
Linear Feedback Shift Register Reseeding for Stochastic Circuit Repairing and
Minimization

Chen Wang1, Weikang Qian1,2,∗
1University of Michigan-Shanghai Jiao Tong University Joint Institute, 2MoE Key Laboratory of Artificial Intelligence

Shanghai Jiao Tong University, Shanghai, China
Email: wangchen 2011@sjtu.edu.cn, qianwk@sjtu.edu.cn; ∗corresponding author

Abstract—Stochastic computing (SC) is a re-emerging
paradigm to realize complicated computation by simple circuitry.
Although SC has strong tolerance to bit flip errors, manufac-
turing defects may still cause unacceptably large computation
errors. SC circuits commonly adopt linear feedback shift registers
(LFSRs) for stochastic bit stream generation. In this study, we
observe that the computation error of a faulty LFSR-based SC
circuit can be reduced by LFSR reseeding. We propose novel
methods to use LFSR reseeding to 1) repair a faulty SC circuit
and 2) minimize an SC circuit by constant replacement. Our
experiments show the effectiveness of our proposed methods.
Notably, the proposed SC circuit minimization method achieves
an average 36% area-delay product reduction over the state-
of-the-art fully-shared LFSR design with no reduction of the
computation accuracy.

I. INTRODUCTION

Stochastic computing (SC) is a re-emerging paradigm to
perform complicated computation by simple circuitry [1]. Un-
like conventional binary computing based on radix-2 numbers,
SC operates on stochastic bit streams, which encode data
through the ratios of 1s in the streams. SC circuits generally
retain fairly low complexity. For example, the multiplication of
two numbers requires only one AND2 gate by SC. Moreover,
SC enjoys strong tolerance to bit flip errors, due to the equal
weight for all the bits in the encoding. However, SC is subject
to errors due to random fluctuation [2]. Therefore, SC is
usually applied to error-tolerant applications such as image
processing [3], neural networks [4], and decoding of error-
correcting codes [5].

Just like conventional digital circuits, an SC circuit can be
faulty due to manufacturing defects, which may lead to a large
systematic error. Therefore, even if an SC circuit is applied in
a fault-tolerant scenario, the error caused by the fault may
still violate the error constraint of the application, causing the
circuit to be discarded. Thus, a lightweight repair method for
faulty SC circuits is desirable.

Another issue with SC is that it usually requires long
bit streams to achieve high computation accuracy. For each
computation, the same number of clock cycles as the bit
stream length is needed. Thus, although an SC circuit has a
small critical path delay and power consumption, its overall
computation latency and energy consumption are still large.
Therefore, further minimization of the SC circuit is still
desirable to reduce its latency and energy consumption.

One common type of SC design uses linear feedback shift
registers (LFSRs) to provide stochastic bit streams [1] and

it is the focus of this work. An LFSR outputs a pseudo-
random number sequence controlled by its seed, i.e., the initial
state of its registers. In this study, we consider selecting a
new LFSR seed (hereafter called LFSR reseeding) as a new
dimension to reduce the output error of a faulty LFSR-based
SC circuit. As adopted by the test community for a long time,
LFSR reseeding has become widely used for test compression
by skipping inefficient test patterns [6]. It is worth noting
that a previous work applied LFSR reseeding to improve the
accuracy of SC circuit [7]. However, it focused on fault-free
SC circuits. In our work, we focus on faulty SC circuits. By
changing the seeds of the LFSRs in an SC circuit, we can
change the stochastic bit streams and hence, the computation
accuracy. Thus, a faulty SC circuit may be repaired without
any modification to its hardware.

Our major contributions are listed as follows.
1) We observe a unique property of SC that a faulty LFSR-

based SC circuit can be repaired by LFSR reseeding
without any hardware modification.

2) We propose an efficient method to repair a faulty LFSR-
based SC circuit by LFSR reseeding (see Section IV).
Through a one-time offline characterization, it signifi-
cantly reduces the number of LFSR seed vectors that need
to be considered during the online repair stage by 585×
over a straightforward repairing method.

3) We propose a method to minimize an SC circuit by
iteratively setting an internal signal to a constant 0 or
1 (hereafter called constant replacement) at design time
(see Section V). Although it introduces error, we reduce
the error by LFSR reseeding. Our experimental results
show that this method can reduce the area-delay product
(ADP) of the state-of-the-art shared LFSR-based SC
circuit by 36% on average without increasing error.

II. RELATED WORKS

In this section, we discuss related works on SC circuit
testing and minimization.

1) SC Circuit Testing: A previous work proposed a to-
mographic testing method to test and diagnose the faults
existing in an SC circuit [8]. The method tests a manufactured
SC circuit multiple times to obtain the distribution of its
output values, which is then compared to the theoretical output
distribution. However, it is only applicable to SC circuits based
on true random number sources, which are not as mature as
SC circuits based on LFSRs. Furthermore, faulty SC circuit

repair is not considered. In contrast, our work considers test
and repair for the more common LFSR-based SC designs.

