
Implementing Boolean Function by Ternary Content
Addressable Memory with Approximate Match

Jian Shi1, Weikang Qian1,2,∗
1University of Michigan-SJTU Joint Institute and 2MoE Key Lab of AI, Shanghai Jiao Tong University, China

Email: {timeshi, qianwk}@sjtu.edu.cn; ∗corresponding author

Abstract—Ternary content addressable memory (TCAM) is a
widely used component for high-speed lookup operation. In this
work, we advocate a novel use of TCAM, i.e., for implementing
a Boolean function. We further leverage approximate match to
reduce the resource usage. To achieve this, two extra columns
are added to the TCAM-based architecture. The experimental
results show that to support the implementation of any 4-input
Boolean functions, the proposed architecture can reduce 37.5%
rows and 12.5% bit cells over the conventional architecture.

Index Terms—Boolean function, TCAM, approximate match

I. INTRODUCTION

Ternary content addressable memory (TCAM) is a special
memory that can be searched by content instead of location.
It is widely used in high-speed search operation such as data
compression, network router, and image processing [1].

The design of efficient TCAM architecture has attracted
much attention recently. For example, Chang et al. introduce a
TCAM structure with lower power consumption in peripheral
circuits [2]. Ghofrani et al. propose an approximate match
technique for TCAM built with nonvolatile devices, which
enables the match of more inputs [3]. However, all existing
architectures are only used as a lookup table for storing
frequently-used patterns. In this work, we advocate the use
of TCAM to implement a Boolean function. The basic idea is
to represent a function as an optimized sum-of-product (SOP)
expression and then use TCAM to store the product terms
in the expression. Furthermore, we explore the approximate
match technique to reduce the total number of bit cells in a
TCAM-based architecture. To achieve this, two extra columns
are added to the TCAM-based architecture.

II. BACKGROUND

A TCAM compares an input pattern with the stored patterns
and activates the matchline (ML) of the matching pattern. The
left part of Fig. 1 shows a TCAM design. It consists of k
rows, each storing an n-bit word and associated with a ML.
The input pattern is fed through the searchlines (SLs). If it
matches a word, the corresponding ML is activated.

w11

wk1

…

…

…

…

w1n

wkn

…

SL1 SLn

S
en

se A
m

p
lifie

r

ML1

MLk

…

TCAM

r11

rk1

…

…

…

…

BL1

RAM

Fig. 1: An n-input TCAM associated with a RAM.

The TCAM can be associated with a RAM shown in the
right part of Fig. 1. Once the i-th ML is activated, the RAM
outputs the value stored in its i-th row through the bitlines
(BLs). In fact, the i-th BL performs an OR operation on its
bit cells enabled by the corresponding MLs, i.e.,

BLi = r1i · ML1 + · · ·+ rki · MLk, (1)

In this work, we consider a nonvolatile TCAM implemen-
tation using 2 transistors and 2 memristors (2T-2R) in each
bit cell [4]. For a 2T-2R TCAM, the MLs are first pre-
charged. If the input pattern has bit differences over the stored
word, the corresponding ML is discharged by the mismatch
bit cells in the row. The number of mismatch bit cells equals
the Hamming distance (HD) between the input pattern and
the stored word. The larger the HD, the faster the ML is
discharged. Fig. 2 shows how the voltage of ML drops with
time for different HDs between the input pattern and the stored
word. Clearly, the voltage decrease of the 1-HD case is much
slower than the other HD cases. Ghofrani et al. proposed to
shorten the sampling period for approximate computing [3].
In this situation, the voltage of the ML for the 1-HD case is
still high when sampled, and consequently, an input pattern
that is 1 HD from the stored word can be treated as matching
with the stored word. This technique is called 1-HD match
in TCAM. In contrast, an input pattern that is at least 2 HDs
from the stored word cannot activate the ML of the word.

Fig. 2: The ML voltages under different HD cases.

