
AccALS: Accelerating Approximate Logic Synthesis by Selection of
Multiple Local Approximate Changes

Xuan Wang1, Sijun Tao1, Jingjing Zhu1, Yiyu Shi2, and Weikang Qian1,3

1UM-SJTU Joint Inst. and 3MoE Key Lab of AI, Shanghai Jiao Tong University, China; 2University of Notre Dame, US
Emails: xuan.wang@sjtu.edu.cn, 603447229@sjtu.edu.cn, jingjingzhu@sjtu.edu.cn, yshi4@nd.edu, qianwk@sjtu.edu.cn

Abstract—Approximate computing is an energy-efficient computing
paradigm for error-tolerant applications. To automatically synthesize
approximate circuits, many iterative approximate logic synthesis (ALS)
methods have been proposed. However, most of them do not consider
applying multiple local approximate changes (LACs) in a single round,
which can lead to a much shorter runtime. In this paper, we propose
AccALS, a novel framework for Accelerating iterative ALS flows, based
on simultaneous selection of multiple LACs in a single round. When
selecting multiple LACs, there may exist conflicts among them. One
important component of AccALS is a novel method to solve the conflicts.
Another is an efficient measure for the mutual influence between
two LACs. With its help, the problem of selecting multiple LACs is
transformed into a maximum independent set problem to solve. The
experimental results showed that compared to a state-of-the-art method,
AccALS accelerates by up to 24.6× with a negligible circuit quality loss.

Index Terms—approximate computing, approximate logic synthesis,
multiple local approximate changes

I. INTRODUCTION

With the advent of the post-Moore era, it becomes increasingly dif-
ficult to further reduce the circuit cost [1]. Fortunately, there are many
error-tolerant applications, such as image processing and machine
learning. Under this circumstance, approximate computing [2]–[4] is
proposed to design energy-efficient systems for these error-tolerant
applications. It introduces slight imprecision in computation to reduce
the area, delay, and power consumption of circuits.

An important area in approximate computing is approximate logic
synthesis (ALS), which aims to synthesize an approximate circuit
with reduced hardware cost satisfying a given error constraint [5].
Recently, iterative ALS methods are popular due to their good
synthesis quality [6]–[10]. They obtain the final approximate circuit
by multiple rounds of local approximate changes (LACs), where a
LAC is a change to a local circuit that reduces the hardware cost, but
may introduce some errors. For example, Fig. 1(a) shows a SASIMI
LAC proposed in [7]. It replaces a signal by another almost identical
existing signal v or v’s negation. For the example accurate circuit
shown in Fig. 1(a), the SASIMI LAC replaces signal e by signal c,
leading to the approximate circuit shown in Fig. 1(b). Fig. 1(a) also
shows an ALSRAC LAC proposed in [9]. It replaces a signal by
a new function on some existing signals. For the example accurate
circuit shown in Fig. 1(a), the ALSRAC LAC replaces signal f with
the OR of signals b and c, leading to the approximate circuit shown in
Fig. 1(c). For most iterative ALS methods [6]–[10], they are based
on the single-selection framework. That is, in each round, all the
candidate LACs for the current approximate circuit are first identified
and evaluated, and then the single best LAC is selected and applied to
the current approximate circuit to generate a new approximate circuit.

The runtime of the single-selection framework is long, since it
just selects a single LAC in each round, albeit the time-consuming
evaluation of all the candidate LACs. For example, it can take more
than 20 hours to finish the synthesis on a large circuit [10]. Thus, it
is imperative to accelerate it. For this purpose, the works [11], [12]
propose methods to speed up the error evaluation of all the LACs.
A few other works consider applying multiple LACs simultaneously

This work is supported by the National Key R&D Program of China under
Grant 2021ZD0114701 and the National Natural Science Foundation of China
under Grants T2293700 and T2293701. Corresponding author: Weikang Qian.

S S = 0

局部电路
S

T

S

T

(a) (b)

S S = 0

局部电路
S

T

S

T

(a) (b)

a

b
c

e

f

SASIMI

f

a
b

c
f

a
b

c

a
b

c
f

a
b

c
f

a

c

e

f
SASIMI

b
ALSRAC

(a)

S S = 0

局部电路
S

T

S

T

(a) (b)

S S = 0

局部电路
S

T

S

T

(a) (b)

a

b
c

e

f

SASIMI

a

c

e
f

SASIMI

b
ALSRAC

a

c

e
f

SASIMI

b
ALSRAC

f

a
b

c
f

a
b

c

a
b

c
f

a
b

c
f

(b)

S S = 0

局部电路
S

T

S

T

(a) (b)

S S = 0

局部电路
S

T

S

T

(a) (b)

a

b
c

e

f

SASIMI

a

c

e
f

SASIMI

b
ALSRAC

a

c

e
f

SASIMI

b
ALSRAC

f

a
b

c
f

a
b

c

a
b

c
f

a
b

c
f

(c)
Fig. 1. LAC examples: (a) an accurate circuit; (b) an approximate circuit with
the SASIMI LAC [7]; (c) an approximate circuit with the ALSRAC LAC [9].

in each round [13]–[15]. In [13], a method is proposed to select
multiple LACs in the AND-inverter graph (AIG), which is realized
by solving a maximum flow problem. However, its primary target
is reducing the circuit delay, not speeding up the ALS flow. The
works [14], [15] use the evolutionary approach to select multiple
LACs to obtain approximate circuits. The work [14] applies NSGA-II,
a multi-objective genetic algorithm, to select multiple sub-functions
from the approximate Boolean network. In [15], the archived multi-
objective simulated annealing (AMOSA) heuristic is used to select
multiple approximate cuts to generate approximate circuits, where
the approximate cuts are obtained by the exact synthesis method.