2) SC Circuit Minimization: A number of prior works
propose various minimization methods for the SC circuit.
Some of them focus on the minimization of the SC core, which
is the main computing unit of an SC circuit. For example,
the works [9], [10] propose heuristic methods to minimize
the SC core. Recent works [11], [12] further explore target
function approximation to reduce the hardware cost of the SC
core. Other works consider improving the stochastic number
generator (SNG) by methods like LFSR output scrambling [7],
[13], D flip-flop insertion [14], [15], and the application of
low-discrepancy (LD) sequence-based random number gener-
ators [16], [17]. The SC circuit minimization method proposed
in our work is orthogonal to those prior methods. For instance,
it can be applied to the LD sequence-based SC circuit design
by reconfiguring the address counters or the direction vectors
prestored in the memory to reduce the output error, thus
improving the SC design.

III. PRELIMINARIES

The general architecture of the SC circuits considered in
this work is shown in Fig. 1, which consists of an LFSR-based
SNG, an SC core, and a stochastic-to-binary converter (SBC).
Specifically, the LFSR-based SNG takes the binary variables
and coefficients as input, and generates the corresponding
stochastic bit streams that are processed by the following SC
core. The output bit stream of the SC core is then converted
back to a binary output by the SBC. For any SC circuit design
satisfying the general architecture such as the ones in [2],
[9], [18]–[20], our approach is applicable. For clarity, in the
following, we illustrate our method using an SC circuit design
proposed in [18], which is shown in Fig. 2.

LFSR-based

SNG
SC core SBC

Input variables

Coefficients
Result

Fig. 1. The general architecture of the SC circuit considered in this study.

The circuit realizes a degree-n univariate Bernstein poly-
nomial with precision parameter m approximating a target
arithmetic function. It satisfies the general architecture shown
in Fig. 1. The SNG includes n pairs of k-bit LFSR and proba-
bility conversion circuit (PCC) implemented by a comparator
(CMP). They generate n bit streams for a k-bit binary input
variable x by comparing x with the pseudo-random numbers
produced by the LFSRs. The SNG also includes an m-bit
LFSR. Its m cells provide m bit streams with value 0.5 as
the coefficients. All the bit streams are then fed into an SC
core that transforms them into an output bit stream realizing
the target function. The output stream is finally converted to
a binary number by the SBC implemented by a k-bit counter.
The bit stream length is set as (2k − 1), as each k-bit LFSR
has a period of (2k−1). Since this design has (n+1) LFSRs,
it needs (n + 1) seeds for these LFSRs. We define a seed
vector as (s1, s2, · · · , sn+1) to represent these seeds. Since the
accuracy of an LFSR-based SC circuit depends on the seeds

of its LFSRs [7], we assume that each LFSR has extra ports to
support the load of a given seed. Thus, LFSR reseeding can be
supported by these extra ports with no hardware modification.

k-bit LFSR #n
k-bit

CMP

x[0:k-1]

xn

k-bit counter

k-bit

CMP

k-bit LFSR #1 k-bit

CMP

x1

x2

k-bit LFSR #2

k-bit input
variable

......
clk

seed S1

seed S2

seed Sn

...

z[0:k-1]

k-bit output
result

clk

clk

clk

y1

y2

ym

...

stochastic number generator (SNG)

...

 SC core SBC

PCC

combinational

circuit
seed Sn+1

clk
m-bit

LFSR

...

Fig. 2. An SC circuit design proposed in [18].

For the SC design, ideally, each input bit stream of the SC
core should be independent. Therefore, in this example, each
of the first n LFSRs for the input variable is based on a unique
maximum-length feedback polynomial, which determines its
output. Note that these input bit streams can also be generated
by a single LFSR with its output scrambled [13]. This gives a
much smaller SNG, but at the cost of accuracy loss. In what
follows, we call the design with different LFSRs for different
inputs the unshared-LFSR design and the one with an LFSR
shared by multiple inputs the shared-LFSR design.

Although we illustrate our methods using a design shown
in Fig. 2 that only implements univariate functions, it can
be extended to handle multivariate polynomials [10]. Besides,
many univariate functions are important, e.g., tanh(x) and
the sigmoid function 1/(1+ exp(−x)), which are used as the
activation functions in machine learning.

IV. REPAIR FAULTY SC CIRCUITS BY LFSR RESEEDING

In this section, we present the details on repairing faulty SC
circuits by LFSR reseeding. Since an SC circuit is relatively
simple, it is extremely rare for it to have multiple faults
simultaneously. Thus, we assume that only a single fault exists
in a manufactured SC circuit. Our proposed method is not
limited to any specific fault model. The output error of the SC
circuit is measured by either the worst-case absolute error
(WCAE) or the mean absolute error (MAE) [10] over all
possible values of the input variable for a specific seed vector.

Assume v∗ is the optimal seed vector that gives the mini-
mum output error over all possible seed vectors for the fault-
free SC circuit and e∗ is the corresponding output error. We
call them the reference seed vector (RSV) and the reference
output error (ROE), respectively. An SC circuit is claimed
faulty if its output error under the RSV exceeds the given
error bound eb.

One straightforward method to repair a faulty SC circuit Cf

by reseeding is to randomly generate a large set of seed vectors
and try them one by one on Cf . If a seed vector reduces the
output error below the given error bound, we find a repair to
the circuit. Otherwise, if none of the seed vectors succeeds,

Cf is considered irreparable. One drawback of this method is
that a large number of seed vectors need to be tried to achieve
a decent repair rate.

To reduce the number of seed vectors to be tried, we propose
a two-stage method consisting of an offline characterization
stage and an online test-and-repair stage. The offline stage
characterizes all the possible faults, while the online stage
further selects a small set Vp of seed vectors to efficiently
repair the faulty SC circuit. Next, we describe the details.

