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Unary Coding and Variation-Aware Optimal Mapping Scheme
for Reliable ReRAM-based Neuromorphic Computing

Yanan Sun, Chang Ma, Zhi Li, Yilong Zhao, Jiachen Jiang, Weikang Qian, Rui Yang, Zhezhi He, and Li Jiang

Abstract—Neural network (NN) computing contains a large
number of Multiply-and-ACcumulate (MAC) operations. The
performance of NN accelerator is limited with the traditional
von Neumann architecture due to the tremendous off-chip mem-
ory accesses. Resistive Random-Access Memory (ReRAM)-based
crossbars can naturally perform Matrix-Vector Multiplication
(MVM) operations and is well suitable for NN accelerators.
In the existing ReRAM-based NN accelerators, the synaptic
weights represented by the conductances of ReRAMs are mainly
based on the binary coding. However, the imperfect fabrication
process combined with stochastic filament-based switching leads
to resistance variations of ReRAMs, which can significantly alter
the weights in binary synapses and degrade the NN accuracy.
Moreover, the NN accuracy further deteriorates with Multi-Level
Cells (MLCs) used for reducing hardware overhead.

In this paper, a novel unary coding of synaptic weights
is proposed to overcome the resistance variations of MLCs
and achieve reliable ReRAM-based neuromorphic computing.
A variation-aware optimal mapping scheme is also proposed in
compliance with the unary coding to guarantee high accuracy
by leveraging a unique feature of unary coding—the existence of
multiple ways to represent the same value. The optimal mapping
obtains very small errors for weights with resistance variations
of MLCs. Our simulation results show that under resistance
variations, the proposed method achieves less than 0.08% and
3.43% accuracy loss on CIFAR10 and ImageNet, respectively,
compared to the ideal accuracy. With each synaptic weight
represented by four 2-bit MLCs, the proposed method improves
the accuracy over traditional binary coding scheme by 83.39%
and 87.6% for CIFAR10 and ImageNet, respectively.

Index Terms—Neural network, ReRAM, crossbar, MLC, vari-
ation, unary coding, optimal mapping

I. INTRODUCTION

Neural Networks (NNs) require a large number of Matrix-
Vector Multiplications and tremendous memory accesses,
which make the traditional von Neumann architecture unsuit-
able. Processing-In-Memory (PIM) enables computing inside
memory and reduces the data movement between the processor
and memory, thereby attracting widespread attention. Resistive
Random-Access Memory (ReRAM) is an attractive emerging
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Non-Volatile Memory (NVM), with desirable characteristics,
such as zero-standy power, scalability to 5nm or below,
compatibility with silicon fabrication process, and multiple
resistance levels [1]–[3]. More importantly, ReRAM supports
efficient implementation of PIM [2]. Recent works present
several NN accelerators based on ReRAM crossbars, such as
PRIME [4], ISAAC [5], and PipeLayer [6]. Moreover, several
ReRAM-based chips have been fabricated to accelerate NN
computing using Multi-Level Cells (MLCs) [7] [8]. They use
conductances of ReRAM, voltages, and currents to represent
synaptic weights, inputs, and outputs, respectively. They are
faster and more energy-efficient than CMOS-based accelera-
tors [9].

However, due to the immaturity of fabrication process
combined with stochastic filament-based switching, ReRAM
suffers from the resistance variations problem [10] [11], man-
ifested as the deviation of actual resistance from its target
value. The resistance deviation affects the encoded weights,
which can significantly degrade the accuracy of NNs [12].

The existing solutions to overcome the device resistance
variations are either at the device level or the algorithmic level.
At the device level, several techniques repeatedly write the
devices [3] [13] [14] to lower the device variations. Unfor-
tunately, the frequent write operations shorten the lifetime of
ReRAMs. At the algorithmic level, the weights are trained
to enhance the tolerance of NNs to the resistance variations
of ReRAMs [15]–[18]. The works [15]–[17] presented the
off-device training methods. However, the methods in [15]
and [16] can only address the variation problems in Single-
Layer Perceptron (SLP), which has limited application. Al-
though the method in [17] is applicable to Convolution Neural
Networks (CNNs) like VGG and AlexNet, it suffers from
significant accuracy loss in the presence of large variations.
To achieve higher accuracy in CNN with acceptable hard-
ware cost, a combination of off-device and on-device training
methods is proposed in [18]. The on-device training however
still needs to rewrite the ReRAMs to update the weights, which
hurts the device endurance. A common feature of the existing
methods is that they all utilize the traditional binary coding
to represent the synaptic weights, where the Most Significant
Bits (MSBs) can amplify the device variations, causing large
errors in the encoded weights. The use of the MLC can even
exacerbate the problem.

We notice that along with the recent development in de-
vices and applications, some emerging computing paradigms
are also being actively studied. One of them is stochastic
computing (SC) [19]. Different from traditional binary radix
computing, it operates on unary coding [20], which is a coding
format where all the bits have the same significance. Such a
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coding has a strong tolerance to bit-flip errors.
In our previous work [21], we proposed a variation-aware

priority mapping to tackle the variation problem based on the
unary coded synaptic weights. The method maps the lower
resistance states to those devices with smaller variation first,
which reduces the error of the represented value. In this
paper, we further exploit the error-tolerance feature of unary
coding and propose a novel optimal mapping scheme to more
effectively address the reliability problem of ReRAM-based
NN accelerators. In summary, our contributions are as follows:

• We employ unary coding, implemented with MLC, for
weight representation in ReRAM-based NN design for
the first time. We apply it to tolerate the device resis-
tance variations, leading to the accuracy recovery of the
ReRAM-based NN accelerators.

• We propose a variation-aware optimal mapping to further
improve the accuracy. This technique exploits a unique
feature of unary coding—the existence of multiple ways
to represent the same value. The errors of the weights are
minimized by employing the mapping scheme.

• We provide a comprehensive analysis of the design trade-
off between NN accuracy and hardware cost overhead by
considering the number of ReRAMs and the number of
levels in each MLC for representing a synaptic weight.

• We demonstrate that our methods can tolerate the re-
sistance variations for typical NNs. Simulation results
show that our proposed method can significantly improve
the accuracy over the traditional binary coding scheme
by 83.39% and 87.6% for CIFAR10 and ImageNet,
respectively, even under large device variations with the
σ of 1.0 shown in Eq. (1).