Applying multiple LACs simultaneously in each round is a promis-
ing method for speeding up the ALS flow. However, despite the
recent advance in this direction, some fundamental understanding of
the relationship of multiple LACs is still lacking. First, the mutual
influence of multiple LACs can affect the circuit error. Some LACs
have positive influence, i.e., they counteract with each other to mask
the circuit error; some have negative influence, which amplifies the
circuit error. Such a mutual influence is not well known. Second,
some highly effective and widely used LACs are based on replacing
a signal with some existing signals, such as SASIMI and ALSRAC
LACs [7], [9] shown in Fig. 1(a). When applying multiple such LACs
simultaneously, the application of a LAC can invalidate another,
causing a conflict. The existing works either impose a rigid selection
rule [13] or use a special type of LAC [14], [15] to avoid the conflicts.
The general conflict problem is not well understood and solved.

In this work, we make a more systematic study on the relationship
of multiple LACs, including their mutual influence and conflicts,
and propose AccALS, a framework for Accelerating the iterative
ALS flows by simultaneous selection of multiple LACs. The main
contributions are as follows.

1. To formally characterize the mutual influence among multiple
LACs, we introduce the notion of positive, negative, and inde-
pendent LAC sets.

2. To select a maximal set of LACs with less mutual influence, we
first define an index for measuring the mutual influence between
two LACs, which is efficient to calculate. Then, with its help,
we transform the selection problem into a maximum independent
set (MIS) problem to solve.

3. As there exist potential LAC conflicts among the multiple selected
LACs, we propose a novel method to solve the conflicts by building
a LAC conflict graph.

4. Based on the above techniques, a general framework, AccALS, is
proposed to simultaneously select multiple LACs with less mutual
influence and positive mutual influence in a single round for the
iterative ALS methods.

AccALS can be applied to any input distribution, any graph-based
circuit representation, and any statistical error metric. As examples,
this work considers three statistical error metrics, error rate (ER),
normalized mean error distance (NMED), and mean relative error
distance (MRED). ER represents the probability that the circuit out-
puts are incorrect. NMED measures the average error distance (ED)
normalized by the maximum output value, while MRED measures
the average relative ED. The experimental results show that AccALS
outperforms a state-of-the-art method in runtime by 6.3× to 24.6×
with a negligible circuit quality loss.

II. METHODOLOGY

This section presents the proposed AccALS methodology.

A. Overview of AccALS

This section overviews the framework of AccALS. We first intro-
duce some assumptions and notations used in this paper.
• Denote the current approximate circuit as G. After applying mul-

tiple LACs to G, the resulting circuit is denoted as Gnew. In this
work, it is assumed that we only deal with the LACs whose affected
local circuits have a single output. Many existing LACs satisfy this
property, such as SASIMI [7] and ALSRAC [9] LACs. Note that
the circuits AccALS handles are still multi-output.

• Denote the errors of G and Gnew as e and enew, respectively.
• Generally, a LAC applied on a node n means that node n is

replaced by a new function on some existing nodes in G, which
are called substitute nodes (SNs). The SNs of the LAC form a
set Sn called substitute node set (SNS). The node n itself is
called the target node (TN) of the LAC. We denote the LAC as
L(Sn, n). For example, the SASIMI and the ALSRAC LACs in
Fig. 1(a) are denoted as L({c}, e) and L({b, c}, f), respectively.
In what follows, we draw LACs in an abstract way. Below shows
an example.

1x 2x 3x 4x

1x

2x

3x

4x

C

S

1x
2x

3x
4x

Full

Adder

C

S

1x

2x

3x
0x

C

S

0x

1x

3x

2x

S

C

C

S

LAC 1LAC 1 LAC 2LAC 2

LAC 1LAC 1 LAC 5LAC 5

node 1node 1
LAC 6LAC 6 LAC 7LAC 7

node 1node 1

LAC 8LAC 8
node 2node 2

LAC 2LAC 2

.
..

.
..

LAC 1LAC 1 LAC 2LAC 2

LAC 1LAC 1 LAC 5LAC 5

node 1node 1
LAC 6LAC 6 LAC 7LAC 7

node 1node 1

LAC 8LAC 8
node 2node 2

LAC 2LAC 2

.
..

.
..

LAC 1LAC 1 LAC 2LAC 2

LAC 1LAC 1 LAC 5LAC 5

node 1node 1
LAC 6LAC 6 LAC 7LAC 7

node 1node 1

LAC 8LAC 8
node 2node 2

LAC 2LAC 2

.
..

.
..

AOI21

0x

1x

3x

2x

OAI22

AOI22

NOR4

NAND2

OAI22

C

S

22

33

55

66

44

77
11

22

33

55

66

44

77
11

11

22

33

44

55
66

77

88 99

Fig. 2. A set of LACs represented in an abstract way.

Example 1. Fig. 2 draws 6 different LACs in an abstract way.
Each blue edge represents a LAC with only one SN. For example,
the blue edge (2, 4) represents the LAC L({2}, 4) with node 2 as
its only SN and node 4 as its TN. Each pair of red edges pointing
to the same node represents a LAC with two SNs. For example, the
pair of red edges (1, 4) and (3, 4) pointing to node 4 represents
the LAC ({1, 3}, 4), where nodes 1 and 3 are its SNs, and node 4
is its TN.
In an iterative ALS flow that selects a single LAC in each round, in

order to decide which LAC to be chosen, it typically needs to evaluate
the errors of all the candidate approximate circuits, each formed by
applying a candidate LAC to the current circuit G. A straightforward
method to obtain the errors of all the candidate approximate circuits is
to simulate all the circuits, but it is time-consuming. Thus, the state-
of-the-art works [11], [12] propose methods to efficiently estimate
the error increase due to a LAC ψ, which we denote as ∆E(ψ).
Then, the error of the candidate approximate circuit (i.e., the new
approximate circuit Gnew) is estimated as eest = e + ∆E(ψ), where
eest denotes the estimated error.

