
1

Optimizing Multi-level Combinational Circuits for Generating
Random Bits

Chen Wang and Weikang Qian
University of Michigan-SJTU Joint Institute

Shanghai Jiao Tong University
Shanghai, China

{wangchen 2011, qianwk}@sjtu.edu.cn

Abstract—Random bits are an important construct in many applica-
tions, such as hardware-based implementation of probabilistic algorithms
and weighted random testing. One approach in generating random bits
with required probabilities is to synthesize combinational circuits that
transform a set of source probabilities into target probabilities. In [1],
the authors proposed a greedy algorithm that synthesizes circuits in the
form of a gate chain to approximate target probabilities. However, since
this approach only considers circuits of such a special form, the resulting
circuits are not satisfactory both in terms of the approximation error
and the circuit depth. In this paper, we propose a new algorithm to
synthesize combinational circuits for generating random bits. Compared
to the previous one, our approach greatly enlarges the search space.
Also, we apply a linear property of probabilistic logic computation
and an iterative local search method to increase the efficiency of our
algorithm. Experimental results comparing the approximation errors and
the depths of the circuits synthesized by our method to those of the
circuits synthesized by the previous approach demonstrate the superiority
of our method.

I. INTRODUCTION

A random bit, also known as a Bernoulli random variable, is a
special discrete random variable which takes value 1 with probability
p and value 0 with probability 1− p. Random bits are an important
construct in many applications, such as hardware-based implementa-
tion of probabilistic algorithms, weighted random testing, and digital
circuits computing on stochastic bit streams.

Researchers proposed to implement those Monte Carlo sampling-
based algorithms on hardware to accelerate them [2]–[4]. Probabilis-
tic bits play an important role in the sampling procedure. Weighted
random testing is one technique used in built-in self-tests (BIST) [5].
By assigning random bits with different probabilities to different
inputs, we can achieve a high fault coverage with a moderate number
of random test patterns [6]. This requires the generation of random
bits with specific probabilities of being 1. Probabilistic bits are also
an important ingredient of a computational paradigm called logical
computation on stochastic bit streams [7], [8]. In this paradigm, data
is encoded by a random bit stream through the probability of ones
in the stream and is processed by traditional digital circuits. The
paradigm shift offers advantages including simple hardware design
and fault tolerance [9].

Random bits with required probabilities can be produced using
pseudorandom number generators (PRNGs). However, PRNGs es-
sentially produce deterministic sequences which could fail some
statistical tests. Furthermore, they require a large amount of hardware
cost. An alternative approach is to use truly random sources, which
are physical sources with high entropy such as thermal noise in
circuits, radioactive decay, and brownian motion [10], [11]. However,
it is hard to control their probabilities. Therefore, a post-processing
unit is usually needed. One post-processing mechanism relies on
applying a digital circuit to transform a set of “source” probabilities
into the “target” probabilities [1], [12], [13]. Wilhelm and Bruck

proposed a general framework for synthesizing switching circuits
to achieve a desired probability [12]. They proposed a method to
transform independent random bits with probability 0.5 to be 1 into
an arbitrary binary probability of the form m

2d
. Zhou and Bruck

extended the previous work and proposed an approach to generate an
arbitrary probability of the form m

nd from a set of source probabilities
{ 1
n
, 2
n
, . . . , n−1

n
} [13]. These two works are based on a technology

which could provide many independent random bits with the same
probabilities.

However, because the truly random sources are hard to control,
a more realistic situation is that all of the available random sources
provide different probabilities. The collection of source random bits
forms a set of source probabilities S = {p1, p2, . . . , pn}, where each
pi corresponds to one random bit. The task is to properly choose
some source random bits and design a digital circuit that takes these
random bits as inputs and produces an output random bit with a
target probability q∗. For example, given a source probability set
{0.4, 0.5, 0.7}, if we want to generate a random bit with probability
0.2 of being 1, we can use an AND gate and choose its two input
probabilities as 0.4 and 0.5, since the output probability of an AND
gate to be 1 equals the product of its two input probabilities. Note
that since each source random bit maps to one probability value in
the set S, therefore, each probability in S can be used at most once.
This type of random bit generation problem can be formulated as:

Given a set of source probabilities S = {p1, p2, . . . , pn} and
a target probability q∗, design a circuit that takes random inputs
with probabilities chosen from S and produces a random output
with probability q∗. Each element in S can be used as an input
probability at most once.

