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Abstract—With CMOS technology shrinking into nanoscale, the 

circuit design margin has become extremely tight due to the 

severer transistor aging and process variations. To relieve the 

circuit reliability problems, many design optimization methods 

have been proposed. In essence, all these methods trade off 

area/power /performance for reliability. In this paper, we present 

a new perspective to enhance design reliability: using emerging 

computing paradigms. As the preliminary attempts, three 

reliability-enhanced design flows based on approximate 

computing and/or stochastic computing are demonstrated. The 

results show that some emerging computing paradigms are 

inherently robust, or can trade off computing accuracy for 

reliability, which provides the designers with much more 

flexibility. It also indicates that emerging computing paradigms 

are very promising for circuit design with ultimately scaled 

CMOS and beyond CMOS devices. 

Keywords- reliability-enhanced design, NBTI, circuit reliability 

simulation, aging-aware STA, SSTA, stochastic computing, 

approximate computing, ReRAM crossbar, neural network. 

I.  INTRODUCTION  

With CMOS technology continuously shrinking, the 

reliability issues have become more and more pronounced. 

Many kinds of non-ideal factors, such as process variations and 

transistor aging effects (especially, the negative bias 

temperature instability, NBTI), make the circuit design margin 

getting smaller [1-4]. To counteract the impact of aging and 

variations, the needed voltage/frequency guardband is getting 

larger, too. Thus, the benefits of technology scaling are smaller 

at advanced technology nodes. 

To relieve the circuit design margin, solutions from the 

device level to the architecture level have been proposed, such 

as aging-aware voltage and frequency scaling [5, 6] and aging 

sensor [7]. These methods aim to avoid timing errors, which 

sacrifice speed for reliability. Other solutions like aging 

control gate [8] or gate resizing [9], can enhance the circuit 

reliability by reconstructing the circuit, but will bring 

additional overhead in area or power.  

Recently, emerging computing paradigms and emerging 

devices are flourishing and attract more and more attention. It 

naturally raises a question that, whether it is possible to take 

advantage of emerging computing paradigms to help 

enhancing the circuit reliability. Therefore, as the first attempt, 

we present three design optimization methods to enhance 

circuit reliability as examples, which are all based on emerging 

computing paradigms. 

 

 

Figure 1. The overview of this paper. 

 

The organization of this paper is shown in Fig. 1. The first 

example utilizes approximate computing to completely 

remove the guardband; the second example shows how 

stochastic computing (SC) inherently improve circuit 

reliability; the last example shows a variation-resistant 

ReRAM crossbar computing-in-memory (CIM) circuit based 

on stochastic coding. The results provide new insights into the 

reliability-enhanced design for nanoscale and emerging 

technologies.  

II. RELIABILITY-ENHANCED SYNTHESIS BASED ON 

APPROXIMATE COMPUTING 

Approximate computing is a promising emerging 

computing paradigm which has attracted a lot of attention in 

recent years [10]. It intentionally introduces some errors while 

ensuring the usability of the application, in exchange for 

smaller area and/or power. It has been demonstrated that 

approximate computing can improve energy efficiency in 

many applications that can tolerate some loss of accuracy, such 

as neural networks, data mining, and image processing [11]. 

However, most previous works on approximate computing 

focus on improving the energy efficiency without paying 

attention to the reliability of the approximate circuit. In Ref. 

[12], a reliability-enhanced design method was proposed, 

which truncates the low bits of adders to reduce the aged delay. 

However, this method is not applicable to other arithmetic 

units or function units, and the truncation is not the optimal 

approximation for adders [13].  
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Thus, we have proposed a reliability-enhanced design 

method based on approximate logic synthesis (ALS) [14], as 

shown in Fig. 2. The design flow has two key parts: a reliability 

simulation flow supporting statistical static timing analysis 

(SSTA), and an approximate logic synthesis flow which can 

effectively reduce the circuit delay. After the forward 

reliability simulation flow, the aged path failure rates (PFRs) 

of the critical paths can be estimated by aging-aware SSTA. If 

the largest PFR is higher than the given threshold, the timing 

errors will destroy the functionality of the circuit. In this case, 

the netlist needs to be processed backward by approximate 

logic synthesis. Then, the reliability of the approximate circuit 

is checked again. This procedure is repeated until the reliability 

requirement is satisfied. 
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Figure 2. Flow diagram of the proposed reliability-enhanced design flow 
based on approximate synthesis. 
 