In order to speed up the iterative ALS flow by selecting multiple
LACs in each round, the same task of efficiently evaluating the errors
of all the possible candidate approximate circuits exists, where each

circuit is obtained by applying a set of candidate LACs to the current
approximate circuit. For this purpose, a straightforward idea is to
extend the above estimator for a single LAC to the following one:

eest = e+
∑
ψ∈L

∆E(ψ), (1)

where L is the set of applied LACs. However, the above estimator
only holds when the LACs in set L do not affect each other.
Unfortunately, this is not always true in reality: Different LACs
may influence each other, causing a large difference between the
estimated error eest and the actual error enew. In the following, we
introduce a classification on a set L of candidate LACs based on the
difference between eest and enew. Note that the classification is based
on a tolerance parameter σ, which is a relatively small non-negative
value.
• Case 1: eest−enew > σ. In this case, the actual error enew is smaller

than the estimated one, eest, which means that the LACs in set L
counteract with each other to mask some error. We call the LAC
set a positive LAC set.

• Case 2: |eest − enew| ≤ σ. In this case, the LACs in set L have less
mutual influence. We call the LAC set an independent LAC set.

• Case 3: eest − enew < −σ. In this case, the influence of the LACs
in set L amplifies the circuit error. We call the LAC set a negative
LAC set.
The basic idea of AccALS is to choose a good independent LAC

set Lindp and a good positive LAC set Lrand from the candidate LAC
sets in each round. Then, we evaluate the effects of applying the LACs
in Lindp and Lrand to the current approximate circuit, and choose the
LAC set with better performance as the final choice.

Algorithm 1: The proposed framework of AccALS.
Input: an original circuit Gorg and an error bound eb.
Output: an approximate circuit G with error e ≤ eb.

1 Gnew ← Gorg; e← 0;
2 while e ≤ eb do
3 G ← Gnew; Gc1 ← G; Gc2 ← G;
4 Ltop ← ObtainTopSet(e, eb);
5 {Lsol, Nsol} ← FindSolveLACConf (Ltop);
6 Lindp ← SelectIndpLACs(Lsol,G, Nsol, e, eb);
7 Lrand ← SelectRandomLACs(Lsol);
8 apply LACs in Lindp to Gc1 to obtain Gnew1, and calculate the

accurate error enew1 between Gnew1 and Gorg;
9 apply LACs in Lrand to Gc2 to obtain Gnew2, and calculate the

accurate error enew2 between Gnew2 and Gorg;
10 if enew1 < enew2 or (enew1 = enew2 and |Lindp| ≥ |Lrand|) then
11 Gnew ← Gnew1; e← enew1
12 else Gnew ← Gnew2; e← enew2 ;
13 return G;

The main procedure of AccALS is shown in Algorithm 1. Its inputs
are an original circuit Gorg and an error bound eb, while its output is
an approximate circuit G with error no more than eb. Line 1 initializes
the new circuit Gnew as the original circuit Gorg and the actual error
e of Gnew as 0. In each round, Line 3 sets the current approximate
circuit G as Gnew, and makes two copies Gc1 and Gc2 of the current
circuit G. To reduce the search space of the selection of multiple
LACs, we only consider a set Ltop of top LACs with the smallest
error increases. Line 4 calls the function ObtainTopSet to obtain this
set. Its details will be described in Section II-B. The following steps
of AccALS only focus on the LACs in Ltop.

Different from an iterative ALS flow that selects a single LAC
in each round, when we select multiple LACs in a round, there
is another issue: sometimes, the selected LACs cannot be applied
simultaneously. Below shows an example.

Example 2. Suppose that in a round, we select the LACs L({2}, 4)
and L({1, 3}, 4) shown in Fig. 2. However, they cannot be applied
simultaneously, since they have the same TN, and each node in the
circuit can only be applied with one LAC in each round.

When two LACs cannot be applied simultaneously, we say that
they are in conflict. Thus, another task to handle is to find and solve
these LAC conflicts. It is done by the function FindSolveLACConf at
Line 5, which obtains the conflict-free LAC set Lsol from Ltop together
with its corresponding TN set Nsol. Its details will be described in
Section II-C.

Line 6 calls the function SelectIndpLACs to select a subset of LACs
from the conflict-free LAC set Lsol to form a good independent LAC
set Lindp. It is based on an efficient index for measuring the mutual
influence between two LACs and the formulation of an MIS problem.
The details will be described in Section II-D. Line 7 calls the function
SelectRandomLACs to randomly select some LACs from Lsol to form
another LAC set Lrand. However, the LAC set Lrand may be positive,
independent, or negative.

Lines 8–12 further decide the better one between set Lindp and set
Lrand and apply the LACs in the set to the current approximate circuit
finally. Specifically, Line 8 applies all the LACs in Lindp to Gc1 to
generate the new approximate circuit Gnew1, and calculates the actual
error enew1 between Gnew1 and Gorg. Same as Line 8, Line 9 calculates
the actual error enew2 after applying all the LACs in Lrand to Gc2. Note
that although we evaluate the actual errors of two new approximate
circuits, its runtime is relatively negligible compared to the runtime
of the other steps in the entire algorithm. Then, Lines 10–11 choose
to apply the LACs in Lindp, and set the final new approximate circuit
Gnew as Gnew1 and the error e as enew1 if
• the error enew1 is smaller than enew2, or
• the error enew1 equals enew2, and the number of LACs in Lindp is

no less than the number of LACs in Lrand, indicating that applying
the LACs in Lindp is likely to have a larger area reduction without
increasing error.