A. Offline Characterization Stage

Algorithm 1: The proposed offline characterization algo-
rithm for SC circuit repair.

Input : a fault-free SC circuit C0, the reference output error e∗,
and the reference seed vector v∗.

Output : set of faults S1.
1 construct a set V of candidate seed vectors;
2 S1 ← ∅;
3 foreach possible fault f in C0 do
4 inject f into C0 to obtain the SC circuit Cf ;
5 simulate Cf under v∗ and obtain output error e; f.ev∗ ← e;
6 if e ≤ e∗ then continue;
7 flag← false; emin ← +∞; vmin ← null;
8 foreach seed vector v in V do
9 simulate Cf under v and obtain output error e;

10 if e ≤ e∗ then flag← true; f.er ← e; f.vr ← v; break;
11 else if e < emin then emin ← e; vmin ← v;
12 if flag is false then f.er ← emin; f.vr ← vmin;
13 S1 ← S1 ∪ {f};
14 return S1;

The offline characterization procedure is shown in Algo-
rithm 1. Line 1 builds a set V of candidate seed vectors. To
make our proposed method flexible, we assume that the given
error bound eb varies with the application and hence, is not
known during the offline stage. However, one thing for sure
is that eb must be no less than the ROE e∗, i.e., eb ≥ e∗.
Otherwise, even the fault-free SC circuit cannot be used.

We associate each fault f with three entries, namely, ev∗ , vr,
and er. Denote the SC circuit with fault f as Cf . Specifically,
ev∗ holds the output error of Cf under the RSV v∗, vr is
a special seed vector in V described below, and er keeps the
output error of Cf under vr. The vector vr is special in that if it
cannot repair Cf (i.e., er > eb), then no other vector in V can
repair Cf . We call such a vector decisive seed vector (DSV).
As shown in Fig. 3(a), all the faults of the SC circuit can be
partitioned into two subsets, S0 and S1, where S0 consists of
all the faults with ev∗ ≤ e∗, while S1 keeps the remaining
faults. Clearly, a circuit Cf with the fault f ∈ S0 needs not
be repaired, since its ev∗ ≤ e∗ ≤ eb. Thus, we only need
to consider the faults in S1. The offline stage identifies S1

together with the three entries of each fault in S1.
To achieve the target, for each possible fault f in the input

fault-free circuit C0, Line 4 first obtains the circuit Cf by
injecting f into C0. Line 5 simulates Cf under v∗ to obtain
the output error e, which is then assigned to the entry ev∗ of
fault f . If e ≤ e∗, by definition, the fault f belongs to S0 and
it can be skipped (Line 6). Line 7 initializes flag to false. Then,
for each seed vector v in V , Line 9 simulates Cf under v to
obtain its output error e. If e ≤ e∗, Line 10 sets flag to true,
assigns e and v to the entries er and vr of fault f , respectively,

0 0

S1

(a) (b)

S1

S1

Fig. 3. Fault space partition for an SC circuit. (a): a bi-partition considered
in the offline characterization stage; (b): a refined partition considered in the
online test-and-repair stage when a specific error bound eb is known. The
dotted region represents the set of faults for deriving the seed vectors for
online repair.

and exits the inner loop. As flag is now true, Line 12 is skipped
and Line 13 adds fault f into set S1. Otherwise, if e is smaller
than the running minimum output error emin, emin and vmin

are updated by e and v, respectively (Line 11). After all the
seed vectors in V have been evaluated, if variable flag is still
false, the two entries er and vr of f are assigned with emin

and vmin, respectively (Line 12). Then, Line 13 adds fault f
into set S1. Finally, Line 14 returns set S1.

Note that the seed vector vr found by the above procedure
for each fault f is a DSV. Clearly, the corresponding er
belongs to one of the following two cases: 1) er ≤ e∗; 2)
er > e∗. For the first case, vr clearly can repair the faulty
circuit Cf , as er ≤ e∗ ≤ eb. For the second case, vr actually
is the seed vector in V with the minimum output error. Thus,
if vr cannot repair Cf (i.e., er > eb), neither can any other
seed vector in V . By definition, vr is a DSV.

The offline characterization is a one-time step. Ideally, set V
used in the offline characterization should contain all possible
seed vectors, but this can cause a long runtime of the offline
characterization. To reduce the runtime, we propose a speedup
technique to reduce the size of V . For the unshared-LFSR
design with n k-bit LFSRs and a single m-bit LFSR, the total
number of seed vectors is (2k − 1)n(2m− 1). If (2k − 1) is a
multiple of (2m−1), then all these seed vectors can be divided
into (2k − 1)n−1(2m − 1) equivalent classes, each containing
(2k − 1) seed vectors with the same output error. If such a
condition holds, we can select a representative seed vector
for each equivalent class, which reduces the number of seed
vectors by (2k − 1) times. To further reduce the runtime, a
user-defined threshold M is applied. If the total number of
representative seed vectors does not exceed M , they will all
be put into the set V for evaluation. Otherwise, we randomly
generate M representative seed vectors and put them into V .
Usually, with a larger M and hence a larger set V , more faults
can be repaired, however at the cost of higher runtime.