In [1], the authors considered the above problem and proposed
a method that synthesizes a combinational circuit to produce a
required probability. As they observed, given a finite number of
source probabilities, only a finite number of output probabilities can
be realized exactly. Thus, in general, we can only find a solution
that generates an output probability very close to the target q∗.
Therefore, the above design problem can be recast as an optimization
problem, where we want to find an optimal combinational circuit
together with its input probabilities so that its output probability is
the closest one to q∗ among all the possibilities. However, given
the exponential number of combinations of source probabilities and
the exponential number of combinational circuits, this problem is a
hard combinatorial optimization problem. In [1], the authors proposed
a greedy algorithm that could find a suboptimal solution to this
problem. However, as we will show in Section II, their algorithm
only explores a small portion of the entire solution space. As a result,

2

the circuits synthesized by their method are not satisfactory both in
terms of the approximation error and the circuit depth.

In this work, we propose a new solution to synthesize combina-
tional circuits to transform a set of source probabilities into target
probabilities. Our algorithm explores a much larger solution space
than the previous one. Experimental results demonstrate that our
algorithm greatly improves the approximation error and the depth
of the circuits for generating target probabilities.

The remainder of this paper is organized as follows. Section II
gives some preliminaries and reviews the synthesis algorithm pro-
posed in [1]. Section III discusses our new algorithm and the key
techniques we propose. Section IV presents experimental results
comparing the performance of our algorithm to that of the algorithm
in [1]. Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORK

Since any combinational circuit can be implemented with inverters,
AND gates, and OR gates, we focus on circuits built with these three
basic types of gates. By default, if we say “a probability”, we mean
the probability of a random bit being 1.

Assuming that the input random bits are independent, the relation-
ships between the input probabilities and the output probability for
an inverter, an AND gate, and an OR gate are listed below.

1) For an inverter, if its input probability is p, then its output
probability is 1− p.

2) For an AND gate, if its input probabilities are p and q, then its
output probability is

p · q. (1)

3) For an OR gate, if its input probabilities are p and q, then its
output probability is

p+ q − p · q. (2)

An algorithm for synthesizing a combinational circuit to generate
the required probability is proposed in [1]. The idea of that algorithm
is to apply a greedy strategy to incrementally construct an “optimal”
circuit. Specifically, given a set of n source probabilities, the al-
gorithm will construct n candidate circuits C1, . . . , Cn in sequence
and select the one with the smallest approximation error. The circuit
Ck (k = 1, . . . , n) has k inputs x1, . . . , xk and their probabilities
are pi1 , . . . , pik ∈ S. The circuit Ck+1 is built from the circuit Ck

by replacing its last input xk with a two-input gate. The two input
probabilities of the gate added are pik and pik+1 , where pik+1 is
chosen from the remaining probabilities in the set S. In constructing
the circuit Ck+1 from the circuit Ck, all the other parts of the circuit
Ck including the input probabilities pi1 , . . . , pik−1 are kept the same.
Thus, the circuit Ck+1 is an incremental design from Ck, where we
only need to determine the type of the gate to add and the value of
pik+1 . These two design choices are determined so that they let the
output of the circuit Ck+1 be the closest to q∗ among all the possible
choices. If necessary, an inverter can be inserted between pik+1 and
the input of the gate added.

However, this algorithm has two main shortcomings. First, since
the algorithm always adds a new gate and connects it to the last input
of the previous candidate circuit, all the circuits constructed are in
the form of a gate chain. Since the algorithm only considers circuits
of this special form, it searches a relatively small portion of the entire
circuit space. Thus, the resulting output probability may not be one
of the closest approximations to the target probability. Second, since
the generated circuit is in the form of a gate chain, it has a large
depth and hence a long delay.