The rest of the paper is organized as follows: Section II
introduces the background on ReRAM-based NN accelerator
and discusses the limitation of the related works. Section III
describes the proposed methods, including unary coding based
on MLC devices and the optimal mapping. Section IV presents
the simulation results. Section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. ReRAM-based NN Computing

ReRAM is a two-terminal variable resistor with an oxide
layer sandwiched between two metal electrodes, such as the
Ta/HfO2/Pt structure [22]. The device resistance ranges from
low resistance state (LRS) to high resistance state (HRS) and
can be tuned by a specific voltage. If a proper positive voltage
is applied across the device, the resistance will change from
HRS to LRS, known as a SET operation. Conversely, applying
a reverse voltage will cause the resistance to change from LRS
to HRS, known as a RESET operation. An MLC ReRAM
has one or more middle resistance states (MRSs) between
LRS and HRS, which can be achieved by precisely controlling
the programming voltage [23]. The MRSs of an MLC device
can be used to represent different logic values. Although,
the ReRAM devices can be theoretically programmed to any
target conductance, it is not realistic to use this character
in practice [24] [25]. For reducing the hardware storage and
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Fig. 1. ReRAM-based NN architecture. (a) Positive and negative weights
are represented by two crossbars, and the output is the subtraction of two
crossbars. (b) Internal structure of a crossbar, designed to implement MVM.

computing resources, the ReRAM devices are assumed to be
programmed to a limited number of target levels in this paper.

CNNs include convolution layers and fully connected layers.
Both are MAC operations and can be converted into matrix-
vector multiplications (MVMs). The 1T1R (one transistor and
one ReRAM)-based crossbar can be employed as a matrix-
vector multiplier [26] to accelerate NNs using the architecture
shown in Fig. 1. Since weights in NNs are either positive or
negative, two crossbars are used to represent the weight matrix,
with one storing the positive weights and the other storing
the negative weights [27] [28]. The absolute value of each
weight is first converted into a binary number. Then, depending
on the polarity of the weight, the bits of the binary number
are used to configure multiple ReRAM devices in either the
positive or the negative crossbar, while zero is written into
the other crossbar. The output is the subtraction result of the
two crossbars. In each crossbar, the input data are converted
into a vector of voltage signals by a digital-to-analog converter
(DAC) on each row. Usually, the DAC resolution is not very
high [5]. Therefore, the input is divided into multiple bits and
applied on the wordline cycle by cycle. The bitline current is
converted into a voltage signal and fed into a sample-and-hold
(S&H) unit for temporary storage. It is followed by an analog-
to-digital converter (ADC). As the area of an ADC is relatively
large, only one ADC is usually employed in each crossbar
array with a time-multiplex fashion to perform conversion for
each column. Each binary weight is represented by multiple
ReRAMs with each having a different significance in binary
coding. The output of the ADC is therefore required to be
shifted. Besides, as the input voltage is divided into several
cycles, the output of the ADC is further required to be shifted
in each cycle and summed up to get the final result of the
MVM.

B. ReRAM Resistance Variation

Despite of the promising applications of ReRAM on NN
accelerators, the ReRAM devices suffer from resistance vari-
ations where the actual resistance deviates from the target
value. There are two components of the variation in mem-
ristive devices, that are device-to-device variation (DDV) and
cycle-to-cycle variation (CCV) [24] [29] [30]. DDV (spatial
variation) refers to the resistance variations among different
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cells mainly due to immature fabrication processes, such as
oxide thickness variations and line edge roughness [30]. The
DDV indicates the time-invariant deviations from the target re-
sistance values for different cells which usually follows a log-
normal distribution [24] [25]. Alternatively, CCV (temporal
variation) means that different amount of resistance variations
can occur in the same cell at different programming cycles due
to stochastic filament-based switching [30]. The CCV imposes
a time-varying additive resistance variation for each device
regarding to different programming cycles, which typically
follows a normal distribution [29].

In this work, we put emphasis on dealing with the DDV.
The reasons are as follows. First, CCV is typically dominant
for the on-device training where the weights are required to
be written and updated frequently [31]. Alternatively, DDV is
mainly considered for off-device training where weight matrix
is only written into the crossbar once and followed by multiple
read operations for inference process. In this study, the off-
device training method is employed for reducing hardware
cost and eliminating extra writing operations on RRAM-
crossbars [18]. Second, there exist multiple write-and-verify
methods [3] [13] [14] [32] to alleviate the resistance deviations
induced by CCV. Unfortunately, there still lacks of effective
ways to eliminate the DDV which is time-invariant and specific
to the device with current imperfect fabrication processes. The
DDV problem is of high priority and importance in current
research stage.

In general, the actual resistance R′ of an ReRAM cell, under
the effect of DDV, follows a log-normal distribution according
to recent studies [3] [24]:

R′ = R0 · eθ θ ∼ N(0, σ2), (1)

where R0 is a target resistance value of ReRAM and θ follows
a normal distribution with zero mean and a standard deviation
of σ, ranging from 0 to 1.0 in the previous work [21] and
this work. A large σ indicates a large resistance variation. As
mentioned in [15], we can detect the DDV by programming
each device to a target state and sensing the deviation between
the target state and the actual value. During the testing, the
dedicated automated test equipment (ATE) [33] or built-in self-
test (BIST) [34] [35] structure can be used to get the variation
information of ReRAM devices.

C. Related Works

A previous work [3] proposed to reduce the device resis-
tance variations by repeatedly applying constant reset pulses
to the ReRAM devices until the resistance level reaches the
target range. Additionally, the Incremental Step Pulse and
Verify Algorithm (ISPVA) was proposed in [13] [14]. It
iteratively reads the actual resistance and writes it with higher
programming voltage. However, these two methods have a
common drawback: the frequent write operations for tuning
the ReRAM resistance would inevitably shorten the device
lifetime [36].