B. Online Test-and-Repair Stage

In this stage, the user-defined output error bound eb is given.
The first step of this stage is to perform online testing on each
fabricated SC circuit to obtain its output error under the RSV
v∗. If its output error exceeds eb, it is identified as faulty.

After testing, we perform online repair to the identified
faulty SC circuits. Note that we do not diagnose the fault.

Instead, we directly try seed vectors from a small set Vp to
check whether the circuit can be repaired. For this purpose, we
first identify a set of faults f ∈ S1 so that the faulty circuit
Cf needs repair and can be repaired. For the other faults,
the circuits with the faults either do not need repair or are
irreparable.

Since eb is known now, the faults of the faulty circuits Cf

that need repair are those in S1 with the entry ev∗ larger than
eb. Moreover, by the definition of DSV, Cf can be repaired if
and only if the entry er of f does not exceed eb. Therefore,
Cf needs repair and can be repaired if and only if f is a fault
in S1 with er ≤ eb and ev∗ > eb, which is located in the
dotted region shown in Fig. 3(b). Then, the entries vr of all
the faults in that region are collected to form the set Vp. These
seed vectors in Vp are then sequentially applied to the circuit
under repair. As soon as a seed vector reduces the output error
below the given error bound, the circuit is repaired. Otherwise,
the circuit is declared irreparable.

V. MINIMIZE SC CIRCUIT BY CONSTANT REPLACEMENT
WITH LFSR RESEEDING

In this section, we elaborate our method that minimizes the
SC circuit by constant replacement at design time together
with LFSR reseeding. Usually, LFSRs occupy a large part of
an SC circuit area. The LFSR sharing approach can effectively
reduce the LFSR area [13], [19]. With the LFSR area reduced,
PCC becomes the most area-consuming part in an SC circuit.
For example, as reported in [19], in a shared-LFSR SC filter
circuit, the PCC occupies 84.6% of the total area. Thus, it is
imperative to reduce the PCC area, which is our target.

The basic operation we use to minimize PCC is replacing
an internal signal by a constant 0 or 1, a technique used
in approximate circuit design [21]. It can further lead to
the simplification of the adjacent gates of the signal, which
effectively reduces the hardware cost of the circuit.

To guide our optimization procedure, we use ADP to
measure the hardware cost. For the unshared-LFSR design,
we denote the area of its ith LFSR as ALFSR,i, and the area
and delay of the counter as ACNT and DCNT, respectively. Since
both the CMP-based PCC and the SC core are combinational
circuits and they are connected together, we consider them
as a whole combinational circuit with area and delay denoted
as Acomb and Dcomb, respectively. By analyzing the circuit,
we find that the ADP of the unshared-LFSR design can be
evaluated as(

n+1∑
i=1

ALFSR,i +Acomb +ACNT

)
· (Dcomb +DCNT) .

Note that the above ADP model can also be extended to the
shared-LFSR design.

Now, we present the entire minimization procedure shown
in Algorithm 2. Given an input SC circuit C0 and an error
bound eb, we minimize the PCCs in the SC circuit by iterative
constant replacement. Line 1 initializes the current circuit
C as C0 and the best seed vector vbest as the RSV v∗.
In each iteration of the main loop, all possible constant

Algorithm 2: The proposed algorithm of SC circuit mini-
mization by constant replacement with LFSR reseeding.

Input : an SC circuit C0, the given output error bound eb, and
the reference seed vector v∗.

Output : the minimized SC circuit C and the best seed vector
vbest.

1 initialize: C ← C0; vbest ← v∗;
2 while true do
3 S ← ∅;
4 foreach possible constant replacement r in the PCCs of C do
5 apply r to C to yield a new SC circuit Cr ;
6 apply LFSR reseeding to Cr to get the minimum output

error emin and its corresponding seed vector vmin;
7 r.vmin ← vmin; r.ADP ← ADP of Cr ;
8 if emin ≤ eb then add r into S;
9 if S 6= ∅ then

10 identify r∗ ∈ S leading to the minimum ADP and apply
r∗ to C to update C;

11 vbest ← r∗.vmin;
12 else return C, vbest;

replacements for the PCCs of the circuit C are evaluated one
after another (Lines 4–8). By constant replacement, the output
error may exceed the given error bound. In order to recover
the computation accuracy, Line 6 applies LFSR reseeding to
obtain the seed vector vmin that leads to the minimum output
error emin. Line 7 associates the replacement r with vmin

and the ADP of the circuit with r applied. If emin does not
exceed eb, this replacement is added into set S (Line 8). After
all the constant replacements are evaluated, if set S is not
empty, then the replacement r∗ in S leading to the minimum
ADP is selected to be actually applied to C to achieve the new
circuit (Line 10). We also assign r∗.vmin to vbest (Line 11).
Then, we continue to the next iteration, working on the new
circuit. Otherwise, if S is empty, the process terminates by
returning the current SC circuit C and vbest (Line 12). Note
that a constant replacement may eliminate an entire PCC. In
this case, the LFSR connected to the PCC is also removed.

VI. EXPERIMENTAL RESULTS

In this section, we show the experimental results obtained
by a computer with a 6-core Intel CPU of 4.1 GHz and a
16GB memory. Logic synthesis and technology mapping were
done by ABC [22] with the commands “resyn2;map” using the
Nangate 45 nm standard cell library [23].