III. A NEW ALGORITHM FOR SYNTHESIZING

RANDOM BITS

In this section, we propose a new algorithm to address the two
major shortcomings of the previous approach. The idea is to enlarge
the search space so that we are able to reach an arbitrary circuit
in the solution space. This exposes us to better solutions and also
decreases the depth of the circuit. However, general circuits could
contain reconvergent paths, which make the probabilistic analysis
and synthesis difficult. Therefore, taking computational efficiency into
consideration, we actually enlarge the search space to all the circuits
that are in the form of a gate tree.

A. Strategy for Searching the Optimal Tree-Style Circuits

Our algorithm adopts the incremental constructing idea of the
algorithm proposed in [1]. Given a set of n source probabilities,
we will sequentially construct n candidate circuits C1, . . . , Cn and
then choose the one whose output probability is the closest to q∗.
The circuit Ck+1 is incrementally designed from the circuit Ck by
replacing one input of Ck with a two-input gate. Different from the
previous algorithm, our algorithm will consider all the inputs of Ck

for the replacement and choose the best location to place the new
gate. This result shows that the candidate circuits can be in the form
of a gate tree. Algorithm 1 presents the major flow of our algorithm.

Algorithm 1 The proposed algorithm.

1: {Given a set of source probability S and a target probability q∗.}
2: n⇐ |S|;
3: Construct the base-case circuit C1;
4: for k = 1 to n− 1 do
5: for j = 1 to k do
6: Construct circuit C(k+1)j by an optimal replacement of the j-th

input of Ck with a two-input gate;
7: end for
8: Ck+1 ⇐ ChooseBest(C(k+1)1, . . . , C(k+1)k);
9: {ChooseBest returns the circuit whose output probability is the

closest to q∗ among all the circuits in its argument list.}
10: end for
11: C ⇐ ChooseBest(C1, . . . , Cn);
12: return C;

Our procedure starts from the “base-case” circuit C1, which has a
single input. Its output is either connected to its input x1 directly or
through an inverter. Its input probability pi1 is chosen from the set
S. Thus, the output probability is one of the values in an augmented
set

S′ = {p1, . . . , pn, 1− p1, . . . , 1− pn}.

We apply a greedy strategy in constructing C1: we choose the output
probability as the closest one in S′ to q∗.

The circuit Ck (k = 2, . . . , n) has k inputs x1, . . . , xk and
their probabilities are pi1 , . . . , pik ∈ S. The circuit Ck+1 (k =
1, . . . , n − 1) is incrementally constructed from the circuit Ck by
replacing one of the inputs of Ck with a two-input gate. In order to
get the optimal circuit Ck+1 whose output probability is the closest
to q∗, we consider every input of Ck for the replacement. We obtain
the best replacement for each input first. Then we compare all these
best replacements for all the inputs and choose the best one among
them as the circuit Ck+1. One basic step in our algorithm is to obtain
the best replacement for a specific input.

In our algorithm, we replace a specific input xj (1 ≤ j ≤ k) of
Ck with either an AND gate or an OR gate. The remaining parts
of the circuit Ck including the input probabilities are not changed.
We want to choose the replacing gate type and its input probability

3

values to let the output of the modified circuit be the closest to q∗.
We achieve this by two steps:

1) Compute the “ideal” probability value p∗ij for the input xj , so
that if it replaces the input probability pij of the circuit Ck, the
output probability of Ck is exactly the target probability q∗.

2) Obtain the best choice for the replacing gate type and its two
input probabilities so that the output probability of the gate is
the closest to the ideal probability p∗ij .

We discuss these two steps in the following two subsections.

B. Obtain the Ideal Probability Value for an Input

We compute the ideal probability value p∗ij for an input xj by
applying a linear property of probabilistic computation with com-
binational circuits. As demonstrated in [14], the output probability
of a combinational circuit is a multivariate polynomial on its input
probabilities and the degree for each input probability variable is
at most one. Mathematically, for a combinational circuit with n
input x1, . . . , xn and an output y, suppose its input probabilities
are P (xi = 1) = ri for i = 1, . . . , n and its output probability
is P (y = 1) = ry . Then the relation between ry and r1, . . . , rn can
be characterized by a multivariate polynomial ry = F (r1, . . . , rn).
The degree of each variable ri in this polynomial is at most one.