Otherwise, we apply the randomly selected LACs in Lrand (see
Line 12). We remark that the above criterion of selecting the LAC set
takes the error as the primary concern and the area reduction as the
secondary concern. We choose this criterion in this work as it leads
to good synthesis quality according to an existing work selecting a
single LAC in each iteration [9]. When the error e is no more than
the error bound eb, the loop continues (see Line 2). Otherwise, it
terminates, and Line 13 returns the latest approximate circuit G.

B. Obtaining Top LAC Set
This section presents the details of the function ObtainTopSet,

which obtains a set Ltop of top LACs with the smallest error increases
∆E(ψ). First, we identify the candidate LAC set Lcand from the
current approximate circuit G. For each LAC ψ in Lcand, we estimate
its error increase ∆E(ψ) by the SEALS method [12]. Then, we need
to determine the size of set Ltop, denoted as rtop. We set it as

rtop =

(
eb − e
eb

)
max(rref, rmin), (2)

where rref is a reference top LAC number and rmin ≥ 1 is the number
of LACs with the minimum error increase in Lcand. It should be noted
that sometimes, rmin is larger than rref. In this case, to fully search
the LAC space, we consider all the LACs with the minimum error
increase, which explains the term max(rref, rmin) in Eq. (2). We also
found that as the circuit error e is closer to the error bound eb, the
error increases of the candidate LACs usually are larger. In this case,
it is not preferable to select many LACs with larger error increases,
as it reduces the total iteration number of the ALS flow significantly,
leading to a synthesis quality drop. Therefore, we reduce rtop as e
gets closer to eb, which is achieved by the term eb−e

eb
in Eq. (2). For

the special case where rtop calculated by Eq. (2) is either less than
1 or larger than the total number of LACs in Lcand, we set it to 1 or
|Lcand|, respectively.

C. Finding and Solving LAC Conflicts

This section presents the details of the function FindSolveLACConf
to obtain the conflict-free LAC set Lsol from the set Ltop together with
its corresponding TN set Nsol. The LAC conflicts can be divided into
two types:
• Type 1: The LACs with the same TN. These LACs are in conflict,

since each node can only be applied with one LAC in each round.
An example is given by Example 2.

• Type 2: Two LACs such that an SN of one LAC is the TN of
the other. For example, in Fig. 2, node 3 is the TN of the LAC
L({1}, 3). However, node 3 is also an SN of the LAC L({1, 3}, 4).
In this case, we cannot apply these two LACs simultaneously, since
applying the LAC L({1}, 3) removes node 3 and hence, the LAC
L({1, 3}, 4) no more exists.
To find and solve LAC conflicts in the set Ltop, first we define a

LAC conflict graph.

Definition 1. A LAC conflict graph is a weighted undirected graph
with each node representing a LAC in set Ltop. The weight of each
node is the error increase of its corresponding LAC. For any two
nodes, they are connected by an edge if their corresponding LACs
have a Type-1 or Type-2 conflict.

Example 3. Fig. 3 shows the LAC conflict graph for the set of LACs
shown in Fig. 2. We represent the 6 LACs in Fig. 2, i.e., L({1}, 3),
L({1, 3}, 4), L({2}, 4), L({3, 4}, 5), L({5}, 6), and L({8, 9}, 7)
as nodes T1, T2, T3, T4, T5, and T6 in the LAC conflict graph
shown in Fig. 3, respectively. The value near each node is its weight,
i.e., the error increase of its corresponding LAC with ER as the
error metric. Since LACs L({1}, 3) and L({1, 3}, 4) have a Type-2
conflict, their corresponding nodes T1 and T2 are connected by an
edge. Since L({1, 3}, 4) and L({2}, 4) have a Type-1 conflict, their
corresponding nodes T2 and T3 are also connected by an edge. The
other edges in Fig. 3 are added similarly.

T1T1

T2T2

T4T4

T3T3

T5T5 T6T6

11

22

33

44

55

66

0.0001

0.0008 0.001

0.0015
0.0021 0.003

Fig. 3. An example of LAC conflict graph.

The detailed procedure of the function FindSolveLACConf can be
divided into the following two steps.

1) Step 1: Given the top LAC set Ltop, construct its corresponding
LAC conflict graph Gconf.

2) Step 2: Find a set of nodes in Gconf without mutual connection,
e.g., the set {T1, T3, T5} in Fig. 3. By the definition of a LAC conflict
graph, if a set of nodes in Gconf has no mutual connection, then
the corresponding set of LACs has no conflict. Among the various
choices, we want to find one such that the sum of the error increases
of the selected LACs is as small as possible for the same reason
described in Section II-B. Besides, we also want to obtain as many
LACs without conflicts as possible, which leaves more options for
the final selection of multiple LACs. Thus, we aim at finding a set
Ssel of nodes in Gconf without mutual connection such that the sum
of their weights is as small as possible, while the node number is as
large as possible.

We propose a heuristic method to solve the above problem. It
initializes the set Ssel of selected nodes as empty. Then, it traverses
the nodes in Gconf in the ascending order of their weights. For each

node being visited, if it does not connect to any existing node in Ssel,
it is added into Ssel. Otherwise, it is skipped. Finally, for each node
in set Ssel, its corresponding LAC is added into set Lsol, and the TN
of the LAC is added into set Nsol.

