
An Efficient Implementation of Numerical Integration
Using Logical Computation on Stochastic Bit Streams

[Special Session Paper]

Weikang Qian and Chen Wang
University of Michigan-SJTU Joint Institute

Shanghai Jiao Tong University
Shanghai, China

{qianwk, wangchen_2007}@sjtu.edu.cn

Peng Li, David J. Lilja, Kia Bazargan,
and Marc D. Riedel

ECE Department, University of Minnesota
Minneapolis, MN, USA

{lipeng, lilja, kia, mriedel}@umn.edu

ABSTRACT
Numerical integration is a widely used approach for computing

an approximate result of a definite integral. Conventional digital
implementations of numerical integration using binary radix en-
coding are costly in terms of hardware and have long computa-
tional delay. This work proposes a novel method for performing
numerical integration based on the paradigm of logical computa-
tion on stochastic bit streams. In this paradigm, ordinary digital
circuits are employed but they operate on stochastic bit streams in-
stead of deterministic values; the signal value is encoded by the
probability of obtaining a one versus a zero in the streams. With
this type of computation, complex arithmetic operations can be im-
plemented with very simple circuitry. However, typically, such
stochastic implementations have long computational delay, since
long bit streams are required to encode precise values. This paper
proposes a stochastic design for numerical integration character-
ized by both small area and short delay – so, in contrast to previ-
ous applications, a win on both metrics. The design is based on
mathematical analysis that demonstrates that the summation of a
large number of terms in the numerical integration could lead to
a significant delay reduction. An architecture is proposed for this
task. Experiments confirm that the stochastic implementation has
smaller area and shorter delay than conventional implementations.

1. INTRODUCTION
Numerical integration is a widely used approach for computing

an approximate solution to a definite integral
∫ b
a
g(x)dx [1]. It

is applied in situations where it is difficult or impossible to find
an antiderivative of the integrand, for example, in the case where
the integrand is e−x

2

. A basic form of numerical integration is to
approximate the integral as∫ b

a

g(x)dx ≈ b− a
M

M−1∑
i=0

g

(
a+

i(b− a)
M

)
(1)

Conventional digital implementations of numerical integration
are costly in terms of hardware, since they employ complex arith-
metic circuits for calculating the function g and an adder for accu-
mulating g(x)’s for different x points. Conventional implementa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1573-9/12/11 ...$15.00.

tions also have high delay. Since we need to calculate M g(x)’s
and then sum them together, according to Equation (1), the time
consumption is MTC , where TC is the time required for calculat-
ing a single g(x).

In this work, we propose a novel method for performing numer-
ical integration based on the paradigm of logical computation on
stochastic bit streams. In this paradigm, ordinary digital circuits
are employed but they operate on stochastic bit streams instead of
deterministic values; the signal value is encoded by the probability
of obtaining a one versus a zero in the streams. With this type of
computation, complex arithmetic operations can be implemented
with very simple circuitry. The major drawback is that lengthy bit
streams are needed to encode precise values and hence there is a
typically a long computational delay. This drawback is due to the
error and the precision issues. Stochastic encoding is subject to er-
rors caused by its inherent randomness. We need to increase the bit
length to decrease the error below a threshold. Also, the precision
of a value encoded by stochastic bit stream is proportional to the
length of the stream. We need to increase the bit length to achieve
a high precision.

Through mathematical analysis, this paper demonstrates that when
performing numerical integration, the summation of a large num-
ber of terms can be performed with comparatively low delay in
stochastic implementations. Our contributions in this paper are:
1) we provide a theoretical analysis showing that the delay of the
stochastic implementation of numerical integration can be signif-
icantly reduced while achieving a small error bound and a high
precision; and 2) we propose an architecture for the stochastic im-
plementation of numerical integration. Experimental results show
that our stochastic implementation has both a smaller circuit area
and a shorter delay than the conventional implementation using bi-
nary radix encoding.

The remainder of this paper is organized as follows. Section 2
introduces the background on logical computation on stochastic bit
streams and points to some related works. Section 3 presents a
theoretical analysis on the delay reduction with the stochastic im-
plementation. Section 4 shows the architecture for the stochastic
implementation of numerical integration. Section 5 presents exper-
imental results. Finally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
Traditional arithmetic circuits operate on numbers encoded by

binary radix, which is a deterministic way to represent numerical
values with zeros and ones. Fundamentally different from the bi-
nary radix, stochastic encoding is another way to represent numer-
ical values by logical zeros and ones [2, 3]. In such a encoding, a
real value p in the unit interval is represented by a sequence of N
random bitsX1, X2, . . . , XN ∈ {0, 1}, with eachXi having prob-
ability p of being one and probability (1 − p) of being zero, i.e.,

P (Xi = 1) = p and P (Xi = 0) = 1 − p. Typically, a sequence
of random bits is generated serially in time to form a stochastic bit
stream. Figure 1(a) shows an example of a stochastic bit stream
encoding the value 5/8.