To overcome the resistance variations, some training meth-
ods were proposed to achieve robust NNs, including off-device
training and on-device training. A variation-aware training
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Fig. 2. The overall flow of the proposed unary coding with variation-aware
optimal mapping method, from NN training to coding, mapping, and testing.

method called Vortex was presented in [15]. It considers the
variations during the training phase of the SLP and iteratively
tunes a global parameter to obtain a relatively optimal weight
matrix, which has a certain ability to tolerate device variations.
The previous work [16] leveraged the self-healing capability
of the NNs to decrease those weights that are mapped to
the abnormal ReRAMs with large variations in the training
phase for SLP. Unfortunately, these two approaches are not
applicable to multi-layer perceptron (MLP) and CNN where
the errors can be accumulated and amplified through multiple
layers. Alternatively, the previous work [17] proposed a device
variation-aware (DVA) training method which trains the DNN
with random noise to get a robust model. DVA training cannot
cope with large resistance variations as it does not take into
account the variation information of each device. Moreover,
this method exploits the redundancy of the NN, while the
redundancy of the DNN is limited. The previous work [18]
proposed a software and hardware co-design method to get
higher accuracy in CNN, even under large device variations.
The off-device training was employed to get a relatively high
accuracy while the on-device training was used to further
suppress the accuracy loss. However, the on-device training
still needs to rewrite the ReRAMs, which is harmful for device
endurance with shortened lifetime. Furthermore, the methods
in [15], [16], [18] use only one device to represent the floating-
point weight, which is unrealistic for MLC in current process
technology. In most architectures, the MLC in ReRAM-based
NN accelerator can be 2-bit or 3-bit, far below the precision
of a floating-point data. Furthermore, the above methods all
utilize the traditional binary coding to represent the synaptic
weights. With the traditional binary coding, the MSBs are
more significant than the other bits. Therefore, the weight
deviations can be amplified, which induces significant loss of
NN accuracy in the presence of large resistance variations.
Furthermore, the MLC devices are commonly employed for
reducing the hardware cost in NNs. Since the significance of
an MLC bit is larger than that of a single-level cell (SLC) bit,
the accuracy degradation of binary coding-based NNs is even
worse under resistance variations.
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Fig. 3. An example for representing decimal value 10 in binary and unary
coding: (a) For SLC; (b) For 2-bit MLC. The binary coding has only one
form to represent the same value while the unary coding has multiple forms.

III. PROPOSED UNARY CODING AND VARIATION-AWARE
OPTIMAL MAPPING SCHEME

We propose a novel unary coding with variation-aware op-
timal mapping method to tolerate the resistance variations for
MLC ReRAM-based NNs. The overall flow of the proposed
method is shown in Fig. 2. First, we use a few iterations
to retrain the NN model to obtain the quantized NN model.
In the quantization process, we quantize the weights before
inference in each training batch. Then, each synaptic weight
is coded based on the proposed unary coding method (see
Section III-A) with MLC devices (see Section III-B) for
decreasing the weight deviation in the presence of resistance
variations. The optimal mapping scheme (see Section III-C)
is also applied to get the minimum weight error based on the
pre-detected resistance variations information to further reduce
the accuracy loss. Finally, we calculate the NN accuracy of the
proposed method on the test dataset.

A. Proposed Unary Coding Method

In the binary coding, each bit has different significance.
If a binary number has n bits, the significances from the
least significant bit (LSB) to the MSB are 20, 21, . . . , 2n−1,
respectively. In contrast, the unary coding has all the bits of
the same significance, equal to 20 = 1, and the encoded value
is expressed as the sum of all the bits. Thus, it essentially
uses the number of 1s in the coding to represent a value, not
the position of 1s. The straightforward unary coding maps 1s
first, followed by 0s. Fig. 3(a) shows examples of the unary
coding and binary coding with SLCs for the decimal value
of 10. With 4 bits, the binary coding is 1010. For the unary
coding, in order to represent the same range as the 4-bit binary
coding, which is [0, 15], 15 bits are needed. Thus, the unary
coding for 10 contains ten 1s and five 0s.

The floating-point number, such as float32, is typically used
in the training phase. If the NN model is deployed on a
customized hardware, the overhead of using floating-point
number is unacceptable. The weight is typically quantized
to multiple-bit ReRAMs for reducing data storage and com-
putation complexity in the binary coding [28], such as int8.
Recent study [37] proved that NNs can be compressed in 2bit
without accuracy degradation. However, the variations on the
MSBs will magnify the weight deviation from the expectation
severely in the traditional binary coding, as these bits have

- 1 5 - 1 0 - 5 0 5 1 0 1 5
0

2

4

6

- 1 5 - 1 0 - 5 0 5 1 0 1 5
0
2
4
6
8

RM
SE

W e i g h t  R a n g e

 B i n a r y
 U n a r y

( b )

RM
SE

W e i g h t  R a n g e

 B i n a r y
 U n a r y

( a )

Fig. 4. The Root Mean Squared Error (RMSE) of the unary coding and
the binary coding for all possible weights in the range [−15, 15]. (a) Fifteen
SLCs for a synaptic weight. (b) Five 2-bit MLCs for a synaptic weight. The
device resistance variation parameter σ is set as 0.5.

��� ��� �� � � �� ��

�

�

	

��

��

��� ��� �� � � �� ��

�

�

�

�

�

�

Nu
mb

er O
f  D

evi
ces

W e i g h t  R a n g e
( a )

 B i n a r y
 U n a r y

Nu
mb

er O
f  D

evi
ces

W e i g h t  R a n g e
( b )

 B i n a r y
 U n a r y

Fig. 5. The number of required devices of the unary coding and the binary
coding for all possible weights in the range [-15,15]. (a) Based on SLCs. (b)
Based on 2-bit MLCs.

larger significance. Alternatively, when the weight is unary
coded, due to the equivalent significance of each bit, the weight
deviation is reduced.

We perform simulation to demonstrate that the unary coding
has lower deviation than the corresponding binary coding for
representing the same value of weight. We use Root Mean
Squared Error (RMSE) to measure the error of each possible
weight with 50000 times Monte-Carlo simulation. Fig. 4(a)
shows the RMSE of weight for the binary coding and the unary
coding using SLCs. We assume σ = 0.5 in Eq. (1). The range
of weights under consideration is [−15, 15]. For representing
a synaptic weight in this range, fifteen SLC ReRAMs are
required for the unary coding, while four SLC ReRAMs are
needed for the binary coding. The number of required devices
of the unary coding and the binary coding for all possible
weight in the range [−15, 15] is shown in Fig. 5(a) with SLCs.
As shown in Fig. 4(a), the RMSE of the binary coding is larger
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TABLE I
THE FOUR RESISTANCE AND CONDUCTANCE VALUES IN A 2-BIT MLC.

Logic state 0 1 2 3

Conductance 1
1000·LRS

334
1000·LRS

667
1000·LRS

1
LRS

Resistance 1000 · LRS 3 · LRS 1.5 · LRS LRS

Symbol HRS MRS1 MRS2 LRS

than that of the unary coding in the whole range. Therefore,
the unary coding causes less error for weight representation.