Example 4. Consider the LAC conflict graph Gconf in Fig. 3. The
list of nodes in Gconf in the ascending order of their weights is T1,
T2, T3, T4, T5, T6. First, T1 is added into the set Ssel. Since node
T2 connects to T1, it is skipped. For node T3, since it does not
connect to T1, the only node in Ssel, it is added into set Ssel. For the
remaining nodes in Gconf, we perform a similar procedure. Finally,
Ssel = {T1, T3, T5, T6}. Thus, the LAC set Lsol contains L({1}, 3),
L({2}, 4), L({5}, 6), and L({8, 9}, 7), and its corresponding TN set
Nsol contains TNs 3, 4, 6, and 7.

D. Obtaining Independent LAC Set
This section presents the details of the function SelectIndpLACs,

which selects a subset of LACs from Lsol to form a good independent
LAC set Lindp. Note that after resolving conflicts, each LAC in set
Lsol has a unique TN. Thus, we convert this problem to finding a set
of nodes Nindp from Nsol so that the LACs applied to these nodes are
more likely to form an independent LAC set. For this purpose, we
first define an index measuring the likelihood that the LACs applied
to a pair of nodes in Nsol form a dependent LAC set (i.e., a positive
or negative LAC set) in Section II-D1. With the help of the index,
Section II-D2 shows how to obtain the set Nindp. Then, Section II-D3
shows how to obtain a good independent LAC set based on Nindp.

1) Index for Measuring the Likelihood of Two LACs to Form a
Dependent LAC Set: Given two nodes ni and nj in a circuit, suppose
that nj is before ni in a topological order. We want to efficiently
measure the likelihood that the LACs applied to ni and nj form a
dependent LAC set. For this purpose, we define a circuit structure-
based index pji by distinguishing two cases:

1. The case where there is a path from node nj to node ni. Let
d(nj , ni) be the length of the shortest path from nj to ni.
Intuitively, the larger d(nj , ni) is, the less likely that the LACs
applied to nodes nj and ni form a dependent LAC set. Thus, the
index pji is set as 1

d(nj ,ni)
.

2. The case where there is no path from node nj to node ni. In
this case, we focus on the transitive fanouts (TFOs) of nodes nj
and ni. Intuitively, the smaller the intersection of the TFOs of
nodes ni and nj , the less likely that the LACs applied to nodes
nj and ni form a dependent LAC set. Thus, the index pji is set
as |F (nj)∩F (ni)|

|F (ni)|
, where F (ni) and F (nj) are the TFOs of node

ni and node nj , respectively.
2) Obtaining Set Nindp: This section shows how we obtain the set

Nindp from the set Nsol using the index defined above.
We first build an undirected graph Gsol with the set of nodes as

Nsol. For each pair of nodes ni and nj in Gsol, they are connected
by an edge in Gsol if and only if their index pji is larger than a given
bound tb. Thus, if two nodes are connected, it is more likely that
the LACs applied to them form a dependent LAC set; otherwise, it
is less likely. Now, in order to get the set Nindp satisfying that the
LACs applied to the nodes in Nindp are more likely to form a good
independent LAC set, we try to pick a maximum number of nodes
in Nsol such that they are not pairwise connected in the graph Gsol.
This is just an MIS problem. Thus, by solving such a problem on
the graph Gsol, we obtain the set Nindp. In our implementation, an
open-source tool KaMIS [16] is applied to solve the MIS problem.

3) Selecting Independent LAC Set: Given the conflict-free LAC
set Lsol and the set Nindp, we choose the LACs from Lsol such that
their TNs are in set Nindp, which form the potential independent LAC
set Lpote. If we apply all the LACs in Lpote to the current approximate
circuit, it may cause a rapid circuit error increase, reducing the total
iteration number of the ALS flow and degrading the circuit quality.

Thus, conservatively, we only select the top LACs with the smallest
error increases from Lpote to form the final independent LAC set Lindp.

Then, a key question is how to determine the size of Lindp. Let it be
rindp. To decide rindp, we also introduce a parameter rsel as a reference
selected LAC number. We first count the number of LACs with their
error increases no more than 0 in Lpote, i.e., rneg. If rneg is no smaller
than rsel, we set rindp as rneg, and apply all the rneg LACs with error
increases no more than 0 to the circuit, which is likely to reduce the
circuit area without increasing the circuit error. Otherwise, to avoid
increasing the circuit error too rapidly, we set an error limit as λeb,
where λ is a parameter and eb is the given error bound. Then, among
the first rsel LACs in Lpote with the smallest error increases, we select
the maximum number of them such that their total estimated error eest

calculated by Eq. (1) is no more than λeb, which can be done by
checking the first rsel LACs in the ascending order of their error
increases. For the special case where the LAC with the minimum
error increase causes eest exceeding λeb, we just select the one with
the minimum error increase.

E. Improvement Techniques

To avoid synthesis quality drop, we further propose two improve-
ment techniques. The basic idea is to combine the selection of
multiple LACs in a round with the selection of a single LAC in
a round together. For the following two cases, we only select the
best LAC with the minimum error increase in a single round.

1. The error enew of the new approximate circuit Gnew is larger than
leeb, where le ∈ [0, 1] is a parameter close to 1. In this case, the
error increases of the candidate LACs for Gnew usually are large.
If multiple LACs are applied simultaneously, the ALS flow may
stop earlier, degrading the synthesis quality.

2. At the end of each round, first, the estimated error eest is calculated
according to Eq. (1). Then, we compare the the actual error enew and
the estimated error eest to determine whether the selected LAC set
is negative. For enew = 0, it can be shown that eest ≥ 0, and hence,
the LAC set cannot be negative. For enew > 0, we measure the
relative error difference β between enew and eest, i.e., β = enew−eest

enew
.

If β is larger than a parameter ld ∈ [0, 1], it means that the selected
multiple LACs form a negative LAC set. In this case, we revert
to the approximate circuit obtained in the last round, and only the
best LAC with the minimum error increase is selected.