(a)

x = 5/8

0, 1, 0, 1, 1, 0, 1, 1

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b = 4/8

C

a = 6/8 c = 3/8

(b)

Figure 1: Stochastic encoding and computation on stochastic encod-
ing: (a) A stochastic bit stream encoding the value x = 5/8; (b) An
AND gate multiplying two values encoded by two input stochastic bit
streams.

HA
a1

HA
b1

a0

b1

FA
a0

b2

a2 b0 a1 b0

a1
FA

b2

a2 b1

HAFA

a0 b0

c0

c1

c2

c3c4c5

a2 b2

a2 a1 a0 b2 b1 b0

c2 c1 c0c5 c4 c3

a b

c

Figure 2: Multiplication using conventional binary radix encoding: a
carry-save multiplier, operating on 3-bit binary radix encoded inputs
A and B. “FA” refers to a full adder and “HA” refers to a half adder.

Since the random sequences are composed of binary digits, we
can apply digital circuits to process them. Thus, instead of mapping
Boolean values into Boolean values, a digital circuit now maps real
probability values into real probability values. We refer to this type
of computation as logical computation on stochastic bit streams.

Computation on stochastic bit streams can reduce hardware cost
significantly. For example, multiplication can be implemented with
a single AND gate. As we know, an AND gate outputs a logi-
cal one if and only if both of its inputs are one. Now if the two
inputs are independent stochastic bit streams, then the probability
of obtaining a one in the output bit stream equals the product of
the probabilities of obtaining a one in the input streams. There-
fore, an AND gate multiplies the values encoded by stochastic bit
streams. Figure 1(b) illustrates an AND gate performing multipli-
cation on stochastic bit streams. In contrast, conventional multi-
plier is very hardware-consuming. Figure 2 shows a conventional
design for a 3-bit carry-save multiplier, operating on binary radix-
encoded numbers. It consists of 9 AND gates, 3 half adders, and
3 full adders, for a total of 30 gates.1 Besides multiplication, other
1A half adder can be implemented with one XOR gate and one AND gate.
A full adder can be implemented with two XOR gates, two AND gates, and
one OR gate.

basic arithmetic operations such as addition, division, and square
root can also be implemented with very simple digital constructs
using stochastic encoding [3, 4].

However, the major drawback of stochastic encoding is that it
typically needs a long bit stream to encode a value. One reason is
because stochastic encoding suffers from errors due to its stochas-
tic nature and we need to increase the bit length to reduce the
error. Mathematically, a stochastic bit stream we observe, such
as the one in Figure 1(a), is just a trial from a Bernoulli process
X1, X2, . . . , XN , where each Xi is a Bernoulli random variable,
taking value 1 with probability p and value 0 with probability 1−p.
We obtain the value represented by a stochastic bit stream by count-
ing the number of ones in that stream and then dividing it by the
total length N . However, this value does not necessarily equal to
p. Indeed, the value represented by a stochastic bit stream is just a
sample from the random variable

Y =
1

N
(X1 + · · ·+XN),

which is a binomial random variable taking values from the set
{0, 1

N
, . . . , N−1

N
, 1}. Although the expectation of Y is

E[Y] =
1

N
(E[X1] + · · ·+ E[XN]) = p,

a sample of Y , which is based on a trial of the underlying Bernoulli
process, does not necessarily equal p. Such a difference between
the observed value and the actual value p is due to the stochastic
nature of this encoding.

The way to reduce the error due to randomness is to increase the
length of the bit stream. Since p = E[Y], the expected difference
between a sample of Y and p equals the standard deviation of Y ,
which can be calculated as [2]

σY =
√

Var[Y] =

√
p(1− p)
N

.

If we require the expected error to be less than a threshold ε, then
we have √

p(1− p)
N

< ε.

This requires that the bit lengthN is larger than p(1−p)
ε2

. Thus, from
the error aspect, stochastic encoding requires a long bit stream.

Besides the reason due to error, from the precision aspect, we
also require a long bit stream for stochastic encoding. By its na-
ture, stochastic encoding is a uniform encoding with each bit con-
tributing the same weight to the encoded value. Thus, to represent
a value with precision 1

2n
, the length of the stochastic bit stream

should be at least 2n. This is much longer than the bit length of
binary radix encoding, which requires only n bits to achieve the
same precision.