A. Unshared-LFSR Design

In this section, we present the experimental results for the
unshared-LFSR SC design shown in Fig. 2. The benchmarks
are the SC circuits synthesized by [10] to realize different
target functions listed in Table I. We set k as 8. Therefore, the
bit stream length is 255.

TABLE I
THE BENCHMARK INFORMATION. n AND m ARE PARAMETERS OF THE SC

DESIGN IN FIG. 2.

ID (n,m) function ID (n,m) function ID (n,m) function
1 (4,4) cos(x) 5 (6,6) cos(x) 9 (6,6) tanh(x)
2 (4,4) exp(−x) 6 (6,6) exp(−x) 10 (6,6) exp(−2x)
3 (4,4) tanh(4x) 7 (6,6) tanh(4x) 11 (6,6) 1/(1 + exp(−x))
4 (4,4) x2.2 8 (6,6) x2.2 12 (6,6) 0.5 cos(πx) + 0.5

For each benchmark, we need to obtain the RSV and
the ROE. For those benchmarks with (n,m) = (4, 4), we

enumerate all the 2553 ·15 representative seed vectors to get
the RSV and the ROE. For the remaining benchmarks with
(n,m) = (6, 6), the number of seed vectors is prohibitively
large. We obtain the RSV and the ROE from 3E+8 randomly
generated seed vectors.

1) Repairing Faulty SC Circuits by LFSR Reseeding: In
this section, we first check the performance of the proposed
faulty SC circuit repair method for handling stuck-at faults
(SAFs). For each benchmark, all possible SAFs existing in
the LFSRs, the CMPs, the SC core, and the counter are
considered. We apply the method described in Section IV to
obtain the repaired SAFs. The parameter M used in the offline
characterization stage is set as 1E+4. Since the number of
all possible representative seed vectors exceeds M , set V in
Algorithm 1 consists of M randomly generated representative
seed vectors.

TABLE II
SAF REPAIRING RATES (%) BY LFSR RESEEDING FOR DIFFERENT WCAE

AND MAE BOUNDS.

BM WCAE bound MAE bound
ID 0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
1 15.5 15.3 12.7 5.8 9.0 18.8 13.6 8.4 8.3 13.6
2 – 15.0 18.4 15.8 7.2 – 13.6 22.3 19.2 20.7
3 0 3.5 8.2 4.8 2.7 0 3.8 8.9 5.3 3.0
4 32.0 20.1 5.3 8.6 9.3 35.6 27.1 9.7 9.4 8.8
5 44.2 28.8 8.3 29.9 39.3 11.2 20.8 37.6 32.4 14.8
6 19.4 10.6 24.3 18.3 17.3 14.6 21.5 13.5 4.4 8.1
7 28.7 32.4 51.1 40.9 28.1 40.2 20.2 7.1 12.0 11.5
8 37.9 40.6 39.8 30.4 42.3 33.5 28.8 33.3 20 35.1
9 31.1 30.0 34.0 31.8 26.7 25.4 32.4 25.9 26.6 42.3

10 26.7 11.5 13.2 17.8 25.3 26.5 27.4 20.2 10.6 2.3
11 24.8 25.0 8.4 6.4 10.5 21.6 23.9 33.7 27.3 32.1
12 38.2 23.7 27.9 25.7 9.1 25.4 24.5 9.1 46.1 37.7

In order to quantitatively evaluate the repairing effective-
ness, we define the metric repairing rate as the ratio of
the number of repaired SAFs after LFSR reseeding over the
number of SAFs causing the error violation before LFSR
reseeding. Table II shows the repairing rate for each bench-
mark for different WCAE and MAE bounds. Notably, 6 and
7 out of the 12 benchmarks have the maximum repairing rate
exceeding 30% for WCAE and MAE, respectively. Therefore,
the proposed LFSR reseeding method can effectively repair
the SAFs existing in these benchmarks.

We further compare the cost of the online repair stage of
our proposed method to that of the straightforward method
for those WCAE bounds listed in Table II. Assuming each
SAF is equally likely to occur in the fabricated circuits, we
measure the cost by the number of seed vectors evaluated,
which is proportional to the amount of computational effort
needed. For both methods, the same set V of 1E+4 random
seed vectors are evaluated, giving the same repairing rates
shown in Table II. However, our proposed method achieves
an average cost reduction of 585×, showing its very high
efficiency.

2) Minimizing SC Circuit by Constant Replacement with
LFSR Reseeding: We apply constant replacement to the PCCs
of the SC circuit, and obtain the minimized SC circuit satis-
fying the given error bound. The error bound is set as αe∗,

where α is the relative error bound and e∗ is the ROE. We
consider WCAE here, and similar evaluation can also be done
for MAE. After each constant replacement, 1E+3 randomly
generated representative seed vectors are evaluated for LFSR
reseeding.

TABLE III
EXPERIMENTAL RESULTS FOR SC CIRCUIT MINIMIZATION BY CONSTANT

REPLACEMENT WITH LFSR RESEEDING.