B. Unary Coding with Multi-level Cell

An SLC has two resistance levels and can represent a 1-
bit value. Using SLC to represent a synaptic weight requires a
large number of ReRAMs. In contrast, an MLC has more than
two resistance levels and can represent a value of more than
one bit. For an MLC with 2k resistance levels, it can represent
a value of k bits. We call it a k-bit MLC or a 2k-level MLC.
Note that the number of levels of a device does not have to be
an integer power of 2. An MLC can also be 3-level, 5-level,
etc. Using MLC can shorten the encoding length. For example,
to represent a value in the range [0, 2n − 1], n and 2n − 1
SLCs are needed in the binary and unary coding, respectively.
When 2k-level MLCs are used, only

⌈
n
k

⌉
and

⌈
2n−1
2k−1

⌉
of them

are needed in the binary and unary coding, respectively. The
number of required devices to represent the same weight range
is shown in Fig. 5(b) with 2-bit MLCs. Comparing Figs. 5(a)
and (b), by using MLCs, the gap between the unary coding and
the binary coding shrinks. For example, to encode a decimal
weight of 15, the unary coding with SLCs needs 11 more
devices than that for binary coding as shown in Fig. 5(a).
Alternatively, only 3 more devices are required for unary
coding with 2-bit MLCs than that for binary coding as shown
in Fig. 5(b).

Nowadays, the 2-bit MLC devices are widely used in NN
architectures with current synthesis technology [5]. Each 2-
bit MLC device can represent four different integral values
0, 1, 2, and 3. Fig. 3(b) shows two possible unary codings
for the value 10 using 2-bit MLCs. Indeed, five 2-bit MLCs
have the same representation range as fifteen SLCs for unary
coding. In this case, with the help of MLC, only one third
of ReRAMs are needed in comparison with SLC. The four
different conductance levels of a 2-bit MLC are typically
uniformly distributed. Current fabrication shows that the HRS-
to-LRS ratio can reach 1000 [38], which is used in this study.
The four resistance and conductance values in a 2-bit MLC
are listed in Table I. The four different resistance levels LRS,
MRS2, MRS1, and HRS represent four logic states 3, 2, 1,
and 0, respectively.

From Sections III-A, each bit in the proposed unary coding
with MLCs has equivalent significance. Therefore, all the bit
positions are interchangeable without influencing the weight
value. As shown in Fig. 3(b), the decimal number 10 can
have many forms in the unary coding, such as “33310” and
“22222”. This makes the unary coding more flexible.

The RMSE of the unary coding and binary coding with 2-
bit MLCs is compared in Fig. 4(b). To represent a synaptic
weight range of [−15, 15], five 2-bit MLCs are required for
the unary coding, while two 2-bit MLCs are needed for the
binary coding. Compared with the case with SLCs as shown
in Fig. 4(a), the RMSEs of both unary coding and binary
coding increase. Nevertheless, the RMSE of the unary coding
with MLCs is still lower than that of the binary coding with
MLCs for each synaptic weight, which shows the feasibility by
using MLC-based unary coding to tackle the device variation
problem.

Note that the unary coding has lower weight precision (i.e.,
smaller weight range) than the binary coding, which may
degrade the NN accuracy. Therefore, we use a few training
iterations to retrain the NN model to obtain the quantized NN
model. In the quantization process, we quantize the weights
before inference in each training batch. Then, the quantized
NN model will have a smaller accuracy loss due to the
reduction of the weight precision.

C. Proposed Variation-aware Optimal Mapping Scheme

In this section, a variation-aware optimal mapping scheme
is proposed to further lower the weight error and hence, the
accuracy loss of NN, considering the resistance variations of
MLC ReRAMs in crossbar arrays.

In this study, we use N MLCs with L levels to represent a
weight. Assume that all the resistances follow the log-normal
distribution in Eq. (1) with the same σ. The actual conductance
of the k-th (1 ≤ k ≤ N ) ReRAM G′k follows the distribution:

G′k = Gk · e−θk , θk ∼ N(0, σ2),

where Gk (Gk ∈ {0, 1, . . . , L− 1}) is the target conductance
value of the k-th (1 ≤ k ≤ N ) ReRAM and θk is a normally
distributed random variable specific to the k-th ReRAM. The
actual weight w′ can be represented as

w′ =

N∑
k=1

G′k =

N∑
k=1

Gk · e−θk . (2)

Under device variations, there exists an inevitable deviation
between the actual weight and the target value. The goal of
the proposed optimal mapping scheme is to find the optimal
unary coding form to minimize the deviation, which can be
formulated as the following optimization problem:

min

∣∣∣∣∣
N∑
k=1

Gk · e−θk − w

∣∣∣∣∣
s.t. Gk ∈ {0, 1, . . . , L− 1}, for 1 ≤ k ≤ N.

The variables of the optimization problem are the target
conductances Gk (1 ≤ k ≤ N). The constraint is that Gk
must be an integer in the range {0, 1, . . . , L− 1}. Note that
the widely-used MLC is 2-bit or 3-bit. Correspondingly, L
is no more than 8. The value of N is also small, as a large
N means a large hardware cost. Therefore, LN is not large
and we apply an exhaustive search over all LN possible Gk
combinations to find the optimal solution.
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ReRAM1 ReRAM2 ReRAM3 ReRAM4 ReRAM5

e-θ 1.1 0.92 1.2 0.85 1.05

0,0,0,0,0

…
2,2,2,2,2

…
3,2,0,2,3

…
3,3,0,1,3

…
3,3,3,3,3

(1.1, 0.92, 1.2, 0.85, 1.05)*

…
3,2,0,2,3

…

…

Minimum 

error

45 permutations

Mapping decimal value “10” to ReRAMs

Basic unary coding

Priority mapping Optimal mapping

Fig. 6. An example of optimal mapping. Decimal value 10 is mapped to
five 2-bit MLCs with the randomly assumed device conductance variance
coefficients.

Fig. 6 gives an example of the proposed optimal mapping
method. Assume that each weight is represented by five 4-
level MLCs and that the target weight is 10. The table in
Fig. 6 lists the variance coefficients e−θk of the five devices.
As noted in Section III-B, the unary coding has multiple forms
for representing the same weight. To get the optimal form with
the lowest weight error, we enumerate a total of 45 possible
Gk combinations from “00000” to “33333”. Then, we get the
actual weight of each combination by applying Eq. (2). We
find that the weight error is minimized when the unary coding
form is “32023”. The actual weight for “32023” is

w′ = 1.1×3+0.92×2+1.2×0+0.85×2+1.05×3 = 9.99.