We apply the above property on the circuit Ck. Suppose P (xj =
1) = rj and P (y = 1) = ry . Then ry can be represented as

ry = a · rj + b, (3)

where a and b are constants determined by the remaining input
probabilities of Ck. From the previous iteration where the circuit
Ck is constructed, we can get the output probability of the circuit
Ck when the probability of xj is pij . Suppose it is q. Then from
Equation (3), we have

q = a · pij + b. (4)

Now we set the input probability of xj either as a 0 or as a 1: if
pij ≥ 0.5, we set it as 0; otherwise, we set it as 1. Denote this input
probability as pconst. We keep the other input probabilities the same
and compute the output probability. Suppose it is qconst. Then from
Equation (3), we have another equation

qconst = a · pconst + b. (5)

By solving the system of Equations (4) and (5), we can obtain the
constants a and b. Further, based on the definition of ideal probability,
we have

q∗ = a · p∗ij + b.

We can obtain p∗ij as

p∗ij =
q∗ − b

a
.

The following example illustrates how we obtain the ideal proba-
bility for an input.

Example 1
Consider the circuit shown in Fig. 1. Assume that the target probability
q∗ = 0.59. We want to get the ideal value p∗ for the input with the
probability 0.07.

With the probability for that input being 0.07, the actual output
probability is 0.58776. Since 0.07 < 0.5, we replace 0.07 with 1 and
reevaluate the output probability. We find that the output probability is
0. Now we have the following system of equations:

0.07 · a+ b = 0.58776

1 · a+ b = 0

AND
OR

0.4

0.08

0.07

q*=0.59
q=0.58776

p*=?

Fig. 1: An example for calculating the ideal probability p∗. In this
example, we want to obtain p∗ for the lowest input.

Solving it, we obtain the coefficients a = −0.632 and b = 0.632.
Then p∗ at this input is calculated as p∗ = q∗−b

a
= 0.06646. 2

Remark: For a circuit in the form of a gate tree, since there is
no reconvergent path, we can also obtain the ideal probability for an
input by propagating an “ideal” output probability for each gate along
the path from the output of the circuit to this primary input. For the
circuit in Example 1, in order to obtain the target probability q∗ =
0.59, we require the output probability of the OR gate to be 0.41.
Since the top input probability of the OR gate is 0.368, we can obtain
that the ideal probability for the lowest input should be 0.06646, by
solving the equation 0.368 + p∗ − 0.368 · p∗ = 0.41. However,
the approach based on the linear property is more powerful than
the reverse-propagation approach, because it also works for general
circuits which could have reconvergent paths. With this approach, we
greatly enhance the efficiency of our algorithm, since the calculation
of ideal probability values is carried out frequently in our procedure.

C. Obtain the Best Local Replacement

Due to the linear property of probabilistic computation, the choice
for the replacing gate type and its input probability values which lets
the output of the modified circuit be the closest to q∗, corresponds
to a choice that lets the output probability of the replacing gate be
the closest to p∗ij . In the algorithm proposed in [1], when a good
replacement is sought, one input probability of the replacing gate
is still chosen as pij . The other input probability pik+1 is chosen
from the remaining probabilities in the set S, i.e., from the set
S\{pi1 , . . . , pik}. This allows two degrees of freedom in searching
the best choice, i.e., the gate type and one input probability.

In our algorithm, in order to get a better solution, we relax the
restriction that the first input probability should be fixed. Thus, we
allow three degrees of freedom. The gate type is either an AND or
an OR gate.1 The two input probabilities are chosen from the set
S′ = S\{pi1 , . . . , pij−1 , pij+1 , . . . , pik}. We also allow to insert an
inverter between a primary input and an input of the gate.

One way to obtain the optimal choice is to enumerate all combi-
nations of the two input probabilities from the set S′ and the gate
type and choose the best one. The complexity is O(|S′|2).

