we present the entire
flow. Unless otherwise specified, FU type refers to resource-
constrained FU type and loop refers to inner-most loop.

1) HLS(x): This function calls our HLS tool to synthesize a
design point x with its knob setting x.num storing the resource
numbers of the FU types and x.ppl storing the pipelining
options of the loops. Our tool evaluates the quality of x
and gives x.area and x.latency. As a byproduct, our tool
also outputs the scheduling information extracted during the
process and stores the conflict numbers of FU types and the
pipeline gains of loops into vectors x.conflict and x.gain.

Example 1 Table I shows a design point x of an example
design. By the table, Rem32 has no conflict, so its resource
number will not be increased. Mul32 has more conflicts
than Div32, so increasing the resource number of Mul32 is
preferred over increasing that of Div32. Loop2 has already
been pipelined, so its pipeline gain is 0 by definition. For



the unpipelined loops, Loop3 has a larger pipeline gain than
Loop1, so pipelining Loop3 is preferred over pipelining Loop1.

Table I. The conflict numbers and the pipeline gains extracted from the
scheduling step of an example design under a knob setting.

FU type Mul32 Div32 Rem32
x.num 2 3 1

x.conflict 5 1 0
Loop Loop1 Loop2 Loop3
x.ppl False True False
x.gain 32 0 76

Algorithm 1: The proposed DSE flow.
Input: High-level source code; hardware configuration file; Ngen:

the number of generations; Nmut: the number of mutations
per generation; R: the number of ranks in a population;

Output: Pareto set X ;
1 Initial point x: x.num←(1,. . . ,1); x.ppl←(false, . . . , false);
2 x← HLS(x); Pareto set X ← {x};
3 Set of all visited points S ← {x}; Population Xrank ← ∅;
4 countFU ← 0; countloop ← 0;
5 for g ← 1 to Ngen do
6 Pick design points in the first R ranks of S to form Xrank;
7 for m← 1 to Nmut do
8 Randomly pick a point parent from Xrank;
9 new_point← parent;

10 if rand(0, 1) < BiasProb(countFU, countloop) then
11 selFU← true;
12 i← RandPick(parent.conflict);
13 new_point.numi ← new_point.numi + 1;
14 else
15 selFU← false;
16 i← RandPick(parent.gain);
17 new_point.ppli ← true;

18 if new_point ∈ S then continue;
19 new_point←HLS(new_point); S←S∪{new_point};
20 Update X by considering new_point;
21 if new_point ∈ X then
22 if selFU = true then countFU ← countFU + 1;
23 else countloop ← countloop + 1;

24 return X ;

2) Details of the DSE Flow: Our proposed DSE flow is
adapted from the traditional GA. Algorithm 1 shows its details.
Lines 1–4 are the initialization steps. Line 1 generates an
initial design point with a single instance for all the FU types
and no pipelining for all the loops. After the HLS procedure
is applied, the point is added into the Pareto set X and the
set of all the visited points, S (Lines 2–3). Line 4 sets two
variables countFU and countloop to zero. Their meanings will
be introduced later.

The main flow iterates for Ngen generations (Line 5). In each
generation, Line 6 first picks the first R ranks of the set of
all the visited points, S, to form the present population Xrank.
Then, Nmut mutations (Lines 7–23) are tried.

In each round of the mutation loop, Line 8 first randomly
picks a parent point from the present population Xrank. For
traditional GA, the mutation on a point x is performed by
randomly changing the setting of one knob. In our case,
we bias the mutation with the scheduling information. Our
mutation creates a new point by either increasing the resource
number of a selected FU type or pipelining a selected loop
of x. The two types of mutations are chosen randomly.
However, the probability of selecting which type of mutation

to be applied is biased towards the one that has produced
more Pareto-optimal points. The probability is decided by
the function BiasProb(a, b) shown at Line 10, defined as
BiasProb(a, b) = basea

basea+baseb , where base ≥ 1 is a parameter.
Its two inputs are countFU and countloop, which record the
numbers of Pareto-optimal points generated by the two types
of mutations, respectively, and are updated in Lines 21–23.
Thus, the more Pareto-optimal points are generated by a type
of mutation, the more likely it will be picked again.

After the mutation type is chosen, the FU type or the loop
corresponding to the mutation type is picked according to
the conflict numbers or the pipeline gains using the function
RandPick (Lines 12 and 16). The function takes a vector v
as input and randomly picks an index i in the vector with
probability vi∑

j vj
, where vi is the i-th entry in v.

After a new point is created by mutation, Line 18 checks
whether it has already been visited. If not, Line 19 applies
the HLS procedure to it and adds it into the visited point set
S. Line 20 updates the Pareto set X by considering the new
point. Finally, if the new point is added into the Pareto set,
either countFU or countloop is incremented by 1, depending on
the selected mutation type (Lines 21–23).

Note that in traditional GA, there is also a crossover step, but
it is not applicable here since in crossover step, multiple knobs
are changed at the same time while our scheduling information
specializes in detecting the benefit of changing a single knob.

IV. EXPERIMENTAL RESULTS

Our HLS tool is developed based on LLVM 10.0, using
Clang in the front end. Its generated RTLs can be successfully
synthesized and pass the on-board FPGA test, so its correct-
ness is verified.