A. SSTA-based Reliability Simulation Flow 

The goal of reliability simulation is to analyze the timing 

after aging. In digital applications, NBTI dominates the 

transistor aging [15-17]. NBTI in digital circuits depends on 

the working frequency and the duty factor (DF) of each 

transistor. Therefore, as shown in Fig. 3, the reliability 

simulation flow is divided into two parts: workload analysis 

which calculates the degradation of transistors, and timing 

analysis after aging which calculates the path delay 

distributions. 

The most accurate method to calculate the degradation of 

transistors is the SPICE-level simulation of the whole netlist 

with application programming interface (API) like Synopsys 

MOSRA, Cadence RelXpert, TSMC model interface (TMI), or 

the CMC open model interface (OMI). However, the SPICE-

level simulation of VLSI circuits is not practical. Therefore, 

the proposed flow divides the workload analysis into two steps: 

the first step selects the N-worst paths of the circuit and uses 

gate-level simulation to obtain the input waveform of these 

paths; the second step only simulates the netlists of paths and 

calculates the DF of each transistor. After obtaining the DF of 

each transistor, a long-term aging model together with a 

variation model [14] is used to calculate the NBTI degradation 

and process variations.  

 

Netlist

Netlist of N-

worst paths

Actual-input 

vector

Duty factor

Long-term 

aging model
Standard 

cell library

ΔVth Variation 

model

Path delay 

distribution

SPICE-level simulation 

with OMI/TMI

Behavior 

simulation

PV

Timing 

constraints

(m,s)

SPICE-level 

Monte-Carlo 

simulation

Aged delay 

distribution of 

gates in path

Path failure 

rate

Static timing 

analysis

Test bench

 

Figure 3. Flow diagram of the proposed SSTA-based reliability simulation flow. 
 

For timing analysis, the SPICE-level Monte Carlo 

simulation is used to calculate the delay distribution of each 

gate and then calculate the path failure rate according to the 

working frequency. Although SPICE-level simulation is time-

consuming, considering that the number of paths will not be 

large, the simulation time is acceptable. 
 

B. Delay-driven Approximate Logic Synthesis 

In the proposed reliability-enhanced design flow, the 

approximate logic synthesis is to find the optimal approximate 

local change (ALC), which can reduce the delay significantly 

and have the least error impact on the application. Our 

synthesis algorithm works on the AND-inverter graph (AIG) 

representation, and the basic procedure is presented in Fig. 4. 

In AIG representation, the circuit delay is proportional to the 

depth of AIG. To reduce the delay, the depth of the AIG needs 

to be reduced. The subgraph containing all critical paths is 

called the critical graph, and a cut on all critical paths is called 

a critical cut. For example, the cut with nodes 8 and 9 in Fig.4 

is a critical cut. The ALS algorithm aims at finding the optimal 

critical cut in the critical graph, which has the minimal error 

impact on the circuit. 

 

 

Figure 4. Illustration of delay-driven approximate logic synthesis algorithm. 

 

For a large AIG graph, enumerating all sets of ALCs and 

critical cuts is too time-consuming. Therefore, to reduce the 

complexity, the algorithm transforms the optimization 

problem into a network flow problem. First, simulate the error 

impact of each ALC. Then, map the original critical graph into 
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a critical error network (CEN). Finally, obtain the minimum 

cut of the CEN by solving a maximum flow problem on CEN. 

The minimum cut corresponds to a good critical cut. After the 

good critical cut is found, the ALCs on the cut are applied to 

simplify the AIG. Finally, the simplified AIG is mapped into a 

gate-level netlist.  

C. Results and Discussions 

To examine the effectiveness of the proposed design flow, 

some ISCAS’85 benchmark circuits are tested. We use 

Synopsys Design Compiler to synthesize the benchmark 

circuits. Synopsys PrimeTime is used to perform fresh timing 

analysis and report the critical paths. The open-source Nangate 

15 nm standard cell library [18] is employed to obtain the delay 

and area of the circuit. 

Table I shows the results of different benchmark circuits. It 

can be seen that with conventional aging-aware design, an 

additional guardband of reducing 6%~10% frequency should 

be added for the resistance of 10-year aging. Note that this 

additional aging guardband is at the similar amount with the 

impacts of process variations. However, if using the proposed 

reliability-enhanced approximate (REA) design, a small 

sacrifice of some accuracy can completely eliminate aging 

guardband (i.e., zero additional guardband). Especially when 

performed with arithmetic circuits without controller (e.g., 

ALU4 and APEX6), the error rate caused by approximation is 

less than 0.4%, while the required aging guardband of the 

original circuit is about 6.5%~7.5%. Note that, a small error 

rate (<5%) is acceptable for most error-tolerant applications.  
 