III. METHODOLOGY

In this work, we advocate the use of TCAM to implement a
Boolean function. Consider the Boolean function represented
by a Karnaugh map shown in Table I(a). Its simplest SOP
expression is

f([a, b, c, d]) = ā · b · c̄+ ā · b · d+ ā · c̄ · d+ b · c̄ · d (2)



TABLE I: The Karnaugh maps of two 4-input Boolean func-
tions.

(a)

cd\ab 00 01 11 10

00 0 1 0 0
01 1 1 1 0
11 0 1 0 0
10 0 0 0 0

(b)

cd\ab 00 01 11 10

00 0 0 1 0
01 0 1 1 1
11 0 0 1 0
10 1 0 0 0

We can implement the SOP by a TCAM-based architecture
shown in Fig. 3. The TCAM part has 4 rows storing the prod-
uct terms in the SOP, i.e., [0, 1, 0, X], [0, 1, X, 1], [0, X, 0, 1],
and [X, 1, 0, 1], where X represents an input don’t care bit.
For the RAM part, each bit cell stores 1. With such a setup,
by Eq. (1), the final output equals the given Boolean function.

a1=0

a4=X

…

d1=X

d4=1

…

SLa SLd

S
en

se A
m

p
lifie

r

ML1

ML4

TCAM

r1=1

r4=1

…

out

RAM

b1=1

SLb

b4=1

…

c1=0

SLc

c4=0

…

………… …

Fig. 3: A TCAM-based architecture to implement the Boolean
function in Eq. (2).

However, by exploiting the 1-HD match, we can reduce the
number of needed rows to 1. Specifically, we only need to
store the word [0, 1, 0, 1] in the TCAM and store 1 in the
bit cell of the associated RAM. For any input pattern in the
ON set of the Boolean function f shown in Table I(a), since
it either equals [0, 1, 0, 1] or is 1 HD from [0, 1, 0, 1], by 1-
HD match, it activates the ML of the stored word [0, 1, 0, 1].
Consequently, the final output is 1. For any input pattern in the
OFF set, since it is at least 2 HDs from [0, 1, 0, 1], it cannot
activate the ML, leading to a final output of 0.

The above example shows that if 5 on-set input patterns
form a cross-like pattern in the Karnaugh map, as shown
in Table I(a), then by exploiting the 1-HD match, we can
reduce the number of rows stored in the TCAM. We call
this technique cross pattern-enabled row reduction. Inspired
by the above example, we try to exploit 1-HD match and cross
pattern-enabled row reduction to minimize the hardware cost.

However, if the 1-HD match is enabled in the TCAM, some
Boolean functions cannot be correctly implemented. Consider
the one shown in Table I(b). To implement it, the pattern
[0, 0, 1, 0] or its 1-HD neighbour should be stored in the
TCAM. Then, some OFF set input patterns can also activate
the ML. For example, if the pattern [0, 0, 1, 0] is stored, then
the input pattern [0, 0, 1, 1] can also activate the ML of the row,
causing a wrong output value of 1. To implement an arbitrary
Boolean function, we propose a solution in Section III-A by
introducing an extra column in the TCAM. Furthermore, we
notice that for some cases, it is impossible to exploit cross
pattern-enabled row reduction. To address this, we propose

an improved design with an extra column in the RAM in
Section III-B.

A. Extra Column in TCAM for Arbitrary Boolean Function
Implementation

To implement an arbitrary Boolean function, we introduce
an extra column in the TCAM. Then, each row in the TCAM
has an extra bit cell ε. When we want to get the output of an
input pattern, the input pattern is appended with an extra bit
δ = 0 and fed into the TCAM. We apply the following rules
to configure the TCAM.