Since the stochastic implementation processes one bit per clock
cycle and its bit length is prohibitively long, logical computation
on stochastic bit stream is very time-consuming. Without taking
stochastic error into account, if we require a precision of 1

2n
, then

we need at least 2n clock cycles to obtain the result.
The drawback of long delays could be partially alleviated by re-

ducing the basic clock period due to the simplicity of the circuitry.
In the example of stochastic multiplier, the clock period can be as
short as the delay of a single AND gate, which is much less than
the critical path delay of a conventional multiplier. Assume that the
critical path delay of the stochastic implementation and that of the
conventional implementation are TS and TC , respectively. How-
ever, even if TS is much smaller than TC , the computation delay
overhead of stochastic implementation compared to conventional
implementation is still

2n
TS
TC

, (2)

which could be very large for a large n.
The issue of long delays can be mitigated through parallel pro-

cessing. Instead of using a bit stream of length N to represent a
value, we can use L bit streams of length N

L
to represent the same

value. Figure 3 shows how we can represent the value 5/8 by two
stochastic bit streams of length 4. If we split a stochastic bit stream
into L shorter streams, the computation delay reduces to 1

L
of the

original one. However, as a trade-off, we need L copies of the
original circuit to process L bit streams in parallel. For example, as
shown in Figure 3, if we want to multiply two values, each encoded
by two shorter bit streams, we need two AND gates. Thus, although
parallel processing could reduce the computation delay to 1/L of
the original one, it increases the circuit area by L times. This so-
lution is not decent. Further, when circuit area is constrained, this
solution is not viable.

x = 5/8

0,1,0,1

1,0,1,1

1,1,0,1

1,1,0,0

1,1,0,0

b = 4/8

a = 6/8
c = 3/8

0,1,1,1

1,0,1,0

0,0,1,0

AND

AND

(a) (b)

Figure 3: Parallel implementation of logical computation on stochas-
tic bit streams. (a) Representing a value by two shorter stochastic bit
streams. (b) Multiplication on values encoded as two shorter stochastic
bit streams.

Although the paradigm of logical computation on stochastic bit
streams suffers from long delays, it still finds applications in areas
such as artificial neural networks (ANNs), communication, and im-
age processing [5–10]. It is a particularly good fit for ANNs since
applications in this area typically have a large number of multipliers
and adders [5–8]. Due to the simplicity of the stochastic multiplier
and adders, researchers are able to build large scale ANNs using
these constructs. Recently, the paradigm has been used to imple-
ment a low-density parity-checking (LDPC) decoder, a construct
widely used in communication for error correction [9]. It has also
been applied in image processing in implementing functions such
as edge detection, median filter, and contrast adjusting [10].

All of the applications proposed so far only take advantage of the
small circuit area that logical computation on stochastic bit streams
provides; they all suffer from long delays. In this work, we apply
the paradigm to implement numerical integration. The result is a
design with both a smaller area and a shorter computation delay
than the conventional implementations using binary radix – so, in
contrast to previous applications, a win on both metrics.

3. REDUCING COMPUTATION DELAY
OF NUMERICAL INTEGRATION

We intend to use logical computation on stochastic bit streams to
calculate the numerical integration formula shown in Equation (1).
Since this type of computation requires both the inputs and the out-
puts to be a probability value in the unit interval, we need to do
some pre-processing to transform the integration interval into the
unit interval and the original function g(x) into a function f(x)
that maps the unit interval onto itself, i.e., f(x) ∈ [0, 1] for any
x ∈ [0, 1]. This can be achieved by applying affine transforma-
tions. Now we assume that we are integrating a function f(x) in
the unit interval [0, 1] and f(x) maps the unit interval into itself.
The numerical integration formula becomes

1

M

M−1∑
i=0

f

(
i

M

)
(3)

The stochastic implementation is based on a circuit that maps
an input probability value x into an output probability value f(x),
which will be discussed in the next section. We use this circuit to
compute f(i

M
) for each i = 0, . . . ,M − 1 and then average these

values. If we are only interested in evaluating f(x) on a single
point, then we need a long bit stream for the stochastic implemen-
tation due to the error and the precision issues. However, in nu-
merical integration where multiple evaluations of f(x) are finally
averaged, we can significantly reduce the length of the bit stream
for representing each f(i

M
), and hence, reduce the computation

delay.
We consider an extreme case where each f(i

M
) is represented

by just one bit. Then, the circuit that computes f(x) stochastically
will operate for only one clock cycle in calculating f(i

M
). Thus,

its output is a single sample from a Bernoulli random variable Yi
that takes value 1 with probability f(xi) and value 0 with probabil-
ity 1 − f(xi). This sample, which can only be a 0 or a 1, is much
away from the probability value f(xi) due to a limited number of
samplings. However, the numerical integration involves averaging
over these samples and the error of each sample is stochastic by its
nature. Thus, although the error is large for each sample, the aver-
aging of the samples may cancel out these errors. Mathematically,
since the i-th bit (i = 0, . . . ,M − 1) we get is a sample from a
Bernoulli random variable Yi with P (Yi = 1) = f(i

M
) and we

eventually average over these bits, the final output is a sample from
a random variable

Y =
1

M
(Y0 + . . .+ YM−1).