Compared to the target weight of 10, the weight error is |9.99−
10| = 0.01. It is the smallest error among all possible Gk
combinations. Therefore, we adopt “32023” as the optimal
unary coding form for mapping a weight of 10 in ReRAM
devices.

To demonstrate the effectiveness of the proposed optimal
mapping scheme, we further compare it with two other existing
unary coding mapping methods. In the first method, all the
components in the code are set as equal as possible, which
makes the variance of the actual weight statistically lowest.
For example, to represent the decimal weight of 10, it produces
the unary coding “22222”. The actual weight when mapping
“22222” to the five MLCs in Fig. 6 is:

w′ = 1.1× 2 + 0.92× 2 + 1.2× 2 + 0.85× 2 + 1.05× 2

= 10.24.

Thus, it has a weight error of 0.24. Note that, we use this
kind of unary coding format as the basic unary coding for
comparison in the rest of paper.

The second method is the previously proposed priority
mapping [21], which maps the lower resistance state to the
devices with lower resistance variation. For example, it uses

“33013” to represent the decimal weight of 10 based on the
variance coefficients in Fig. 6. The actual weight is

w′ = 1.1× 3 + 0.92× 3 + 1.2× 0 + 0.85× 1 + 1.05× 3

= 10.06.

Thus, it has a weight error of 0.06, which is still larger than
the proposed optimal mapping method. The optimal mapping
can therefore obtain the lowest weight error as compared to
the other two mapping methods.

Fig. 7 shows the weight errors of the optimal mapping
(“Unary opt”), priority mapping (“Unary prio”), and basic
unary coding (“Unary basic”) for all weights in the range
[−15, 15]. Five 2-bit MLCs are used to represent a synaptic
weight with unary coding. The RMSE is calculated with σ
set to 0.5. As shown in Fig. 7, the proposed optimal mapping
provides the lowest RMSE among all the mapping methods.
By considering the variation information of MLCs, the RMSE
of “Unary prio” is lower than that of “Unary basic”. Over
the entire weight range, the average RMSE of the optimal
mapping is reduced by 88.3% compared with the basic unary
coding and by 81.2% compared with the priority mapping. As
the optimal mapping scheme makes the weight more accurate,
the accuracy loss of NN is expected to be reduced.
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Fig. 7. The Root Mean Squared Error of basic mapping, priority mapping, and
optimal mapping of unary coding for all the weights in the range [−15, 15].
We use five 2-bit MLC to represent a synaptic weight with unary coding. The
device resistance variation parameter σ is set as 0.5.

IV. SIMULATION RESULTS

A. Simulation Setup

We evaluated our proposed method with two NNs
(ResNet18 [39] and Vgg16 [40]) on two datasets (CI-
FAR10 [41] and ImageNet [42]). The CIFAR10 dataset con-
sists of 10 classes of color images with size 32×32, while the
ImageNet dataset consists of 1000 classes of color images with
size 224×224. We implemented the NN models with Pytorch
machine learning framework and ran them on a Nvidia 2080Ti
GPU.

The simulation results are divided into two parts: accuracy
and hardware performance. As shown in Fig. 8, we build an
accuracy simulator based on Python and a hardware simulator
based on C++. The accuracy simulator is faster and can get the
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NN accuracy for a test dataset, while the hardware simulator
is slower and can get the energy and area for calculating a
single input picture.

Python

Accuracy on test dataset

Focus on weight precision

C++

Hardware performance on single 

input picture (cycle-accurate)

Focus on hardware architecture

Accuracy Energy / Area

Simulator

Fig. 8. The simulator used in this paper is implemented by Python and C++.
The Python part is used to obtain the accuracy of NN with mapping scheme
on the entire test dataset. The C++ part is used to obtain the energy required
for the calculation of a single input image and the overall area of chip.

The accuracy simulator is based on Monte Carlo simulation.
We used σ shown in Eq. (1) to measure the degree of variation.
We chose σ ranging from 0 to 1.0, as the σ in most fabrication
processes does not exceed 1.0 [43]. The simulation flow of
ReRAM variation in NN is shown in Fig. 9. We simulated the
process of mapping the quantized weights to the corresponding
ReRAM by setting the conductance of each cell to a certain
level, and then injecting a log-normal distributed variation to
the conductance. Afterwards, we updated the corresponding
weight with respect to the new conductance. Finally, we
conducted inference with the modified model on the test
dataset to get the classification accuracy. The whole evaluation
flow is based on cell’s resistance, making the results more
accurate.

Conductance 

of each cell

Add variations

New conductance

of each cell
+Weight Modified weight 

Fig. 9. The simulation flow of ReRAM variation in NN.

The hardware simulator is cycle-accurate. It can calculate
the energy consumption and area of the architecture based on
the data from ISAAC [5] as listed in Table II. The architecture
for the binary coding is the same as that in ISAAC, which
is shown in Fig. 10. Each chip is assumed to be composed
of 168 tiles. Each tile has 12 in-situ multiply-accumulates
(IMAs), which are the basic computation units in ISAAC.
Eight 128×128 1T1R crossbars and some peripheral circuits,
such as ADC, DAC, S&H, shifter and adder, input register
(IR), and output register (OR) are included in each IMA.

The architecture for the unary coding is almost the same
as that for the binary coding except that the “shifter + adder”
can be replaced by an adder. Since the energy and area of
the “shifter + adder” only account for a small portion in the
IMA, we still use the “shifter + adder” in the simulation of the

TABLE II
THE PARAMETERS OF NEURAL NETWORK ACCELERATOR

ARCHITECTURE [5].