Here we propose an iterative method to obtain a good choice.
Although this procedure cannot guarantee to obtain the best choice,
it is fast and in many cases returns a choice close to the optimal one.

The idea of the iterative method is to repeat a basic procedure
(described below) until the difference between the output probability
of the replacing gate and the ideal probability p∗ij stops decreasing
in comparison with the previous iteration.

Since an inverter can be used, we augment the candidate source
probability set by adding all the values which can be represented as 1
minus one value in the original candidate set. In other words, given
an original candidate set R, we augment the set to R′ = {p|p =
r or 1− r, r ∈ R}.

1Our approach can also be adapted to allow other two-input gates, such as
XOR and XNOR gate.

4

The basic procedure is to fix one input probability and then deter-
mine the best choice of the gate type and the other input probability.
In the next iteration, the newly determined probability is fixed and the
previously fixed probability is relaxed. Correspondingly, the newly
determined probability and 1 minus that value are removed from
the augmented candidate probability set, while the previously fixed
probability and 1 minus that value are put back into the candidate
set. The iterative method starts with the fixed input probability being
pij , which is the probability for the input xj of the circuit Ck.

The basic procedure is implemented in a similar way to a method
described in [1]. Suppose that for the current iteration, the value of
the fixed probability is p. We distinguish two cases:

1) The case where p < p∗ij . Then we choose the gate type as an
OR gate. The reason is that we want to increase the probability
for the input xj of the circuit Ck; based on Equation (2), the
output probability of an OR gate is larger than either of its two
input probabilities. With the gate type fixed, we can determine
the ideal probability p∗ for the other input of the OR gate by
solving Equation (2). We obtain

p∗ =
p∗ij − p

1− p
. (6)

The best choice for the other input probability of the OR gate is
the value closest to p∗ in the augmented candidate probability
set R′.

2) The case where p ≥ p∗ij . Then we choose the gate type as an
AND gate. The ideal probability p∗ for the other input of the
AND gate is determined by solving Equation (1), which gives

p∗ =
p∗ij
p

. (7)

Similarly, the best choice for the other input probability of the
AND gate is the value closest to p∗ in the augmented candidate
probability set R′.

The following example illustrates how the iterative method works.

Example 2
Suppose that we have a set of candidate probability S =
{0.08, 0.63, 0.4, 0.07}. We want to choose the type of a gate and two
input probabilities for the gate so that the output probability of the gate
is close to a value p∗ij = 0.6344. We apply the iterative method to get
the solution. Suppose that the initial fixed input probability is 0.63.

In the first iteration, since 0.63 < p∗ij , an OR gate is chosen. By
Equation (6), the ideal probability p∗ for the other input is 0.0119. The
augmented candidate set is R′ = {0.08, 0.4, 0.07, 0.92, 0.6, 0.93}.
The closest value to p∗ in R′ is 0.07, which is chosen as the other
input probability. The output probability of the OR gate is p = 0.6559
and the error is 0.0215.

In the second iteration, the fixed input probability
is 0.07 and the augmented candidate probability set is
R′ = {0.08, 0.63, 0.4, 0.92, 0.37, 0.6}. Since 0.07 < p∗ij , the
new gate should be OR. By Equation (6), the ideal probability p∗ for
the other input is 0.607. The closest value to p∗ in R′ is 0.6, which
is chosen as the other input probability. The output probability of the
gate is p = 0.628 and the error is 0.0064.

In the third iteration, we fixed the input probability
0.6. The augmented candidate probability set is R′ =
{0.08, 0.63, 0.07, 0.92, 0.37, 0.93}. Applying the basic procedure,
we choose an OR gate and choose the other input probability as
0.08. The output probability of the gate is p = 0.632 and the error is
0.0024.