1) When a pattern v is in the ON set of the Boolean
function and some of its 1-HD neighbours are in the OFF
set, the pattern is stored in a row r as usual with the extra
bit cell ε of the row storing 1. By this configuration,
when we look for the output of the input pattern v, the
input to the TCAM is v appended with a 0. In this case,
the input and the stored word only have 1 bit difference,
which occurs at the extra column. Therefore, the input
activates the ML of row r, and the TCAM outputs a
1, which is the correct output for the input pattern v.
When we look for the output of a 1-HD neighbour u of
v in the OFF set, the input to the TCAM is u appended
with a 0. In this case, the input is 2 HDs from the word
stored at row r. Thus, it does not activate the ML of
row r, and the TCAM outputs a 0, which is the correct
output for the input pattern u.

2) When a pattern v and all of its 1-HD neighbours belong
to the ON set, the pattern is stored in a row r as usual
with the extra bit cell ε of the row storing 0. By this
configuration, when we look for any input pattern u
within 1 HD from v, the input to the TCAM is u
appended with a 0, which is within 1 HD from the word
stored at row r. Thus, the ML of row r is activated, and
the TCAM outputs a 1, which is the correct output for
the input pattern u.

With the proposed technique, only two rows are needed
in the TCAM to implement the Boolean function shown in
Table I(b). The corresponding stored patterns are

[a, b, c, d, ε] = [0, 0, 1, 0, 1] and [a, b, c, d, ε] = [1, 1, 0, 1, 0],

where the first row can only be activated by the input pat-
tern [0, 0, 1, 0], and the second row can be activated by the
remaining ON set input patterns.

B. Extra Column in RAM for Row Reduction
Although by introducing an extra column in the TCAM, we

can implement an arbitrary Boolean function, a target function
sometimes has no cross pattern that enables row reduction,
e.g., the Boolean function in Table II(a).

To maximally exploit the cross pattern-enabled row reduc-
tion, we propose an improved architecture shown in Fig. 4,
where we add an extra column to the RAM part. Furthermore,
the final output outc is the XOR of the output out′ of the
original column in the RAM and the output σ of the extra
column in the RAM, i.e., outc = out′ ⊕ σ. We call the
architecture approximate match-based TCAM (AM-TCAM).

With the new architecture, we can exploit the cross pattern-
enabled row reduction. Consider the Boolean function in



TABLE II: A 4-input Boolean function: (a) its Karnaugh map;
(b) the configuration of AM-TCAM to implement it.

(a)

cd\ab 00 01 11 10

00 0 1 0 0
01 1 1 0 0
11 0 1 0 0
10 0 0 0 0

(b)

TCAM RAM

a b c d ε out′ σ

0 1 0 1 0 1 0
1 1 0 1 1 1 1

w11

wk1

…

…

…

…

w1n

wkn

…

SL1 SLn

S
en

se A
m

p
lifie

r

ML1

MLk

…

TCAM

r1

rk σk

σ1

… …

out′ σ 

RAM

outc

Fig. 4: The proposed AM-TCAM architecture.

Table II(a) again. The basic idea is to first treat the output of
the input pattern [1, 1, 0, 1] as 1, which leads to a cross pattern
that enables row reduction, and then correct the wrong output
value of the pattern [1, 1, 0, 1]. To achieve this, we configure
the TCAM and the RAM as shown in Table II(b). Specifically,
by treating the output of the input pattern [1, 1, 0, 1] as 1, we
identify a cross pattern and hence, can reduce the number of
rows by storing the center of the cross pattern, i.e., [0, 1, 0, 1],
in a row of the TCAM with the extra bit cell ε set as 0.
For this row, the original and extra RAM bit cells store 1
and 0, respectively. To correct the wrong output value for the
pattern [1, 1, 0, 1], the pattern is stored in another row of the
TCAM with the extra bit cell ε set as 1. The corresponding
original and extra RAM bit cells both store 1. Under such a
configuration, we have:

1) For the ON set input patterns [0, 1, 0, 0], [0, 0, 0, 1],
[0, 1, 0, 1], and [0, 1, 1, 1], the first row in Table II(b) is
activated due to at most 1 HD from the input, while the
second row is not due to at least 2 HDs from the input.
By Eq. (1), the RAM outputs are out′ = 1 and σ = 0.
Therefore, the final output is outc = out′ ⊕ σ = 1.