BM SC circuit WCAE minimum #8-bit area delay total ADP run-
ID under test bound WCAE LFSR (µm2) (ps) (improvement) time(s)

1
original - 8.84E-3 4 337.3 408.8 137892 –
α = 1.1 9.73E-3 8.84E-3 4 337.3 408.8 137892 (0%) 210
α = 1.5 1.33E-2 1.26E-2 2 195.0 335.3 65367 (52.6%) 748

2
original - 2.95E-2 4 331.4 415.2 137597 –
α = 1.1 3.24E-2 2.92E-2 2 192.3 331.3 63721 (53.7%) 1158
α = 1.5 4.42E-2 4.16E-2 2 186.7 316.4 59086 (57.1%) 1314

3
original - 1.84E-2 4 326.4 399.6 130409 –
α = 1.1 2.02E-2 1.84E-2 4 326.4 399.6 130409 (0%) 88
α = 1.5 2.75E-2 1.84E-2 4 326.4 399.6 130409 (0%) 101

4
original - 7.99E-3 4 337.0 394.7 133033 –
α = 1.1 8.78E-3 7.99E-3 4 337.0 394.7 133033 (0%) 184
α = 1.5 1.20E-2 1.15E-2 3 267.1 374.6 100046 (24.8%) 633

5
original - 7.89E-3 6 492.6 458.1 225666 –
α = 1.1 8.68E-3 7.89E-3 6 492.6 458.1 225666 (0%) 1610
α = 1.5 1.18E-2 1.10E-2 2 213.3 353.1 75320 (66.6%) 15443

6
original - 7.54E-3 6 492.9 468.2 230778 –
α = 1.1 8.29E-3 7.54E-3 6 492.9 468.2 230778 (0%) 1622
α = 1.5 1.13E-2 1.06E-2 2 216.3 359.1 77658 (66.3%) 5874

7
original - 1.56E-2 6 508.3 443.5 225437 –
α = 1.1 1.72E-2 1.72E-2 5 383.8 381.5 146439 (35%) 3216
α = 1.5 2.34E-2 2.15E-2 5 365.2 363.9 132907 (41%) 4972

8
original - 9.60E-3 6 482.3 535.8 258368 –
α = 1.1 1.06E-2 9.60E-3 6 482.3 535.8 258368 (0%) 1742
α = 1.5 1.44E-2 1.42E-2 6 439.7 436.6 191979 (25.7%) 11614

Table III shows the experimental results for the first 8
benchmarks. Under a strict relative error bound α = 1.1,
both benchmarks 2 and 7 achieve an ADP improvement. As
α increases to 1.5, all the benchmarks except the 3rd one
gain significant ADP improvement. Notably, benchmarks 5
and 6 have more than 66% ADP reduction. The increase of α
or (n,m) leads to the runtime increase, since more constant
replacements are evaluated.

original

Fig. 4. Normalized ADP of the minimized SC circuit with different relative
(a) WCAE and (b) MAE bounds over that of the fault-free case. The ADPs
of the fault-free case are listed at the top of each category.

Fig. 4 shows the ADPs of the remaining benchmarks 9 to
12 minimized under different WCAE and MAE bounds. For
α = 1.1, none of these benchmarks have ADP reduction.
However, as α increase to 1.5, 23.7% and 27.6% average
ADP reductions are achieved for WCAE and MAE bounds,
respectively.

Therefore, together with LFSR reseeding, applying constant
replacement to the PCCs can significantly minimize the SC

circuit while meeting the given error bound.
3) Case Study on Gamma Correction: We evaluate our

proposed SC circuit minimization method on gamma correc-
tion for image processing. The LFSR-based SC circuit im-
plementing the gamma correction function x0.45 is first built,
where the SC core is implemented by [10] with parameters
(n,m)=(4, 4). 10 sample images of size 256×256 from [24]
are evaluated.

TABLE IV
COMPARISON BETWEEN THE ORIGINAL AND THE MINIMIZED GAMMA

CORRECTION SC CIRCUITS UNDER 1.02 RELATIVE WCAE BOUND.

SC circuit WCAE actual #const. #8-bit area delay ADP
bound WCAE replace LFSR (µm2) (ps) (improv.)

original – 6.64E-2 0 4 337.3 456.2 154014
minimized 6.77E-2 6.70E-2 12 3 246.8 350.3 86476 (43.85%)

We consider WCAE, and set the output error bound as
1.02 times the ROE. Table IV compares the original circuit
and the minimized one. For the minimized circuit, its actual
WCAE satisfies the error bound, while achieving a 43.85%
improvement in ADP. Thus, the hardware cost is effectively
reduced. Fig. 5 visualizes the image processing results for
one sample image. Comparing the processed image shown in
Fig. 5(c) to the reference image shown in Fig. 5(b), we can
see that there is no significant difference.

(a) (b) (c)

Fig. 5. One sample image for the gamma correction application. (a): the
original image; (b): the reference image by mathematical calculation; (c): the
image processed by the minimized SC circuit after reseeding.

TABLE V
AVERAGE QUALITY METRICS OF 10 SAMPLE IMAGES PROCESSED BY

DIFFERENT SC CIRCUITS.

SC circuit PSNR (dB) MSE WCAE MAE
original 30.43 9.61E-4 6.62E-2 2.53E-2

minimized before reseeding 26.76 2.18E-3 9.71E-2 3.99E-2
minimized after reseeding 28.12 1.57E-3 6.70E-2 3.46E-2

Next, four quality metrics, namely peak signal-to-noise
ratio (PSNR), mean square error (MSE), WCAE, and MAE,
are evaluated for each processed image with regard to the
reference image obtained by mathematical calculation. As
shown in Table V, after minimization, all the 4 metrics degrade
from that of the original circuit. By reseeding, all these metrics
are recovered but are still worse than that of the original
circuit. Nevertheless, WCAE of the image processed by the
minimized circuit after reseeding is only 0.9% worse than the
ROE. However, the hardware cost of the SC circuit measured
by ADP is reduced by 43.85%. This shows the effectiveness
of the proposed minimization method.