Since E[Yi] = f(i
M
), we can obtain the mean of Y as

E[Y] =
1

M

M−1∑
i=0

E[Yi] =
1

M

M−1∑
i=0

f

(
i

M

)
,

which equals Equation (3). Thus, the stochastic implementation
with just one bit to represent each probability f(i

M
) is an unbiased

estimation. Further, since E[Y] equals the ideal numerical inte-
gration value, the expected difference between a sample of Y and
the ideal value equals the standard deviation of Y . By our imple-
mentation, all the random variables Yi are independent. Thus, the
standard deviation of Y can be calculated as

σY =
√

Var[Y] =

√√√√Var

[
1

M

M−1∑
i=0

Yi

]
=

√√√√ 1

M2

M−1∑
i=0

Var[Yi].

Since Yi is a Bernoulli random variable with probability f(i
M
)

of being one, its variance is

Var[Yi] = f

(
i

M

)(
1− f

(
i

M

))
≤ 1

4
.

Therefore, we have

σY ≤
1

2
√
M
.

We can see that although we only use one bit to represent each
probability value f(i

M
), the expected error after averaging is well

bounded. It is small if the numerical integration consists of many
function evaluations. Also, since the final value is of the form k

M
,

where k is the total number of ones among all the bits, the precision
of the computation is 1

M
, which is small given a large M .

The above analysis can be generalized if we use a stochastic bit
stream of length L to encode each probability value f(i

M
), i.e., the

circuit operates L clock cycles to obtain a stochastic encoding for
the value f(i

M
). In this general situation, it can be shown that the

final result is a sample from a random variance Y with mean

E[Y] =
1

M

M−1∑
i=0

f

(
i

M

)
,

and standard deviation

σY ≤
1

2
√
LM

. (4)

This means that increasing the bit length L does not affect the
mean, but it decreases the expected error. Further, the precision
of the computation is 1

LM
, which decreases by increasing L.

Finally, we analyze the computation delay. Suppose that the de-
lay of generating a single output bit by the stochastic implemen-
tation is TS and that the delay of evaluating a single point f(i

M
)

by the conventional implementation is TC . In obtaining the final
integration result, the stochastic implementation needs to evaluate
M integration points, with each evaluation encoded as a bit stream
of length L. Thus, the total time for obtaining the integration result
is tS = LMTS . For the conventional implementation, since it also
needs to evaluate M points, the entire time is tC = MTC . Thus,
the delay overhead of the stochastic implementation compared to
the conventional implementation is

tS
tC

= L
TS
TC

.

As we point out in Section 2, due to the simplicity of the cir-
cuit that computes on stochastic bit streams, TS is smaller than TC .
Then, in the extreme case where L = 1, the delay of the stochas-
tic implementation is smaller than that of the conventional imple-
mentation. If we want to achieve a precision of 1

2n
, we require

LM = 2n, then the delay overhead becomes

tS
tC

= L
TS
TC

=
2n

M
· TS
TC

. (5)

Therefore, if M is large and n is moderate, the delay of stochas-
tic implementation still could be less than that of the conventional
implementation. Furthermore, comparing Equation (5) with (2),
we can see that for numerical integration which involves an “av-
eraging” of M values, the delay overhead of its stochastic imple-
mentation tS

tC
will be only 1

M
of that for an application without the

“averaging.”

4. ARCHITECTURE FOR THE
STOCHASTIC IMPLEMENTATION OF
NUMERICAL INTEGRATION

In this section, we present the architecture for the stochastic im-
plementation of the numerical integration. The system is shown
in Figure 4, which includes three parts: the stochastic computing
unit, the stochastic sweeping unit, and the de-randomizer. The sys-
tem requires some independent and uniformly distributed random
numbers. We assume that these random numbers are provided from
external random sources. For example, linear feedback shift regis-
ter (LFSR) can be used to generate these random numbers.

4.1 Stochastic Computing Unit
The stochastic computing unit (SCU) is the computing core of

the entire system, which implements the integrand f(x) stochas-
tically. The SCU is modified from the circuit we proposed before
which can implement an arbitrary arithmetic function [11]. The
specific example shown in Figure 4 implements a Bernstein poly-
nomial of degree 3. In general, a Bernstein polynomial of degree d
is of the form [12]

Bd(x) =

d∑
i=0

bi,dBi,d(x),

where each bi,d is a real constant and each Bi,d(x) is a Bernstein
basis polynomial of the form

Bi,d(x) =

(
d

i

)
xi(1− x)d−i.