2) For the input pattern [1, 1, 0, 1], both rows in Table II(b)
are activated due to 1-HD match. By Eq. (1), the RAM
outputs are out′ = 1 and σ = 1. Therefore, the final
output is outc = out′ ⊕ σ = 0.

Thus, AM-TCAM realizes the target Boolean function.
Furthermore, it needs 10 bit cells in the TCAM and 4 bit
cells in the RAM. In contrast, the conventional architecture
without exploiting 1-HD match needs to store 3 words, i.e.,
[0, 1, 0, X], [0, 1, X, 1], and [0, X, 0, 1], leading to 12 bit cells
in the TCAM and 3 bit cells in the RAM. This example shows
the benefit of AM-TCAM in resource usage reduction.

IV. EXPERIMENTAL RESULTS

In this section, we compared the resource usage between
AM-TCAM and the conventional architecture, measured by
the total number of bit cells in the TCAM and the RAM, for

4-input Boolean functions. It can be shown that all Boolean
functions in the same negation-permutation-negation (NPN)
equivalence class need the same total number of bit cells.
Thus, for each NPN equivalence class, we choose one function
in it as the test case, which is the one with the minimum
ON set size in the class. All the test cases are simplified by
ESPRESSO [5]. We find that the following function needs the
maximum number of rows for the conventional architecture:

f([a, b, c, d]) = a⊕ b⊕ c⊕ d. (3)

Indeed, it needs 8 rows. However, using AM-TCAM, only 4
rows are required, and its configuration is shown in Table III.

TABLE III: The configuration of AM-TCAM to implement
the Boolean function in Eq. (3).

TCAM RAM

a b c d ε out′ σ

0 0 1 1 0 1 0
0 0 1 1 1 1 1
1 1 0 0 0 1 0
1 1 0 0 1 1 1

Moreover, we manually configure AM-TCAM for the se-
lected representative functions of all the NPN equivalence
classes. We want to obtain the maximum number of rows
needed over all the functions, since an architecture with the
number of rows equal to that maximum value can implement
any 4-input Boolean function. We find that the maximum num-
ber of rows needed is 5. Thus, to support the implementation
of any 4-input Boolean function, the total number of cells
in AM-TCAM is 5 × 7 = 35. The conventional architecture
needs 8 rows to support the implementation of any 4-input
function, and the total number of cells it contains is 8×5 = 40.
Therefore, AM-TCAM reduces 37.5% rows and 12.5% bit
cells over the conventional architecture.

V. CONCLUSION

This work proposes to implement Boolean functions by a
TCAM-based architecture. To reduce the resource usage, it ex-
ploits 1-HD match and contains an extra column in the TCAM
part and an extra column in the RAM part. The proposed
architecture can realize single-output Boolean functions with
a limited number of inputs. Thus, it has the potential to replace
the conventional lookup tables used in FPGA. Currently, the
configuration of the proposed architecture for a given Boolean
function is done manually. Our future work will develop an
algorithm for automatic configuration.

REFERENCES

[1] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” JSSC, vol. 41,
no. 3, pp. 712–727, 2006.

[2] M.-F. Chang et al., “A 3T1R nonvolatile TCAM using MLC ReRAM
for frequent-off instant-on filters in IoT and big-data processing,” JSSC,
vol. 52, no. 6, pp. 1664–1679, 2017.

[3] A. Ghofrani et al., “Associative memristive memory for approximate
computing in GPUs,” JETCAS, vol. 6, no. 2, pp. 222–234, 2016.

[4] J. Li et al., “1 Mb 0.41 µm² 2T-2R cell nonvolatile TCAM with two-bit
encoding and clocked self-referenced sensing,” JSSC, vol. 49, no. 4, pp.
896–907, 2014.

[5] R. K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.