To study the performance of our proposed DSE method,
a baseline brute-force method that explores all the promising
points in the design space is also implemented. This means that
the design points that cannot be Pareto-optimal are pruned and
the brute-force method only visits the remaining points.

We use 7 benchmarks selected from CHStone [12], Poly-
bench [13], and LegUp [2] to test our DSE method. Their basic
information is listed in Table II, where the row ‘size’ lists the
size of the promising design space when two types of knobs,
resource number and loop pipelining, are considered, and the
row ‘size_ur’ lists the size after including unrolling knob.
Only these benchmarks are selected, since 1) they contain both
resource-constrained FU types and loops that can be pipelined,
and 2) their promising design spaces are large enough to test
the efficiency of our proposed DSE method.

Table II. Information of the benchmarks.

benchmark mandelbrot gemver aes adi adpcm gsm jpeg
#FU types 1 3 5 3 1 1 3

#loops 3 5 10 8 12 11 15
size 96 256 1024 3072 20480 73728 4.2E6

size_ur 384 6144 32768 7.9E5 2.5E7 8.4E6 4.3E9

To measure the performance of our method, two metrics
are used: dominance percentage, which denotes the percentage
of real Pareto-optimal points found (D%), and percentage of
visited points in the promising design space (Pt%) [14].



A. Performance with Two Types of Knobs

This section studies the performance of our method when
two types of knobs, resource number and loop pipelining, are
considered. To demonstrate the benefit of using scheduling
information, we implement a corresponding black-box coun-
terpart of our method where no conflict number or pipeline
gain is available, so the FU type or loop choice is done
randomly. Fig. 1 shows the performance of three versions
of our method with different choices of the parameters base
and R in Algorithm 1 and their corresponding black-box
counterparts (i.e., BK_*), using the D%-Pt% plot. Note that
different points on the same curve have different choices for
the parameters Ngen and Nmut but the same choice of base and
R. The values D% and Pt% of each point is the average value
over all benchmarks except jpeg in 100 runs, where jpeg
is excluded since its promising design space is too large for
the brute-force algorithm. From Fig. 1, we can see that when
visiting the same number of points, our method can obtain
Pareto sets with larger dominance than the black-box method.

Fig. 1. Comparison of our proposed DSE method and the black-box DSE
method, a counterpart of ours without using the scheduling information.

For a large benchmark gsm from CHStone benchmark suite,
our method can find 95.7% Pareto-optimal designs by visiting
only 0.18% total promising design points.

B. Generalization to Loop Unrolling Knob

To show the generalization ability of our proposed DSE
method, we extend our method by also including the loop
unrolling knob. The related scheduling information is the
expected number of cycles that can be reduced by unrolling
the loop divided by a rough estimation of the area increase.

The design space becomes too large for the brute-force
method for some benchmarks, so we study the performance of
our method by comparing it to a traditional GA-based method
denoted as TGA, which is used as the baseline in [4]. To
make the comparison more comprehensive, we add two more
criteria widely used in evaluating the DSE quality: average
distance from reference set (ADRS) and cardinality [14].
ADRS indicates how close the obtained Pareto set is to the
reference set. Cardinality is just the size of the obtained Pareto
set. A better DSE method usually has a smaller ADRS and a
larger cardinality.

We compare our method and TGA on all the 7 benchmarks.
The parameters base and R are selected as Setting3 in Fig. 1.
The parameters Ngen and Nmut are tuned so that the number of
visited points of our method is roughly 1/4 of that of TGA.
The reference Pareto set is obtained from the combination of
the Pareto sets found by the two methods. Due to randomness,
the average of each measure over the 5 runs is obtained for
each method together with the average run time.

Table III. Performance comparison between our method and a traditional
GA-based HLS DSE method [4] after including the loop unrolling knob.

benchmark Dominance% ADRS% Cardinality Run time (s)
TGA Our TGA Our TGA Our TGA Our

mandelbrot 47.0 71.2 9.22 3.26 13 19 315 92
gemver 76.9 81.8 1.39 0.83 23 24 1113 260
aes 71.9 78.8 0.24 0.06 29 29 1816 397
adi 49.0 63.3 1.49 0.96 38 40 1553 485
adpcm 8.90 96.1 1.30 0.01 29 34 1578 341
gsm 21.3 80.8 0.61 0.08 37 55 1629 346
jpeg 35.5 64.5 2.18 1.86 24 33 1482 365

Geomean 36.5 75.9 1.34 0.32 26 32 1208 296

Table III compares the performance of our DSE method and
TGA. It can be seen that the quality of the Pareto set obtained
by our method is far better than that obtained by TGA under
all three measures. Furthermore, our method is 4.1× faster.
In [4], an advanced ML-accelerated DSE method was also
proposed. It was reported that compared to TGA, the ML-
accelerated method only enjoys 2× acceleration while having
some DSE quality drop. Thus, our method is also better than
the ML-accelerated method.

V. CONCLUSION

In this work, we propose to extract useful information from
the scheduling step in HLS process. Then, an efficient DSE
method guided by the scheduling information is implemented.
The experimental results show that the proposed DSE method
outperforms its counterpart without using the scheduling infor-
mation and a traditional GA-based DSE method under various
criteria. In future work, we plan to support more design knobs
by exploiting other useful information from scheduling.
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