The SCU consists of a d-input adder, a (d+1)-to-1 multiplexers
with channel bit width n, and a n-bit comparator. For the example
in Figure 4, d = 3 and n = 10. The functionality of the SCU is to
generate a random bit with probability Bd(x) of being one, where
Bd(·) could be an arbitrary user-specified Bernstein polynomial
with all the coefficients in the unit interval and x is an evaluation
point. In order to achieve this, the adder takes d inputsX1, . . . , Xd,
each being an independent random bit with probability x of being
one. The adder outputs the sum of the d random input bits. The
sum is encoded by the binary radix and could be any value from
the set {0, 1, . . . , d}. The multiplexer takes the output of the adder
as its selection input and C0[n − 1 : 0], . . . , Cd[n − 1 : 0] as its
data inputs. For the entire duration in computing an integral, we
hold the data inputs C0, . . . , Cd, which are determined by the inte-
grand. Note that each channel of the multiplexer is of bit width n.
If the adder output is k (0 ≤ k ≤ d), the multiplexer will choose
Ck as its output. Finally, the comparator compares the output of the
multiplexer with a random numberR[n−1 : 0], which is generated
by an external random source and is uniformaly distributed in the
set {0, 1, . . . , 2n − 1}. If R < Ck, the output of the comparator
is 1; otherwise, it is 0. Thus, the final output bit Y of the SCU
is a Bernoulli random variable. The probability of Y to be one is
determined by both the probability that R is less than Ck and the
probability that the output of the adder is k, i.e.,

P (Y = 1) =

d∑
k=0

P

(
Y = 1

∣∣∣ d∑
i=1

Xi = k

)
P

(
d∑
i=1

Xi = k

)

=

d∑
k=0

P (R < Ck)P

(
d∑
i=1

Xi = k

)
Given that X1, . . . , Xd are independent Bernoulli random vari-
ables taking value 1 with probability x,

∑d
i=1Xi is a binomial

random variable taking value in the set {0, . . . , d}, and for k =
0, . . . , d,

P

(
d∑
i=1

Xi = k

)
=

(
d

k

)
xk(1− x)d−k.

Further, since R is a random number uniformly distributed in the
set {0, 1, . . . , 2n − 1}, P (R < Ck) is Ck

2n
. Thus, if we set Ck to

be 2nbk,d with 0 ≤ bk,d ≤ 1, then the probability of Y to be one is

P (Y = 1) =

d∑
k=0

bk,dBk,d(x) = Bd(x).

Thus, the SCU transforms random bits with probability x of being
one into a random bit with probability Bd(x) of being one. As we
can see, we can implement arbitrary Bernstein polynomial with co-
efficients in the unit interval by configuring the values Ck. Taking
this advantage of reconfigurability, we can implement an arbitrary
arithmetic function by approximating it with a Bernstein polyno-
mial with coefficients in the unit interval. To find a good approxi-
mation, we can formulate and solve an optimization problem using
the method we proposed in [11].

4.2 Stochastic Sweeping Unit and
De-Randomizer

The stochastic sweeping unit (SWU) provides the random bits
to the X inputs of the SCU, as shown in Figure 4. It generates
random bits with probabilities sweeping from 0 to M−1

M
with a

MUX+

C0[9:0]

counter

clock

pre-counter

counter

cmp

cmp

cmp

cmp

Stochastic Sweeping Unit
Stochastic Computing Unit De-Randomizer

X0

X1

X2 Y

C1[9:0]

C2[9:0]

C3[9:0]

CS[9:0]

S[1:0]

R[9:0]

R0[7:0]

R1[7:0]

R2[7:0]

I[7:0]

Uniform

Random

Sources

Figure 4: The architecture for the stochastic implementation of the numerical integration. “cmp” refers to a digital comparator. The thick lines are
buses and their width is denoted within its signal name. For example, R[9 : 0] refers to a bus carrying 10 bits.

step size of 1
M

. Hence, we call it stochastic sweeping unit. For the
sake of simple implementation, we chooseM = 2m wherem is an
integer. The SWU consists of a pre-counter, a m-bit counter, and
d comparators, where d is the degree of the Bernstein polynomial
implemented by the SCU.

The pre-counter counts from 0 to L − 1 cyclically, where L is
the number of bits to encode a specific probability value. Also, for
the sake of simple implementation, we choose L = 2l where l is an
integer. Each time the pre-counter reaches its maximal value L−1,
it increments the counter by 1.