III. EXPERIMENTAL RESULTS

This section shows the experimental results of AccALS. We
conduct all the experiments on a 12-core/24-thread Intel Xeon Gold
6146 processor running at 3.2GHz with 144GB RAM, and a single
thread is used in our experiments. AccALS can deal with any input
distribution and any statistical error metric. In our experiments, the
inputs are set as uniformly distributed. Table I lists the benchmark
circuits used in our experiments along with their node numbers in
their AIG representations, areas, and delays. The circuits include
some ISCAS [17], small arithmetic, large EPFL arithmetic [18], and
LGSynt91 circuits [19]. They are fully optimized by ABC using the
script “strash; resyn2×10; amap”. The area and delay of each circuit
are normalized to the area and delay of the INV X1 gate in the
MCNC library [19], respectively. For the ISCAS, small arithmetic,
and LGSynt91 circuits, to mitigate randomness in the experiments,
each experiment is conducted three times, and their average results are
reported. Due to the long runtime of EPFL arithmetic circuits, each
experiment is conducted only once. The bound tb in Section II-D2,
the parameter λ in Section II-D3, and the parameters le and ld
in Section II-E are set as 0.5, 0.9, 0.9, and 0.3, respectively. The
reference top LAC number rref in Section II-B and the reference
selected LAC number rsel in Section II-D3 affect the number of
selected LACs in each round. Intuitively, given an error bound, the

larger the size of a circuit, the larger the total number of LACs that
need to be applied to generate the final approximate circuit. Thus, for
circuits with larger sizes, more LACs can be applied in each round
to speed up the ALS flow. Through extensive experiments, for the
circuits with AIG node number less than 600, we set rref = 100 and
rsel = 20. For the circuits with AIG node number between 600 and
4999, we set rref = 200 and rsel = 40. For the circuits with AIG
node number no less than 5000, we set rref = 400 and rsel = 80.
To evaluate the synthesis quality of approximate circuits, we use
area ratio, delay ratio, and area-delay-product (ADP) ratio (i.e., the
area/delay/ADP of the approximate circuit over that of the original
one). In addition, synthesis runtime is reported.

Table I. Benchmarks used in our experiments. #Nd: number of nodes.

ISCAS & Small arithmetic EPFL arithmetic LGSynt91

Ckt #Nd Area Delay Ckt #Nd Area Delay Ckt #Nd Area Delay

alu4 1428 2798 12.7 div 23667 47081 3420.0 alu2 361 622 46.8
c1908 363 758 37.3 log2 38540 64914 541.2 apex6 607 1091 20.3
c3540 915 1604 55.0 sin 7044 12169 254.8 frg2 695 1195 16.6
c880 316 585 24.9 sqrt 21951 44512 3568.1 term1 149 262 23
cla32 420 958 38.5 square 20032 37927 400.8
ksa32 507 1128 17.8
mtp8 515 1069 37.8
rca32 312 666 16.1
wal8 462 1081 45.3

A. Statistical Analysis of AccALS

In each round of the AccALS framework, we will obtain two LAC
sets, the independent LAC set Lindp and the set Lrand with random
LACs, and select the better one (see Lines 8–12 of Algorithm 1).
In this section, we analyze the ratio of the rounds in which the
LAC set Lindp is selected. We call it Lindp ratio for short. We test
on the last 5 circuits listed in column 1 of Table I (i.e., all the
small arithmetic circuits) under three statistical error metrics, i.e.,
ER, NMED, and MRED. The thresholds of ER, NMED, and MRED
are 5%, 0.19531%, and 0.19531%, respectively. Fig. 4 shows the
Lindp ratio of AccALS for the small arithmetic circuits under three
error metrics. For mtp8, rac32, and wal8 under ER constraint, the
Lindp ratio is larger than 0.95. In addition, the average Lindp ratios
of all the three error metrics are larger than 0.7. This shows that
our sophisticatedly-constructed independent LAC set is usually better
than the randomly-constructed LAC set.

0
0.2
0.4
0.6

0.8
1

cla32 ksa32 mtp8 rca32 wal8 Avg

ER

NMED

MRED

ra
ti

o

indpL

𝐿
𝑖𝑛
𝑑
𝑝

Fig. 4. The Lindp ratio of AccALS for the small arithmetic circuits under
three error metrics.

B. Comparison with SEALS Method

In this section, we compare AccALS with a state-of-the-art single
selection-based ALS method, SEALS [12], which speeds up the
iterative ALS flows based on a sensitivity metric. The type of LAC
used in both AccALS and SEALS is ALSRAC [9]. Same as SEALS,
we use the MCNC library [19] as the technology library.

1) Experiments on Small ISCAS and Arithmetic Circuits: This
section compares AccALS with SEALS on the small ISCAS and
arithmetic circuits listed in column 1 of Table I. Three statistical
error metrics are considered, i.e., ER, NMED, and MRED.

0 1 2 3 4 5
ER(%)

0.0

0.2

0.4

0.6

0.8

1.0

AD
P

ra
tio

SEALS ADP ratio
AccALS ADP ratio
SEALS runtime
AccALS runtime

0

50

100

150

200

Ru
nt

im
e(

s)

Fig. 5. The average ADP ratio and runtime of the small ISCAS and arithmetic
circuits under 5 ER thresholds for AccALS and SEALS.