TABLE I.  RESULT ON DIFFERENT BENCHMARK CIRCUIT  

Bench Gates I/Os 
Aging 

guardband 

Error rate @ 

Zero guardband 

C1355 546 41/32 8.16% 5.95% 

C1908 880 33/25 9.04% 2.10% 

C3540 1669 50/22 8.15% 3.32% 

C5315 2307 178/123 6.55% 1.41% 

ALU4 681 14/8 6.49% 0.33% 

APEX6 452 135/99 7.27% 0.28% 

 

For a case study, the image compression application is 

chosen to demonstrate the system reliability enhancement of 

the proposed design flow. The compression algorithms include 

discrete cosine transformation (DCT) and inverse discrete 

cosine transformation (IDCT). We use an 8-bit multiplier and 

a 16-bit adder as the arithmetic units. Fig. 5 shows the output 

image processed by different circuits. After 10 years of aging, 

the image quality of the original circuit is greatly reduced due 

to timing errors. Because timing errors are more likely to occur 

on longer paths, that is, the more significant bits of the adder, 

it will seriously affect the computing result. In contrast, for the 

circuit with the proposed REA design, although its initial 

PSNR decreases slightly (less than 1 dB), its performance after 

aging does not decrease due to the shortening of the critical 

path. The results indicate that, the proposed design flow can 

convert the timing violations that seriously affect the circuit 

functions into the deliberately induced errors that have 

negligible impact in practical applications. 

 

 

Figure 5. Images processed by the (a) fresh original circuit, (b) fresh REA 
circuit, (c) aged original circuit, and (d) aged REA circuit. 

 

III. RELIABILITY-ENHANCED DESIGN BASED ON 

STOCHASTIC COMPUTING 

Apart from approximate computing, stochastic computing 

(SC) is also an attractive emerging computing paradigm. SC 

processes data as the probability of 1 appearing in a bitstream, 

so the circuit in SC is not the conventional binary circuit. Many 

arithmetic operations can be implemented with simple logic 

gates [19-21]. In addition to low power and high area-

efficiency, SC exhibits high fault-tolerance because of its 

operations with probability instead of binary numbers. It raises 

the concern of whether the reliability of SC circuits (SCCs) is 

enhanced as compared with that of conventional binary circuits. 

Therefore, using the reliability simulation flow presented in 

Section Ⅱ-A, the reliability of SC circuits in practical 

applications is investigated and compared with that of binary 

circuits. The Robert cross edge detector [22] for image 

recognition is chosen as the benchmark application. Using the 

correlated input sequence, the absolute value subtractor can be 

implemented by an XOR gate in SC, while the corresponding 

binary circuit requires two 8-bit absolute value subtractors and 

an 8-bit adder. For a fair comparison, the bit stream generator 

(BSG) is included in the SC circuit. 

A. Workload Comparison 

The workload distributions under different input images 

are shown in Fig. 6. It is noted that the whole netlist is used for 

SPICE-level simulation to get the duty factors of all the 

internal nodes. It can be seen that the DFs of the internal nodes 

are mostly around 50% in the SC circuit, while the DFs are 

widely distributed in the binary circuit and many nodes’ DFs 

are close to 1. Since the binary circuit is much more complex, 

the internal nodes are more likely to be biased [23]. However, 

in the coding format of SC, each bit is equally weighted and 

randomized, so the switching activity is relatively high and DF 

is usually not too large. 

High DF means the transistor is in the stress state for most 

of the time, so the traps accumulate, which results in larger 

ΔVth. If the gates with high DFs locate on the critical paths, the 

circuit delay will increase significantly.  
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Figure 6. Workload comparison between the binary circuit and the SC circuit 
under different input images. The Y-axis in each figure is the normalized 
occurrence. 

 

B. Performance Degradation of Circuits 

After workload analysis, the path delay and path failure 

rate after aging can be estimated. The results show that the path 

failure rate of the SC circuit (including BSG) is lower than that 

of the binary circuit [Fig. 7(a)]. To quantitatively evaluate the 

image quality, the s-component of structure similarity index 

(MSSIM) is used to evaluate the quality of the output image. 

As shown in Fig. 7(b), the quality of the image processed by 

SCC is higher even at the same path failure rate, which means 

that the computing paradigm is highly robust. The above 

results prove that the reliability enhancement of SC originates 

from the low degradation of the SC circuit and the robustness 

of the coding format.  