Component Params Spec Power Area (mm2)

eDRAM size 64 KB
20.7 mW 0.083Buffer num banks 2

bus width 256 b

eDRAM num wire 384 7 mW 0.09
-to-IMA bus

Router
flit size 32

42 mW
0.151

num port 8 (shared by
4 tiles)

Sigmoid number 2 0.52 mW 0.0006
Shift and Add number 1 0.05 mW 0.00006

MaxPool number 1 0.4 mW 0.00024
Output Register size 3 KB 1.68 mW 0.0032

Total 40.9 mW 0.215 mm2

IMA properties (12 IMAs per tile)

ADC*
resolution* 8 bits

16 mW 0.0096frequency 1.28 GSps
number 8

DAC
resolution 1 bit

4 mW 0.00017number 8× 128

Sample and Hold number 8× 128 10 uW 0.00004

Memristor array
number 8

2.4 mW 0.0002size 128× 128
bits per cell 2

Shift and Add number 4 0.2 mW 0.00024
Input Register size 2 KB 1.24 mW 0.0021

Output Register size 256 B 0.23 mW 0.00077

IMA Total number 12 289 mW 0.157 mm2

1 Tile Total 330 mW 0.372 mm2

168 Tiles Total 55.4 W 62.5 mm2

Hyper Transport
links/freq 4/ 1.6GHz

10.4 W 22.88link bw 6.4 GB/s

One Chip Total 65.8 W 85.4 mm2

*The resolution of ADC depends on the number of levels in ReRAM
devices in this study.

architecture for the unary coding. Therefore, the unary-coding
and binary-coding architectures have the same energy and area
if they have the same N and L.

B. Accuracy

In this section, we compared the NN accuracy for various
weight coding and mapping methods under resistance varia-
tions. We tested them using ResNet18 on ImageNet dataset.
The weights are represented by four 2-bit MLCs in the
simulation, which makes the weights encoded by the binary
coding have a precision of 8 bits. It is known that the 8-
bit quantized weights has the same NN accuracy as using
the floating-point weights. For the unary coding, it can only
represent weights in the range [0, 12].

The comparison of various methods is shown in Fig. 11.
“Ideal” refers to the ideal accuracy where the floating-point
weights are used. “Binary” refers to traditional binary coding.
The binary coding gets a large accuracy loss when variation
exists. Even with σ of 0.2, it has nearly 20% loss. The basic
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DAC: Digital-to-analog converter

ADC: Analog-to-digital converter

XB: ReRAM crossbar

S+H: Sample and hold

IR: Input register

OR: Output register

S+A: Shifter and add

IMA: In-suit multiply-accumulate

Fig. 10. The architecture of the ReRAM-based NN accelerator. The cycle-
accurate simulator is built based on this architecture to get the energy and
area.

unary coding method, indicated by the curve “Unary basic”, is
better for this situation, which is 10% higher than the binary
coding. However, with the increase of variation σ, both the
binary and unary codings have a large accuracy drop.

“Unary prio” refers to the previously published priority
mapping with unary coding [21]. “Unary prio DVA” fur-
ther adds the DVA training to “Unary prio”. The “DVA”
method [17] is conducted to train a robust NN model by adding
random noise to weights at the training phase. The essence of
NN training is to find a point in the weight space minimizing
the loss function. Generally, the loss function change near
the minimum point is steep, and the ability to resist weight
deviation is poor. The “DVA” method adds a certain degree
of random noise to the weights in the training phase in order
to find a point in the weight space with a relatively small loss
function (e.g., accuracy drop no more than 1%). Although the
loss function at this point is not the smallest, the vicinity is flat,
even if the weights fluctuate greatly. Thus, the NN accuracy
will not be greatly affected even under resistance variations.
This method essentially exploits the redundancy in the NN.
However, it is less effective for big dataset such as ImageNet
and deep NN such as ResNet18. As shown in Fig. 11,
the “Unary prio” is close to the “Unary prio DVA” curve,
demonstrating the ineffectiveness of the DVA method. Thus,
we only reproduce the “Unary prio” method for comparison
in the following part. Under a large variation of σ = 1.0, the
priority mapping method has more than 60% loss compared
with the ideal accuracy of 89.066%.

Our proposed optimal mapping with unary coding is shown
in the “Unary opt” curve. Compared to the “Unary prio”, our
proposed method has only 4.4% loss when σ = 1.0, which
shows great variation tolerance of our proposed method.

Note that, a large part of the accuracy loss in “Unary opt” is
due to the lower representation precision of the unary coding.
Even after quantization training, the unary coding gives an
accuracy of 87.014% at σ = 0.0, which is 2.052% lower
than the ideal one. In this work, we only used the simplest
quantitation training method. If a more effective quantization
training method is used, the accuracy could be higher.

The accuracy of various methods for four different com-

0.0 0.2 0.4 0.6 0.8 1.0
Variation 
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Fig. 11. The top5 accuracy of ResNet18 on ImageNet dataset by varying σ
from 0 to 1.0 among different methods. Both the number of ReRAMs for
representing a weight and the MLC level are set to be 4 for these methods.

binations of NN and dataset is listed in Table III. As shown
in previous works, the larger the σ, the lower the accuracy
of NN. Therefore, we chose an extreme value of σ as 1.0. If
the proposed method can still guarantee a small accuracy loss
under this extreme case, the accuracy loss is also small for
σ < 1.0. The accuracy for σ as 1.0 is listed in Table III. The
“Ideal” row gives the ideal accuracy with floating-point format
weights and no variation injected. All the other methods use
four 2-bit MLCs to represent a weight to make their hardware
costs equal.

We calculate the accuracy loss of our proposed method
by subtracting the accuracy of “Unary opt” from that of
“Ideal”. We can see that the proposed “Unary opt” method
has small accuracy loss for all the four combinations of NN
and dataset. Indeed, the proposed method gets less than 0.89%
top1 accuracy loss on CIFAR10 dataset, and less than 4.45%
top5 accuracy loss on ImageNet dataset. The row “Unary opt
- Binary” shows the accuracy improvement of the proposed
“Unary opt” method over the traditional binary coding. We
can see that the proposed method has at least 62.58% higher
accuracy than the traditional binary coding. We also compare
the accuracy difference between the previous “Unary prio”
and the proposed method, as shown in the row “Unary opt
- Unary prio”. We can see that we can get more accuracy
improvement from “Unary prio” to “Unary opt” for Vgg16
on ImageNet dataset. The reason is that the “Unary prio”
method has lower accuracy on large dataset such as ImageNet.
Furthermore, the “Unary prio” has even lower accuracy for
NN with more weights such as Vgg16.

C. Energy and Area

In this section, we evaluate the hardware overheads of the
proposed method and study the trade-off between hardware
overhead and test accuracy of NNs. We mainly focus on two
factors influencing the energy and area of the chip: ReRAM
number (N ) for representing a weight and MLC level (L).