The counter counts from 0 to M − 1. When the value of the
counter is k, the outputs of the d comparators are all random bits
with probability k

M
of being one. This is achieved by comparing

k with d uniformly distributed random numbers R0, . . . , Rd−1, all
taking values from the set {0, . . . ,M − 1}. The i-th comparator
outputs a 1 if Ri < k and a 0 otherwise. Thus, the outputs of the d
comparators are all random bits with probability k

M
of being one.

As the counter value increases from 0 to M − 1, the probabilities
of the output bits of all the comparators take value 0, 1

M
, . . . , M−1

M
in sequence, which correspond to all the x points in the numerical
integration formula (3). Since the counter is triggered by the pre-
counter, the SWU outputs random bits with the same probability
k
M

for L basic clock cycles. Thus, the total number of basic clock
cycles it takes to get the integration result is LM .

The de-randomizer is just an (l +m)-bit counter, which counts
the number of ones in the output bit stream Y of the SCU. By
counting the number of ones, the counter essentially adds together
all the values f(0), f(1

M
), . . . , f(M−1

M
), which are encoded stochas-

tically. The final integration result can be obtained from the final
counting value y by dividing y by LM : the division by L trans-
forms the count of ones into a probability and the division byM ob-
tains the final integration result from the sum

∑M−1
k=0 f(k

M
). Since

LM = 2l+m, we can simply obtain the final result y
LM

by inter-
preting y as a binary fraction y

2l+m .
In summary, the architecture shown in Figure 4 implements the

numerical integration stochastically.

5. EXPERIMENTAL RESULTS
Since the number of random bits L for encoding each value af-

fects the output error of the stochastic implementation, in the ex-
periments, we first study the relation between L and the output er-
ror. Further, we analyze the area and the delay of the proposed
stochastic implementation and compare these metrics to those of
the conventional implementation using binary radix encoding.

5.1 The Relation between L and the Output
Error

As we stated in Section 3, the stochastic implementation suf-
fers from error due to randomness, which can be reduced by in-
creasing the number of random bits L for encoding a probability
value. As shown in Equation (4), the output error also depends
on the number of points M evaluated in the numerical integration.
Therefore, in order to determine the value L, we first study how L
affects the output error given different choices of M . We obtain
this relation using an stochastic architecture with its SCU imple-
menting a Bernstein polynomial of degree 6. To get the statistical
results, we randomly choose 100 Bernstein polynomials of degree
6 and with coefficients in the unit interval as the integrand. For
each numerical integration instance, we simulate its stochastic im-
plementation 50 times. For each simulation, we obtain the absolute
output error as the difference between the value returned by the
simulation and the value calculated by Equation (3) using a digital
computer. We then average all the output errors over all the simu-
lations and all the polynomials. Table 1 shows the mean absolute
output error for each combination of L and M with L taking value
from the set {1, 2, 4, 8, 16, 32} and M taking value from the set
{128, 256, 512, 1024, 2048}. We also plot the mean absolute error
versus different bit lengths L subject to different choices of M in
Figure 5. From the figure, we can see that for those combinations
of L and M where the products LM are the same, their mean out-
put errors are almost the same. With LM = 2048, the mean output
error is roughly 1%. If the product LM increases to 8192, the error
reduces to 0.5%. Analyzing the data in Table 1, we also find that
with the product LM doubled, the mean output error decreases by
roughly 1√

2
, which agrees with Equation (4).

Table 1: Mean absolute output error versus the length of the stochastic
bit stream L and the number of points M evaluated in the numerical
integration.

M
L 128 256 512 1024 2048
1 0.0443 0.0312 0.0222 0.0158 0.0111
2 0.0308 0.0222 0.0156 0.0111 0.00759
4 0.0220 0.0155 0.0110 0.00748 0.00509
8 0.0156 0.0109 0.00759 0.00508 0.00352

16 0.0110 0.00761 0.00507 0.00347 0.00232
32 0.00757 0.00502 0.00351 0.00230 0.00115

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 4 8 16 32

M
ea

n
 A

b
so

lu
te

 O
u

tp
u

t
E

rr
o

r

L

M=128 M=256 M=512 M=1024 M=2048

Figure 5: The plot of the mean absolute output error versus the length
of the stochastic bit stream L subject to different choices of M .

5.2 The Area and the Delay of the Stochastic
Implementation

We estimate the area and the delay of the stochastic implemen-
tation of numerical integration in this section. Specifically, we an-
alyze a design with its SCU implementing a Bernstein polynomial
of degree 6. Note that the system shown in Figure 4 is built with
basic digital modules. We apply the common design for these mod-
ules. We estimate the circuit area by counting the number of fanin-
2 gates contained in the circuit. These gates include AND, OR,
NAND, NOR, XOR, and XNOR gate. We estimate the delay of
the circuit by counting the number of fanin-2 gates that lies on the
critical path.