0.00.51.0
Normalized runtime

Avg

wal8

rca32

mtp8

ksa32

cla32

c880

c3540

c1908

alu4

89.6s

10.6s

34.7s

23.4s

107.7s

59.0s

27.8s

221.2s

56.9s

265.4s

0.0 0.5 1.0
ADP ratio

(a)

0.00.51.0
Normalized runtime

Avg
wal8

rca32
mtp8

ksa32
cla32

340.4s
207.8s
332.2s
222.9s
617.3s
321.7s

0.0 0.5 1.0
ADP ratio

(b)

0.00.51.0
Normalized runtime

Avg
wal8

rca32
mtp8

ksa32
cla32

273.7s
43.0s

347.6s
39.4s

587.4s
351.2s

0.0 0.5 1.0
ADP ratio

SEALS
AccALS

(c)
Fig. 6. Comparison between AccALS and SEALS on the small ISCAS and
arithmetic circuits: (a) under ER constraint; (b) under NMED constraint; (c)
under MRED constraint. The value on each row is the runtime of SEALS.

a) Performance under ER Constraint: We compare AccALS
with SEALS under 5 ER thresholds, 0.03%, 0.1%, 0.5%, 3%, and 5%,
for all the ISCAS and arithmetic circuits listed in column 1 of Table I.
Fig. 5 plots the average ADP ratio and runtime of these circuits
versus the ER threshold, where the results for each ER threshold
are the average values over all the tested circuits. For both AccALS
and SEALS, as ER increases, the average ADP ratio of the circuits
decreases, and the average runtime increases. In addition, the average
ADP ratios of AccALS are close to those of SEALS under all the
ER thresholds. As ER increases, the speedup ratio of AccALS over
SEALS gradually increases (up to 7.7× under 5% ER threshold).
This demonstrates the effectiveness of AccALS in speeding up the
ALS flow under large error thresholds.

Fig. 6(a) further details the average normalized runtime and the
ADP ratio of AccALS and SEALS for each circuit. The results of
each circuit are the average values under the above 5 ER thresholds.
For c1908, c3540, and c880, the approximate circuits synthesized by
AccALS have smaller ADP than SEALS. On average, AccALS syn-
thesizes approximate circuits with a slightly (i.e., 0.67%) larger ADP
than SEALS, while being 6.3× faster. This shows the effectiveness
of AccALS in speeding up the iterative ALS flows.

b) Performance under NMED Constraint: Since NMED is an
error metric for arithmetic circuits, we only test on the last 5 circuits
listed in column 1 of Table I. The results of each circuit are the
average values under 4 NMED thresholds (0.00153%, 0.00610%,
0.02441%, 0.19531%). Fig. 6(b) shows the average normalized
runtime and the ADP ratio of AccALS and SEALS under NMED
constraint. On average, AccALS synthesizes approximate circuits
with a slightly (i.e., 1.74%) larger ADP than SEALS, while being
8.8× faster.

c) Performance under MRED Constraint: Same as NMED,
MRED is an error metric for arithmetic circuits. Thus, we use the
same circuits and error thresholds as those used in Section III-B1b
to compare AccALS with SEALS. Fig. 6(c) shows the average
normalized runtime and the ADP ratio of AccALS and SEALS under
MRED constraint. On average, AccALS synthesizes approximate
circuits with a slightly (i.e., 0.86%) larger ADP than SEALS, while
being 8.5× faster.

2) Experiments on Large EPFL Circuits: To show the scalability
of AccALS, this section compares AccALS with SEALS under ER
constraint for those large EPFL circuits in column 5 of Table I.
The ER threshold is set as 0.1%. Table II lists the area and delay
ratios and the runtime of AccALS and SEALS. We highlight the
data in bold when AccALS outperforms SEALS. From Table II,
the approximate circuits of div and sqrt obtained by AccALS have
smaller areas than those obtained by SEALS. On average, AccALS
synthesizes approximate circuits with a negligible area increase (i.e.,
0.26%) and delay increase (i.e., 1.16%) compared to SEALS. For
these EPFL circuits, the runtime of SEALS is extremely long. In
particular, the runtime of SEALS for div is 59.1 hours. By using
AccALS, the runtime reduces to 2.4 hours, which is a significant
improvement. Additionally, it is notable that by using AccALS, the
area and delay of div both reduce. On average, AccALS is 24.6×
faster than SEALS. Compared to the experiments on the small circuits
in Section III-B1, AccALS shows more speedup on large circuits with
a negligible circuit quality loss, which demonstrates the scalability
of AccALS.

Table II. Comparison between AccALS and SEALS on the large EPFL
arithmetic circuits under the ER threshold of 0.1%.

circuit area ratio delay ratio time (s)
AccALS SEALS AccALS SEALS AccALS SEALS

div 26.93% 27.18% 27.22% 28.66% 8703 212924
log2 90.60% 90.27% 94.38% 94.62% 4535 126404
sin 96.58% 95.28% 96.70% 89.91% 589 10369
sqrt 78.30% 78.39% 79.56% 79.55% 5556 133557

square 99.78% 99.76% 98.95% 98.23% 617 8026

Avg 78.44% 78.18% 79.36% 78.20% 4000 98256

C. Comparison with AMOSA Method
This section further compares AccALS with a recent evolutionary-

based ALS method that selects multiple LACs in a round [15]. We
call it AMOSA for short, since it applies the AMOSA heuristic to
select multiple LACs. We consider ER constraint. The type of LAC
used in AccALS is ALSRAC [9]. Same as AMOSA, we use the
45nm NanGate standard-cell library [20] as the technology library.
The LGSynt91 circuits listed in column 9 of Table I are selected for
evaluation, since they are also used in [15]. The results of AMOSA
are taken from [15]. For each circuit, we apply AccALS to iteratively
generate the approximate circuits with the ER bound as the maximum
ER of the AMOSA design.