B. Shared-LFSR Design

As mentioned in Section III, the state-of-the-art shared-
LFSR design is more area efficient than the unshared-LFSR
design. In this section, we study the effectiveness of our
proposed techniques for shared-LFSR designs.

4-bit

LFSR

8-bit

CMP

x[0:7]

8-bit

counter

8-bit

CMP

8-bit

CMP

seed S1

seed S2

z[0:7]

8-bit

CMP

8-bit

LFSR #1
x[0:7]

x[0:7]

x[0:7]

clk

SC

core

x4

x1

x2

y1

y2

y4

x3

y3

clk

clk

(a) (b)

8-bit

LFSR #2

4-bit

LFSR

8-bit

CMP

x[0:7]

8-bit

counter

8-bit

CMP

8-bit

CMP

seed S1

seed S2

z[0:7]

8-bit

CMP

8-bit

LFSR #1
x[0:7]

x[0:7]

x[0:7]

clk

SC

core

x4

x1

x2

y1

y2

y4

x3

y3

clk

clk

clk

seed S3

8-bit wire for scrambled LFSR output normal wire

Fig. 6. (a) Fully shared LFSR design and (b) partially shared LFSR design.

Fig. 6(a) shows the fully-shared design of an SC circuit to
realize a target arithmetic function with parameters (n,m)=
(4, 4). All the 4 CMP-based PCCs share a single 8-bit LFSR.
The outputs of the LFSR are permuted by the pattern with the
minimum average stochastic circuit correlation among 5E+5
random permutations similar to the method in [13].

The fully-shared design effectively reduces the area of the
SC circuit. However, its computation accuracy suffers a large
degradation. Therefore, we propose a partially-shared design
as shown in Fig. 6(b) with an additional 8-bit LFSR. Each
8-bit LFSR has a unique feedback polynomial, and its two
output permutations are in reverse order to maximize their
independence [13]. Among the 4 benchmarks in Table I with
(n,m) = (4, 4) (i.e., benchmarks 1 to 4), the fully-shared
design for benchmark 3 has a very large WCAE. Thus, in
the following experiments, we ignore benchmark 3 and only
test on benchmarks 1, 2, and 4.

We first evaluate the effect of LFSR reseeding to repair
the faulty shared-LFSR designs. SAFs are considered. Note
that the numbers of representative seed vectors for the fully-
shared and the partially-shared designs are 15 and 255 · 15,
respectively. Since the numbers are relatively small, all of these
vectors are evaluated for LFSR reseeding.

TABLE VI
REPAIRING RATES (%) BY LFSR RESEEDING FOR DIFFERENT WCAE

BOUNDS.

BM WCAE bound
ID 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

fully 1 – 7.32 3.31 3.42 4.17 4.35 0 0 0 1.69
shared 2 – 7.69 4.17 0.69 2.11 2.22 0 0 0.76 0

4 – 4.52 2.25 0 4.88 0 0.67 0.67 2.03 10.64
partially 1 25.55 10.19 10.96 7.44 5.08 20.35 6.32 0 0 2.27
shared 2 – 13.5 6.63 13.64 15.65 13.53 5.04 4.27 4.35 5.26

4 14.35 8.99 8.44 5.71 6.57 1.54 2.5 5 17.24 18.92

Table VI shows the repairing rates of each design under
different WCAE bounds. Comparing the maximum repairing
rates denoted in bold, those for the partially-shared design are
larger than those for the fully-shared design. This indicates that

LFSR reseeding is more effective to repair the partially-shared
design because of its larger LFSR reseeding search space.

n
o

rm
al

iz
ed

m
in

im
u
m

 W
C

A
E

n
o

rm
al

iz
ed

 A
D

P

original fully-shared

 minimized fully-shared (proposed) minimized partially-shared (proposed)

benchmark ID benchmark ID
1 2 4 1 2 4

2.205E-2 3.338E-2 2.571E-2 87651 86578 84524

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 7. Normalized (a) minimum WCAE and (b) ADP of the minimized
fully-shared and partially-shared SC designs by constant replacement. The
absolute values for the original fully-shared design are listed at the top of
each category.

We further evaluate the effect of LFSR reseeding in min-
imizing shared-LFSR designs by constant replacement. We
consider WCAE here, and set the error bound as the ROE of
the original fully-shared design. As the results in Fig. 7 show,
for the fully-shared design, despite its rather limited LFSR
reseeding search space consisting of only 15 seed vectors, the
ADP on average has a 36% reduction over the original design
within the given error bound. This surprising result indicates
that our method can further reduce the hardware cost of the
state-of-the-art fully-shared design.