In the cycle-accurate simulator, “shift + adder” is used to
accumulate the outputs of the ADCs without shift operations.
Note that, the input data to the DACs and the output data of
the “shifter + adder” are all binary coded. Only the weights
in the crossbars are in unary coding.
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TABLE III
ACCURACY OF IDEAL, BINARY CODING, UNARY CODING, UNARY CODING+PRIORITY MAPPING, AND UNARY CODING+OPTIMAL MAPPING FOR FOUR

COMBINATIONS OF NN AND DATASET. WE SET N = 4, L = 4, AND σ = 1.0.

Network ResNet18 Vgg16 ResNet18 Vgg16
Dataset CIFAR10 CIFAR10 ImageNet ImageNet

Accuracy / % top1 top1 top1 top5 top1 top5
Ideal 94.30 93.66 69.68 89.07 73.36 91.52

Binary 10.83 10.59 0.11 0.51 0.11 0.49
Unary basic 12.56 10.23 0.11 0.54 0.10 0.56
Unary prio 74.16 74.23 18.30 39.36 2.87 9.11
Unary opt 94.22 92.77 62.69 84.62 67.57 88.09

Unary opt - Binary 83.39 82.18 62.58 84.11 67.46 87.60
Unary opt - Unary prio 20.06 20.54 44.39 45.26 64.70 78.98
Loss (Ideal - Unary opt) 0.08 0.89 6.99 4.45 5.79 3.43

We calculated the energy consumption of processing a
single input image. The crossbar frequency is set to be 10
MHz, while the ADC frequency is set to be 1.28 GHz to
ensure that in each crossbar cycle, ADC can complete the
conversion of 128 columns.

The ADC resolution is determined by the MLC level. For 1-
bit DAC, 128-row crossbar array, and L-level MLC, the ADC
resolution is

r = dlog2 [(L− 1)× 128× 1]e . (3)

In this work, the successive approximation register (SAR)
ADC is used. It contains a capacitive DAC. The power and
area of the capacitive DAC increase exponentially with the
ADC resolution, while those of the remaining part of the SAR
ADC increase linearly [44]. We estimate the power and area
of the ADC following this model using the data in [45].

Based on the above discussion, we can see that the MLC
level L affects the ADC power and area and hence, the
chip energy and area. Besides, the ReRAM number N for
representing a weight determines the number of crossbar and
hence, the chip area and energy. In summary, the energy and
area are functions of N and L. This can be expressed as

Energy / Area = f(N, L). (4)

In this experiment, we varied N from 1 to 5 and L from 2 to
10. We tested the accuracy of the ResNet18 on CIFAR10 at
σ of 1.0.

Fig. 12 shows the relationship between the energy and the
NN accuracy. Different colors correspond to different numbers
of ReRAMs used for representing a weight, ranging from
1 to 5. Different dots on a curve represent different MLC
levels, which vary from 2 to 10 with a step size of 2. The
bottom left dot on each curve means using 2-level ReRAM
to represent a weight, while the upper right dot means using
10-level MLCs. An ReRAM of 2 levels corresponds to an
SLC, while ReRAMs of 4 and 8 levels correspond to 2-bit
and 3-bit MLCs, respectively. In the unary coding, we do
not need to set the ReRAM level as a power of 2 as in the
binary coding. Therefore, ReRAMs of 6 and 10 levels are
also possible, making the use of the device more flexible. The
figure shows that, with the increase of the MLC level, the
accuracy improves, but the energy increases. As the ReRAM
number increases, the energy increases significantly. It can
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Fig. 12. The relationship between computing energy and NN accuracy with
variation σ set to 1.0. The NN and the dataset are ResNet18 and CIFAR10,
respectively. For each curve, from the lower left corner to the upper right
corner, L is from 2 to 10 with a step size of 2.

be explained as follows. When L increases, the increase in
energy consumption mainly comes from the increase in ADC,
as its resolution is higher. However, when L doubles, the ADC
resolution does not double, making the energy increase less
than 100%. The increase of N affects the number of tiles
activated in the computing. When N doubles, the numbers
of crossbars and tiles used almost double, thus doubling the
energy. Therefore, the energy is more sensitive to N , rather
than L. This indicates that in order to achieve an acceptable
accuracy while minimizing the energy, a high MLC level and
a small ReRAM number are preferred.

As shown in the figure, there exists a trade-off between
the energy and accuracy. We further identify a good trade-
off point. In many situations, NN accuracy is of high priority.
Therefore, we set an acceptable accuracy as 1% less than the
ideal accuracy. The vertical dotted line in Fig. 12 corresponds
to the acceptable accuracy. We then look for a point with the
smallest y-coordinate near the vertical line. We find that the
point corresponding to L = 8 and N = 2 has the lowest energy
with only 1.1% accuracy loss. It is the best number and level
configuration for such a combination of NN and dataset.

Similarly, we also show the relationship between the area
and the NN accuracy in Fig. 13. The area is the total area
of all the modules in a chip. Different colors correspond to
different numbers of ReRAMs used for representing a weight,
ranging from 1 to 5. Different dots on a curve correspond to
different MLC levels, ranging from 2 to 10 with a step size
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Fig. 13. The relationship between area and NN accuracy with variation σ set
to 1.0. The NN and the dataset are ResNet18 and CIFAR10, respectively. For
each curve, from the lower left corner to the upper right corner, L is from 2
to 10 with a step size of 2.

of 2. The bottom left dot in each curve means 2 levels, while
the upper right dot means 10 levels. From this figure, we find
that, with the increase of the ReRAM number, the area of
the chip increases significantly, as more crossbars are needed
to store the weights. The area also increases with the MLC
level, and the larger the ReRAM number, the faster the area
increases with MLC level. This is because with the MLC level
increasing, the area of the ADC increases and hence, the area
of a tile. When the ReRAM number is larger, more tiles are
needed. Thus, the faster the chip area will increase. From this
figure, we can conclude that in order to achieve an acceptable
accuracy while minimizing the area, a high MLC level and a
small ReRAM number are preferred.

Similarly, we also try to find the configuration of N and L
that gives the smallest area while having an accuracy loss no
more than 1% over the ideal case. Fig. 13 shows that the point
has L = 8 and N = 2, and its accuracy loss is just 1.0%.