In the fourth iteration, we fixed the input probability 0.08. As a
result of the basic procedure, we choose an OR gate and choose the

other input probability as 0.6. The output probability of the gate is
p = 0.632 and the error is 0.0024. At this point, the error stops
decreasing and the iteration terminates. We obtain the final solution:
the gate is an OR gate, the first input probability is 0.08, the second
input probability is 0.4, and an inverter is inserted between the second
input and the input of the OR. 2

0.4
0.6

0.63 0.5859
OR

0.07

0.63
0.5894

OR0.07
0.08

AND

0.63
0.5873

OR0.07

0.08
AND

0.4

0.63
0.5894

OR0.07
0.08

AND

AND

C1

C2

C3

C4

Final
Circuit

Fig. 2: The sequence of the circuits synthesized by our algorithm in
solving the random bit generation problem with the source probability
set S = {0.08, 0.63, 0.4, 0.07} and the target probability q∗ = 0.59. The
final circuit is the one with the smallest output error among C1, . . . , C4.

We conclude this section with the following example which
demonstrates the major steps of our proposed algorithm. The se-
quence of the circuits synthesized by our algorithm together with the
final circuit are shown in Fig. 2.

Example 3
Suppose that the set of source probabilities is S =
{0.08, 0.63, 0.4, 0.07} and the target probability is q∗ = 0.59.
Our algorithm includes the following major steps.

1) Construct the circuit C1, which is the base-case
circuit. The augmented source probability set is
S′ = {0.08, 0.63, 0.4, 0.07, 0.92, 0.37, 0.6, 0.93}. The closest
value to q∗ in S′ is 0.6. Therefore, 0.4 is selected as the input
probability and an inverter is inserted. The circuit C1 is shown in
Fig. 2.

2) Construct the circuit C2. Since C1 has only one input, we only
need to consider one location for the gate replacement. By calling
the iterative method to find the optimal local replacement for that
input, we obtain the optimal choice as shown in Fig. 2.

3) Construct the circuit C3. By calling the iterative method to find
the optimal local replacement for the top input of C2, we obtain
the closest output probability as 0.5878. If the bottom input of C2

is replaced, the closest output probability is 0.5894. Comparing
these two optimal choices, the replacement at the bottom input is
better. The resulting circuit C3 is shown in Fig. 2.

4) Construct the circuit C4. The optimal replacements for the top
input, the middle input, and the bottom input of C3 lead to
output probabilities 0.5819, 0.6057, and 0.5873, respectively.
The closest one to q∗ is 0.5873. Thus, we choose the bottom input
for replacement. The resulting circuit C4 is shown in Fig. 2.

5) Obtain the final circuit by choosing the one with the smallest
output error among the circuit C1, . . . , C4. In this example, it is
C3. 2

5

IV. EXPERIMENTAL RESULTS

We perform two sets of experiments comparing the performance
of our proposed algorithm (“our method”) to the algorithm proposed
in [1] (“previous method”).

We randomly synthesize probability generation problems as our
test cases. The sizes of the source probability sets range from 2 to 9.
For a specific set size, we randomly generate 800 test cases whose
source probability set is of that size. For each test case, its source
probabilities and target probability are randomly sampled from the
open unit interval (0, 1). Each test case also satisfies the condition that
when the previous method is applied to it, the output error |q−q∗| ≥
0.001 · q∗.

In the first set of experiments, we aim at synthesizing a circuit with
output probability q such that |q − q∗| is the minimal. We compare
the performance of our method with the previous method using our
synthetic test cases. Table I lists the average depth, the average
number of gates, the average relative output error, and the average
product of the depth and the relative error of the circuits synthesized
by the two methods. When counting the depth and the gate number,
we ignore inverters. It is because inverters have less impact on area,
delay and power consumption than AND and OR gates. The relative
output error is calculated as |q−q∗|

q∗ . The average product of the depth
and the relative error is obtained by first multiplying the depth and
the relative error of each circuit and then averaging over all the
products. These metrics are averaged over all the problems with the
same size of source probability set. We also plot and compare the
average depths, the average relative output errors, and the average
products of depth and error of the circuits synthesized by the two
methods in Fig. 3. We use the results of the circuits generated by
the previous method as baselines. From the figure, we can see that
our method produces circuits with smaller depths and smaller output
errors. Furthermore, as the set size increases, the relative output error
of the circuit synthesized by our method decreases dramatically. Since
the aim in this set of experiment is to synthesize a circuit with output
error as small as possible, more gates may be needed for the circuit
synthesized by our method than by the previous method.