For the hardware cost, same as AccALS, AMOSA focuses on
reducing circuit area instead of delay. Thus, we compare the area of
AccALS with that of AMOSA. Fig. 7 plots the area ratio-ER curves
of the approximate designs synthesized by AccALS and AMOSA for
the LGSynt91 circuits. For all the circuits, AccALS always reduces
more area than AMOSA, except for term1 under the ERs larger
than 20%. Especially, for alu2, apex6, and term1, the area ratios of
AccALS are up to 50% smaller than those of AMOSA. This shows
that AccALS outperforms AMOSA in circuit area optimization.

Table III lists the synthesis time for AccALS and AMOSA for a
single run. Note that the results of AMOSA are taken from [15], and
the experiments in [15] are conducted on a processor better than ours.
From Table III, the runtime of AccALS is always smaller than that
of AMOSA. On average, AccALS is 13× faster than AMOSA.

0 20 40 60 80 100
ER(%)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 ra
tio

alu2 of AMOSA
alu2 of AccALS

apex6 of AMOSA
apex6 of AccALS

(a) alu2 and apex6

0 20 40 60 80 100
ER(%)

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 ra
tio

frg2 of AMOSA
frg2 of AccALS

term1 of AMOSA
term1 of AccALS

(b) frg2 and term1

Fig. 7. The area ratio of AccALS and AMOSA for the 4 LGSynt91 circuits
under ER constraint.

Table III. The runtime (s) for the LGSynt91 circuits.

method alu2 apex6 frg2 term1 average

AMOSA 960 360 1380 3120 1455
AccALS 16.91 158.69 263.52 5.77 111.23

IV. CONCLUSION

In this work, we propose AccALS, accelerating the iterative ALS
flows by selecting multiple LACs in a single round. First, an efficient
technique is designed to solve the LAC conflicts. Then, an index is
proposed to efficiently measure the mutual influence between two
LACs. With its help, an MIS problem is formulated and solved to
select a maximal set of LAC with less mutual influence. AccALS
outperforms a state-of-the-art method in runtime with a negligible
circuit quality loss.

REFERENCES
[1] M. M. Waldrop, “The chips are down for Moore’s law,” Nature,

vol. 530, no. 7589, pp. 144–147, 2016.
[2] J. Han and M. Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.
[3] Q. Xu et al., “Approximate computing: A survey,” IEEE Des. Test.,

vol. 33, no. 1, pp. 8–22, 2016.
[4] S. Mittal, “A survey of techniques for approximate computing,” ACM

Comput. Surv., vol. 48, no. 4, 62:1–62:33, 2016.
[5] I. Scarabottolo et al., “Approximate logic synthesis: A survey,” Proc.

IEEE, vol. 108, no. 12, pp. 2195–2213, 2020.
[6] D. Shin and S. K. Gupta, “A new circuit simplification method for

error tolerant applications,” in DATE, 2011, pp. 1–6.
[7] S. Venkataramani et al., “Substitute-and-simplify: A unified design

paradigm for approximate and quality configurable circuits,” in DATE,
2013, pp. 1367–1372.

[8] Y. Wu and W. Qian, “An efficient method for multi-level approximate
logic synthesis under error rate constraint,” in DAC, 2016, pp. 1–6.

[9] C. Meng et al., “ALSRAC: Approximate logic synthesis by resubsti-
tution with approximate care set,” in DAC, 2020, pp. 1–6.

[10] J. Ma et al., “Approximate logic synthesis using Boolean matrix
factorization,” IEEE TCAD, vol. 41, no. 1, pp. 15–28, 2021.

[11] S. Su et al., “VECBEE: A versatile efficiency-accuracy configurable
batch error estimation method for greedy approximate logic synthesis,”
IEEE TCAD, 2022.

[12] C. Meng et al., “SEALS: Sensitivity-driven efficient approximate logic
synthesis,” in DAC, 2022, pp. 439–444.

[13] Z. Zhou et al., “DALS: Delay-driven approximate logic synthesis,” in
ICCAD, 2018, pp. 1–7.

[14] J. Echavarria et al., “Approximate logic synthesis of very large Boolean
networks,” in DATE, 2021, pp. 1552–1557.

[15] M. Barbareschi et al., “A catalog-based AIG-rewriting approach to
the design of approximate components,” IEEE Trans. Emerg. Topics
Comput., 2022.

[16] S. Lamm et al., “Finding near-optimal independent sets at scale,” in
ALENEX, 2016, pp. 138–150.

[17] M. Hansen et al., “Unveiling the ISCAS-85 benchmarks: A case study
in reverse engineering,” IEEE DTC, vol. 16, no. 3, pp. 72–80, 1999.

[18] EPFL, The EPFL combinational benchmark suite, https://lsi.epfl.ch/
page-102566-en-html/benchmarks/, 2021.

[19] S. Yang, “Logic synthesis and optimization benchmarks,” Microelec-
tronics Center of North Carolina, Tech. Rep., 1991.

[20] Nangate, Inc., Nangate 45nm open cell library, https://si2.org/open-
cell-library/, 2022.

https://lsi.epfl.ch/page-102566-en-html/benchmarks/
https://lsi.epfl.ch/page-102566-en-html/benchmarks/
https://si2.org/open-cell-library/
https://si2.org/open-cell-library/

	Introduction
	Methodology
	Overview of AccALS
	Obtaining Top LAC Set
	Finding and Solving LAC Conflicts
	Step 1
	Step 2

	Obtaining Independent LAC Set
	Index for Measuring the Likelihood of Two LACs to Form a Dependent LAC Set
	Obtaining Set Nindp
	Selecting Independent LAC Set

	Improvement Techniques

	Experimental Results
	Statistical Analysis of AccALS
	Comparison with SEALS Method
	Experiments on Small ISCAS and Arithmetic Circuits
	Performance under ER Constraint
	Performance under NMED Constraint
	Performance under MRED Constraint

	Experiments on Large EPFL Circuits

	Comparison with AMOSA Method

	Conclusion