In order to show the impact of different configurations
of N and L on each hardware module, we calculated the
energy consumption ratio and area ratio of each module
in the chip with the hardware simulator. Fig. 14(a) shows
the energy breakdown of several major hardware modules,
including DAC, ADC, Crossbar, Shift and Adder (S&A),
and Embedded memory & Inter-tile link (Mem&Link). Their
energy consumption accounts for a considerable proportion.
The sum of the energy of all the other modules accounts for
less than 0.2%, so these modules are not listed. Fig. 14(b)
shows the area breakdown of DAC, ADC, Crossbar, Shift
and Adder (S&A), and Embedded memory & Inter-tile link
(Mem&Link) and the other modules. The figure presents three
typical configurations of N = 2 and L = 2 (N2L2), N = 2
and L = 8 (N2L8), and N = 8 and L = 2 (N8L2).

As shown in Fig. 14(a), when N remains unchanged, the
proportion of energy consumed by ADC increases significantly
with L. This is because increasing L will increase the energy
consumption of the ADC. When L remains unchanged, the
energy consumption of each part almost keeps constant with N
varying. This is because increasing N will result in an increase
in the number of times each module is activated, but the energy
ratio of each module remains unchanged. For area, Fig. 14(b)
shows that the increase of L will cause the area ratio of the
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Fig. 14. (a) The energy breakdown and (b) area breakdown of DAC,
ADC, Crossbar, Embedded memory&Inter-tile Link, S&A, and other modules.
“N2L2”, “N2L8”, and “N8L2” means two 2-level MLCs, two 8-level MLCs,
and eight 8-level MLCs for representing a synaptic weight, respectively.
Network and dataset are ResNet18 and CIFAR10, respectively.

ADC increases. This is because with L increasing, the ADC
area increases, while the areas of the other modules are not
affected. From the figure, we can also see that an increase in N
or L will increase energy and area. By comparing the energy
consumption and area of N8L2 with those of N2L8, we also
find that the increase in energy consumption and area caused
by increasing N is more than those caused by increasing L.
This aligns with the previous conclusion that a high MLC level
L and a small ReRAM number N are preferred.

The above conclusions on energy and area are obtained for
ResNet18 and CIFAR10. We actually conducted simulations
for all the four combinations of NN and dataset, and the results
are listed in Table IV. In this table, two different preferences
are considered. The first is on lower hardware cost such as
energy and area and the corresponding results are listed in
the “HW” rows. The second is on lower accuracy loss and
the corresponding results are listed in the “ACC” rows. The
tuning variables are the ReRAM number N for representing a
weight and the MLC level L, which are shown in the “N&L”
column. For example, “N2L8” means using two 8-level (3-bit)
MLC to represent a synaptic weight. The number of tiles that
is required for each case is also listed in Table IV. We also
set an accuracy loss limit at σ = 1.0. For the simpler dataset
CIFAR10, the constraint is more restrictive. The top1 accuracy
loss is set to be less than 1%. For the more complex dataset
ImageNet, it is hard to guarantee 1% accuracy loss. Therefore,
we set a looser accuracy constraint aiming at top5 accuracy
with less than 5% accuracy loss.

From this table, it can be seen that lower energy and area
are achieved when the ReRAM number is small. Indeed, for
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TABLE IV
THE TRADE-OFF BETWEEN ACCURACY LOSS AND ENERGY/AREA ON FOUR

COMBINATIONS OF NN AND DATASET. “HW” MEANS THAT THE
PREFERENCE IS ON LOWER ENERGY AND AREA AND “ACC” MEANS THAT

THE PREFERENCE IS ON LOWER ACCURACY LOSS. IN “N&L” COLUMN,
THE NUMBER AFTER THE LETTER “N” DENOTES THE RERAM NUMBER,

WHILE THE NUMBER AFTER THE LETTER “L” DENOTES THE MLC LEVEL.
THE ACCURACY LOSS IS OBTAINED AT σ = 1.0.

NN&Dataset Preference N&L Tiles Loss Energy/mJ Area/mm2

ResNet&CIFAR HW N2L8 43 1.10% 0.96 42.86
ACC N4L4 71 0.08% 1.7 52.81

Vgg&CIFAR HW N2L8 92 1.00% 0.57 65.63
ACC N4L4 176 0.89% 1.01 119.94

ResNet&ImageNet HW N2L10 44 6.40% 55.62 46.54
ACC N4L4 73 4.45% 83.47 53.65

Vgg&ImageNet HW N2L10 358 6.32% 26.61 261.14
ACC N4L4 709 3.43% 47.03 413.24

all the combinations of NN and dataset, lower energy and
area are achieved when N = 2. This is because when fewer
ReRAMs are used to represent a weight, a crossbar can store
more weights and fewer IMAs and tiles are needed to deploy
the whole NN. To maintain a high accuracy at the same time,
we need a relatively large MLC level to make a wide enough
range for weight, e.g., L = 8 for CIFAR10 and L = 10 for
ImageNet.

The “ACC” rows all have N = L = 4. This configuration
is a good trade-off between the energy/area and the accuracy
loss. Although it does not leads to the lowest energy and
area, it has a lower accuracy loss. However, it is definitely
not the configuration with the minimum accuracy loss. In
the unary coding, when the loss is minimum, the range of
the weights needs to be as close as possible to the case of
binary coding. This will cause N and L to be unacceptably
large, which is obviously unnecessary. Therefore, if there are
no strict restrictions on energy and area, “N4L4” is a better
configuration with a relatively high accuracy.

The simulation data further verifies the previous conclusions
and gives how to choose the ReRAM number and MLC
level under the condition of energy or area limit. Minimal
energy and area are achieved at “N2L8” for small dataset like
CIFAR10 and at “N2L10” for big dataset like ImageNet. If
we want a good tradoff between hardware cost and accuracy,
“N4L4” is a good choice.

V. CONCLUSION AND FUTURE WORKS

ReRAM-based crossbars can be used to accelerate NN
inference. However, the immature fabrication process of the
ReRAM devices leads to severe resistance variations, which
degrades the accuracy of ReRAM-based NN accelerators. We
propose a new unary coding method to represent synaptic
weights for achieving reliable ReRAM crossbar-based NNs by
leveraging its characteristics that the significance of different
bits is the same and hence, it will not amplify the deviation of a
particular device. A variation-aware optimal mapping scheme
based on MLC ReRAMs is also proposed to work together
with unary coding to further reduce the NN accuracy loss. Our
simulation results show that the proposed method makes the
ReRAM-based NN accelerators more tolerant to large device
variations, even with large dataset like ImageNet. Besides,

through the trade-off study between the energy/area and the
NN accuracy, we demonstrate that a high MLC level and a
small ReRAM number are preferred to achieve an acceptable
accuracy while minimizing the energy and area.
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