TABLE I: Comparison of the circuits synthesized by our method with
the ones synthesized by the previous method.

previous method our method
|S| depth #gates error (depth depth #gates error (depth

(%) ×error (%) ×error
×100) ×100)

2 0.59 0.59 18.22 9.38 0.64 0.64 17.83 9.66
3 1.33 1.33 7.61 9.24 1.48 1.48 6.04 8.69
4 2.31 2.31 3.04 6.54 2.31 2.42 1.81 4.01
5 3.16 3.16 1.31 4.05 2.98 3.21 0.50 1.45
6 3.98 3.98 0.66 2.65 3.56 3.94 0.24 0.81
7 4.81 4.81 0.42 2.00 4.24 4.81 0.12 0.37
8 5.67 5.67 0.31 1.71 4.80 5.65 0.058 0.22
9 6.63 6.63 0.26 1.65 5.46 6.51 0.092 0.22

Observing that in some realistic situations, the source probabilities
may also be subject to some randomness or errors due to some
physical uncertainties. Therefore, we can only anticipate output
probabilities that fall in some range around the target probabilities.
We model this situation as another optimization problem: Besides a
source probability set S and a target probability q∗, we are given
an error tolerance ratio e. Our aim is to synthesize a circuit of
minimal depth or gate number, whose output probability q satisfies
|q − q∗| ≤ e · q∗. We consider such a minimization problem in our
second set of experiments.

0
0.2
0.4
0.6
0.8
1

1.2

2 3 4 5 6 7 8 9no
rm

al
iz

ed
 a

ve
ra

ge

de
pt

h

size of source probability set

previous method our method

(a) Comparison of the average depth.

0
0.2
0.4
0.6
0.8

1
1.2

2 3 4 5 6 7 8 9no
rm

al
iz

ed
 a

ve
ra

ge

re
la

tiv
e

ou
tp

ut
 e

rr
or

size of source probability set

previous method our method

(b) Comparison of the average relative output error.

0
0.2
0.4
0.6
0.8
1
1.2

2 3 4 5 6 7 8 9no
rm

al
iz

ed
 a

ve
ra

ge
 p

ro
du

ct

of
 d

ep
th

 a
nd

 re
la

tiv
e

er
ro

r

size of source probability set

previous method our method

(c) Comparison of the average product of the depth and the relative
output error.

Fig. 3: Comparison of three metrics of the circuits synthesized by our
method to those of the circuits synthesized by the previous method.

In order to solve the new optimization problem, we only need
to slightly modify our algorithm. We check each circuit synthesized
in sequence to see whether its output probability error is below the
threshold e · q∗. Once we find the error is below the threshold, we
immediately terminate our procedure. The last circuit is the one with
the minimal depth or gate number. If none of the intermediate circuits
generated in our procedure has its output error below the threshold,
then we return the circuit with the smallest output error. The algorithm
proposed in [1] can also be modified similarly to get a solution to
the new optimization problem.

We choose e = 0.01 and reuse the test cases in the first set of
experiments. We apply both a modification of our method and a
modification of the previous method on these test cases. Table II
lists the results comparing the two methods. The column titled “valid
cases(%)” shows the percentage of the test cases with a specific
source probability set size for which a method could find a circuit
with output probability error below the threshold. As shown in the
table, applying our method is more likely to find a circuit with output
probability error below the threshold than using the previous method.
For all the circuits with output probability error below the threshold,
we average their depths and their gate numbers. The results for the
two methods are shown in Table II, from which we can conclude
that the circuits synthesized by our method have both smaller gate
numbers and smaller depths than those synthesized by the previous
method.

We also plot and compare the average depths of the circuits
synthesized by the two methods in Fig. 4. We use the depths of the

6

circuits generated by the previous method as baselines. As shown in
the figure, the relative depth of the circuit synthesized by our method
decreases as the size of the source set increases.