The area of each module is listed in Table 2. Note that since the
SCU implements a Bernstein polynomial of degree 6, we have 6
comparators in the SWU. The adder has 6 inputs. The multiplexer
is a 7-to-1 multiplexer with channel width n. Due to its serial pro-
cessing, the stochastic implementation also allows us to pipeline it
to reduce delay. In our design, we insert two pipelines: the first is
inserted between the SWU and the SCU, and the second is inserted
between the multiplexer and the comparator in the SCU. The area
cost of the pipeline is also listed in Table 2. In our design, we
choose the bit width of the inputs Ci as 10, i.e., n = 10. Thus, we
obtain the entire area of the stochastic implementation as

42m+ 12l + 336,

where m = log2M and l = log2 L.

Table 2: The areas of the digital modules used in the stochastic imple-
mentation shown in Figure 4.

module name area comments
pre-counter in SWU 6l l = log2 L
counter in SWU 6m m = log2 M
6 comparators in SWU 6(5m− 1) m = log2 M
adder in SCU 17 —
multiplexer in SCU 18n n is the bit width of C
comparator in SCU 5n− 1 n is the bit width of C
counter in de-randomizer 6(l +m) l = log2 L, m = log2 M
pipeline 36 + 6n n is the bit width of C

The delay of the comparator in the SWU is m+ 2. The delay of
the combinational logic consisting of the adder and the multiplexer
is 9. The delay of the comparator in the SCU is n + 2 = 12. Due
to the pipeline, the delay of the stochastic implementation is

max{m+ 2, 9, 12} = max{m+ 2, 12}.

Further, since we need LM = 2l+m clock cycles to get the inte-
gration result, the total computation time is

2l+m ·max{m+ 2, 12}.

We want to compare the area cost and the time consumption of
our stochastic implementation to those of the conventional imple-
mentation using binary radix encoding. We implement the con-
ventional implementation using binary multiplier and adder. We
assume that the conventional implementation integrates the same
polynomial as the stochastic implementation does. Thus, the in-
tegrand is a power-form polynomial of degree 6. A polynomial
f(x) =

∑6
i=0 aix

i can be rewritten as

f(x) = a0 + x(a1 + x(a2 + · · ·+ x(a5 + xa6))),

With this rewriting, we can evaluate the polynomial in 6 iterations.
This iterative computation only requires one multiplier, one adder,
and one register which stores the intermediate value. We build a
circuit that combines these three components together. In order to
achieve the same precision as the stochastic implementation, the
conventional implementation works on binary numbers with m+ l
bits. The area of the circuit is

6(m+ l)2 + 3(m+ l)− 6

and the delay of the circuit is 4(m+ l)−2. Note that the delay only
corresponds to a basic computation of the form a+b ·c. Therefore,
the total time to get the final integration result should be 6M times
that delay, which is

2m · 6 · (4(m+ l)− 2).

Therefore, the ratio of the area of the stochastic implementation
to that of the conventional implementation is

ra =
42m+ 12l + 336

6(m+ l)2 + 3(m+ l)− 6
(6)

The ratio of the delay of the stochastic implementation to that of
the conventional implementation is

rd =
2l ·max{m+ 2, 12}
6(4(m+ l)− 2)

(7)

Table 3: The area ratio calculated by Equation (6) versus the length
of the stochastic bit stream L and the number of points M evaluated in
the numerical integration.

M
L 128 256 512 1024 2048
1 2.04 1.67 1.41 1.21 1.06
2 1.60 1.35 1.16 1.02 0.906
4 1.29 1.12 0.980 0.872 0.785
8 1.07 0.940 0.839 0.756 0.688

16 0.900 0.805 0.728 0.663 0.609
32 0.772 0.699 0.639 0.587 0.544

We calculate the area ratio ra and the delay rd for all the combi-
nations of L = 2l and M = 2m with L taking value from the set
{1, 2, 4, 8, 16, 32} and M taking value from the set
{128, 256, 512, 1024, 2048}. The results are listed in Table 3 and 4.

From Table 3, we can see that the area ratio decreases when ei-
ther L or M increases. This is because the area of the stochastic
implementation increases linearly with either l orm, while the area
of the conventional implementation increases quadratically with ei-
ther l or m. Furthermore, we can see that when LM ≥ 4096, the
area ratio is below 1, which means that the area of the stochastic
implementation is smaller than that of the conventional implemen-
tation.