For the partially-shared design, as it has a larger LFSR
reseeding search space than the fully-shared one, we can see
that by constant replacement together with LFSR reseeding,
its output WCAE further reduces over the fully-shared de-
sign with constant replacement. However, its average ADP
degrades a little. Nevertheless, its ADP is on average 27.5%
smaller than that of the original fully-shared design. This result
shows a new way to design low-cost high-accuracy SC circuit.
Compared to the fully-shared design, although an additional
LFSR is introduced, the area increase is compensated by the
PCC minimization due to constant replacement. Meanwhile,
the additional LFSR greatly enlarges the LFSR reseeding
search space, which can lead to a lower output error by LFSR
reseeding.

VII. CONCLUSIONS

In this work, we proposed an LFSR reseeding method to
repair faulty LFSR-based SC circuits. We further exploited
this idea at design time to minimize SC circuits by constant
replacement, followed by accuracy recovery through LFSR
reseeding. These techniques are enabled by a unique property
of an LFSR-based SC circuit, that is, a faulty circuit can be
repaired by LFSR reseeding without any hardware modifica-
tion.

Although this paper focuses on LFSR-based SC circuits, the
basic idea is also applicable to recently proposed SC circuits
based on Sobol sequence generator [16], [17]. Specifically,
we can reduce the output error of a faulty SC circuit based
on Sobol sequence generator by changing its counter’s initial

states or the direction vectors without any hardware modifi-
cation. In conclusion, the possibility of reducing the error of
a faulty circuit without any hardware modification is another
significant advantage of SC over traditional binary computing,
which can be exploited in SC circuit design and test.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program
of China under Grant 2020YFB2205501.

REFERENCES

[1] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE TCAD, vol. 37, no. 8, pp. 1515–1531, 2018.

[2] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
TC, vol. 60, no. 1, pp. 93–105, 2011.

[3] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams: Digital image processing case studies,” IEEE
TVLSI, vol. 22, no. 3, pp. 449–462, 2014.

[4] S. Lee, H. Sim, J. Choi, and J. Lee, “Successive log quantization for cost-
efficient neural networks using stochastic computing,” in DAC, 2019, pp.
1–6.

[5] X.-R. Lee, C.-L. Chen, H.-C. Chang, and C.-Y. Lee, “A 7.92 Gb/s 437.2
mW stochastic LDPC decoder chip for IEEE 802.15.3c applications,”
IEEE TCAS-I, vol. 62, no. 2, pp. 507–516, 2015.

[6] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-
polynomial linear feedback shift registers,” IEEE TC, vol. 44, no. 2, pp.
223–233, 1995.

[7] J. H. Anderson, Y. Hara-Azumi, and S. Yamashita, “Effect of LFSR
seedings, scrambling and feedback polynomial on stochastic computing
accuracy,” in DATE, 2016, pp. 1550–1555.

[8] A. Paler, A. Alaghi, I. Polian, and J. P. Hayes, “Tomographic testing
and validation of probabilistic circuits,” in ETS, 2011, pp. 63–68.

[9] A. Alaghi and J. P. Hayes, “STRAUSS: Spectral transform use in
stochastic circuit synthesis,” IEEE TCAD, vol. 34, no. 11, pp. 1770–
1783, 2015.

[10] X. Peng and W. Qian, “Stochastic circuit synthesis by cube assignment,”
IEEE TCAD, vol. 37, no. 12, pp. 3109–3122, 2018.

[11] C. Wang, W. Xiao, J. P. Hayes, and W. Qian, “Exploring target function
approximation for stochastic circuit minimization,” in ICCAD, 2020, pp.
122:1–122:9.

[12] X. Wang, Z. Chu, and W. Qian, “MinSC: An exact synthesis-based
method for minimal-area stochastic circuits under relaxed error bound,”
in ICCAD, 2021, pp. 1–9.

[13] S. A. Salehi, “Low-cost stochastic number generators for stochastic
computing,” IEEE TVLSI, vol. 28, no. 4, pp. 992–1001, 2020.

[14] P. Ting and J. P. Hayes, “Isolation-based decorrelation of stochastic
circuits,” in ICCD, 2016, pp. 88–95.

[15] Z. Li, Z. Chen, Y. Zhang, Z. Huang, and W. Qian, “Simultaneous area
and latency optimization for stochastic circuits by D flip-flop insertion,”
IEEE TCAD, vol. 38, no. 7, pp. 1251–1264, 2019.

[16] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods for
stochastic computing using low-discrepancy sequences,” in ICCAD,
2018, pp. 1–8.

[17] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE TVLSI, vol. 26, no. 7, pp. 1326–1339,
2018.

[18] Z. Zhao and W. Qian, “A general design of stochastic circuit and its
synthesis,” in DATE, 2015, pp. 1467–1472.

[19] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” IEEE TETC,
vol. 7, no. 1, pp. 31–43, 2019.

[20] K. K. Parhi and Y. Liu, “Computing arithmetic functions using stochastic
logic by series expansion,” IEEE TETC, vol. 7, no. 1, pp. 44–59, 2019.

[21] D. Shin and S. K. Gupta, “A new circuit simplification method for error
tolerant applications,” in DATE, 2011, pp. 1–6.

[22] A. Mishchenko, “ABC logic synthesis package,” 2012. [Online].
Available: https://people.eecs.berkeley.edu/ alanmi/abc/abc.htm

[23] Nangate, Inc., “Nangate 45 nm open cell library,” 2020. [Online].
Available: https://si2.org/open-cell-library/

[24] Imageprocessingplace, “Image database,” 2019,
http://imageprocessingplace.com/root files V3/image databases.htm.