TABLE II: Comparison of our method with the previous method in
optimizing the circuit depth and gate number subject to an output error
tolerance.

previous method our method
|S| valid #gates depth valid #gates depth

cases(%) cases(%)
2 5.75 1.00 1.00 6.38 1.00 1.00
3 20.88 1.52 1.52 29.25 1.47 1.47
4 45.88 2.11 2.11 66.75 2.03 1.97
5 67.75 2.51 2.51 88.50 2.24 2.14
6 83.63 3.07 3.07 96.13 2.44 2.29
7 91.25 3.57 3.57 99.25 2.59 2.41
8 96.13 4.37 4.37 99.50 2.85 2.58
9 97.25 4.79 4.79 98.50 2.93 2.60

0
0.2
0.4
0.6
0.8

1
1.2

2 3 4 5 6 7 8 9no
rm

al
iz

ed
 a

ve
ra

ge

de
pt

h

size of source probability set

previous method our method

Fig. 4: Comparison of the depths of the circuits synthesized by our
method to those of the circuits synthesized by the previous method in
optimizing the circuit depth subject to an output error tolerance.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new algorithm for synthesizing
combinational circuits to transform source probabilities into target
probabilities. We apply a linear property of probabilistic logic com-
putation and an iterative local search method to increase the efficiency
of our algorithm. Compared to the method proposed in [1], our
approach greatly enlarge the search space. Therefore, the circuits
synthesized by our method have much smaller depths and output
errors. However, our algorithm is still a greedy algorithm: We obtain
a new candidate circuit through a local optimal change to the previous
candidate circuit; other portion of the previous circuit remains the
same. Therefore, the final solution largely depends on the first few
candidate circuits.In our future work, we will study how to design and
apply some global optimization techniques to find a better solution
to the random bit generation problem.

The circuit synthesized in this paper only has one output. If we
want to obtain multiple independent outputs, we require the inputs to
be independent as well. It is because the outputs from the same set
of input sources may have correlation. However, in some cases we
need multiple output random bits that have correlation. We will study
how to design an optimal circuit that generates the outputs with the
required correlation in our future work.

REFERENCES

[1] W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Transforming probabil-
ities with combinational logic,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 30, no. 9, pp. 1279–1292,
2011.

[2] N. Asadi, T. Meng, and W. Wong, “Reconfigurable computing for
learning Bayesian networks,” in International Symposium on Field
Programmable Gate Arrays (FPGA), 2008, pp. 203–211.

[3] N. Asadi et al., “Paralearn: a massively parallel, scalable system for
learning interaction networks on FPGAs,” in International Conference
on Supercomputing, 2010, pp. 83–94.

[4] V. Mansinghka, “Natively probabilistic computation,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2009.

[5] J. Hartmann and G. Kemntiz, “How to do weighted random testing for
BIST,” in International Conference on Computer-Aided Design, 1993,
pp. 568–571.

[6] F. Muradali, V. K. Agarwal, and B. Nadeau-Dostie, “A new procedure
for weighted random built-in self-test,” in International Test Conference,
1990, pp. 660–669.

[7] B. Gaines, “Stochastic computing systems,” in Advances in Information
Systems Science. Plenum, 1969, vol. 2, ch. 2, pp. 37–172.

[8] B. Brown and H. Card, “Stochastic neural computation I: Computational
elements,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 891–
905, 2001.

[9] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[10] B. Sunar, W. Martin, and D. Stinson, “A provably secure true random
number generator with built-in tolerance to active attacks,” IEEE Trans-
actions on Computers, vol. 56, no. 1, pp. 109–119, 2007.

[11] B. Barak, R. Shaltiel, and E. Tromer, “True random number genera-
tors secure in a changing environment,” in International Workshop on
Cryptographic Hardware and Embedded Systems, 2003, pp. 166–180.

[12] D. Wilhelm and J. Bruck, “Stochastic switching circuit synthesis,” in
International Symposium on Information Theory, 2008, pp. 1388–1392.

[13] H. Zhou and J. Bruck, “On the expressibility of stochastic switching
circuits,” in International Symposium on Information Theory, 2009, pp.
2061–2065.

[14] W. Qian and M. D. Riedel, “The synthesis of robust polynomial
arithmetic with stochastic logic,” in Design Automation Conference,
2008, pp. 648–653.