From Table 4, we can see that the delay ratio rd almost doubles
with L doubled. This is because the delay of the stochastic im-
plementation increases exponentially with l, while the delay of the
conventional implementation increases linearly with l. However,
the constant multiplying l in the formula for the delay of the con-
ventional implementation is quite large. Therefore, when L ≤ 16,
the delay ratio is still below 1, which means that the delay of the
stochastic implementation is shorter than that of the conventional
implementation. Also, we can see that the delay of the stochastic
implementation is much shorter than that of the conventional im-
plementation when L = 1.

Table 4: The delay ratio calculated by Equation (7) versus the length
of the stochastic bit stream L and the number of points M evaluated in
the numerical integration.

M
L 128 256 512 1024 2048
1 0.0769 0.0667 0.0588 0.0526 0.0516
2 0.133 0.118 0.105 0.0952 0.0942
4 0.235 0.211 0.190 0.174 0.173
8 0.421 0.381 0.348 0.320 0.321

16 0.762 0.696 0.640 0.593 0.598
32 1.39 1.28 1.19 1.10 1.12

Finally, we want to compare the overall performance of the stochas-
tic implementation to that of the conventional implementation. We
use the product of the area ratio and the delay ratio as the measure.
We list the products for different combinations of L and M in Ta-
ble 5. From the table, we can see that the products are all less than
1 except when L = 32 and M = 128, which indicates that the
overall performance of the stochastic implementation is better than
that of the conventional implementation.

Table 5: The product of the area ratio and the delay ratio versus the
length of the stochastic bit stream L and the number of points M eval-
uated in the numerical integration.

M
L 128 256 512 1024 2048
1 0.157 0.111 0.0828 0.0638 0.0547
2 0.213 0.159 0.122 0.0971 0.0854
4 0.304 0.235 0.187 0.152 0.136
8 0.449 0.358 0.292 0.242 0.221

16 0.686 0.560 0.466 0.393 0.364
32 1.07 0.895 0.757 0.648 0.608

6. CONCLUSION AND FUTURE WORK
In this work, we propose a novel implementation of the numeri-

cal integration using logical computation on stochastic bit streams.
We show through mathematical analysis that by summing a large
number of terms in the integration, we can reduce the delay of
stochastic implementations significantly. Overall, the stochastic
design that we propose in this work has both a smaller area and
a shorter delay than conventional implementations based on binary
radix encoding. We observe that, similarly, many digital signal pro-
cessing (DSP) applications are predicated on summing a large num-
ber of terms. In future work, we will study how to implement DSP
applications through logical computation on stochastic bit streams.

ACKNOWLEDGEMENTS
This work was supported in part by National Science Foundation

grant no. CCF-1241987. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

7. REFERENCES
[1] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,

Numerical Recipes: The Art of Scientific Computing (3rd
ed.). Cambridge University Press, 2007.

[2] B. Gaines, “Stochastic computing systems,” in Advances in
Information Systems Science. Plenum, 1969, vol. 2, ch. 2,
pp. 37–172.

[3] B. Brown and H. Card, “Stochastic neural computation I:
Computational elements,” IEEE Transactions on Computers,
vol. 50, no. 9, pp. 891–905, 2001.

[4] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded
arithmetic,” in International Symposium on Circuits and
Systems, vol. 1, 2000, pp. 599–602.

[5] B. Brown and H. Card, “Stochastic neural computation II:
Soft competitive learning,” IEEE Transactions on
Computers, vol. 50, no. 9, pp. 906–920, 2001.

[6] J. Tomberg and K. Kaski, “Pulse density modulation
technique in VLSI implementation of neural network
algorithms,” IEEE Journal of Solid-State Circuits, vol. 25,
no. 5, pp. 1277–1286, 1990.

[7] S. Bade and B. Hutchings, “FPGA-based stochastic neural
networks — implementation,” in IEEE Workshop on FPGAs
for Custom Computing Machines, 1994, pp. 189–198.

[8] M. van Daalen, P. Jeavons, J. Shawe-Taylor, and D. Cohen,
“Device for generating binary sequences for stochastic
computing,” Electronics Letters, vol. 29, no. 1, pp. 80–81,
1993.

[9] V. Gaudet and A. Rapley, “Iterative decoding using
stochastic computation,” Electronics Letters, vol. 39, no. 3,
pp. 299–301, 2003.

[10] P. Li and D. Lilja, “Using stochastic computing to implement
digital image processing algorithms,” in International
Conference on Computer Design, 2011, pp. 154–161.

[11] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja,
“An architecture for fault-tolerant computation with
stochastic logic,” IEEE Transactions on Computers, vol. 60,
no. 1, pp. 93–105, 2011.

[12] G. Lorentz, Bernstein Polynomials. University of Toronto
Press, 1953.