The images processed by different circuits is shown in Fig. 

8. It can be seen that the image processed by the binary circuit 

loses most of the information after 10 years of aging [Figs. 8(a-

c)]. While the quality of the image processed by the SCC is 

barely reduced [Figs. 8(e-g)]. If using the conventional aging-

aware circuit design method and setting the optimization goal 

to maintain the performance (e.g. MSSIM > 0.9) at the end of 

life [Fig. 7(c)], the binary circuit needs to deploy a very large 

aging guardband of 16% [Fig. 8(d)]. In contrast, the MSSIM 

of the SC circuit is above 0.9 without any aging guardband. 

Thus, a part of the precision can be sacrificed in exchange for 

speed. The precision of SC is determined by the bitstream 

length (BSL). As shown in Fig. 8(h), after reducing BSL from 

256 to 64 bits, the SC circuit still has the required performance, 

while reducing the total delay by 4 times.  

The performance of the different circuits under different 

working conditions is shown in Fig. 9. Because NBTI is 

sensitive to the temperature, a slight increase in the 

temperature will cause a large increase of ΔVth, which will 

significantly reduce the performance of the binary circuit. For 

the SCC, due to the low DF, the performance loss is less. Large 

process variations will increase the uncertainty, and make the 

path failure rate higher. However, the performance of SCC is 

not as obvious as the binary circuit because of its coding format 

and lower degradation. The results prove that the SCC is 

insensitive to the working conditions, which will reduce the 

design complexity. 

 

 

Figure 7. (a) The relationship between path failure rate and total guardband 
under different degradation times. (b) The relationship between MSSIM 
(quality index of image) and path failure rate. (c) The relationship between 
MSSIM and total guardband. (d) The origin of the inherent reliability 
improvement of SC. 
 

 

Figure 8. Images processed by the binary circuit (a-c) and the SC circuit (e-g) 
after 1 year and 10 years of aging. Using aging-aware design optimization to 
ensure the quality of images in the binary circuit (d) and the SC circuit (h). 
 

 

Figure 9. The quality (MSSIM) of images processed by the binary circuit or the 
SC circuit under different aging times, for different process variations (PV) 
and/or temperatures. 

 

C. The Origins of the Reliability Enhancement 

It has been mentioned that the reliability enhancement 

comes from both the low degradation of circuits and the fault-

tolerance of the probability encoding format. To figure out the 

proportion of the two parts, the quality of images processed by 

SC circuits with the path failure rate of binary circuits is shown 

in Fig. 7(d). The result shows that the improvement of the 

circuit reliability also accounts for a considerable proportion, 
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which was not expected before. Besides, since the reliability of 

circuits is independent of BSL, the proportion of circuit 

reliability enhancement will be larger when BSL is shorter. 

IV. RELIABILITY-ENHANCED RERAM CROSSBAR CIM 

BASED ON STOCHASTIC COMPUTING ENCODING 

Neural networks have shown great promise for a wide range 

of applications, including image classification and speech 

recognition. Deep learning also created the demand for energy-

efficient hardware accelerators. However, neural networks 

contain a huge number of matrix-vector multiplication 

operations. Their performance is limited by the traditional von 

Neumann architecture. Computing-in-memory is proposed to 

reduce the data movement between processor and memory. 

Resistive random access memory (ReRAM) crossbar is a 

promising candidate for CIM architecture, which is faster and 

consumes lower power than CMOS-based accelerator [24-26]. 

However, ReRAM suffers from the resistance variation 

problem, due to imperfect or immature fabrication process and 

stochastic filament-based switching [27]. The second reason is 

its inherent mechanism, which cannot be solved by process 

optimization. The resistance variation affects the precision of 

the synaptic weights, and can significantly degrade the 

accuracy of neural networks [28]. To overcome the impact of 

resistance variation, some off-device training methods were 

presented in [29, 30], but it also suffers from significant 

accuracy loss under large variations. Furthermore, the use of 

multi-level cell (MLC) makes the problem even worse.  
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Figure 10. Stochastic coding, or unary coding, is variation-resistant due to the 
equivalent significance of each bit. 
 

 

Figure 11. Stochastic coding has a lower deviation than the corresponding 
binary coding for representing the same value of weight. 

 

It has been mentioned in Section Ⅲ that the coding format 

of SC is fault-tolerant. Since each bit in the stochastic coding 

has the same significance, which is also known as unary coding 

[31], the stochastic coding has a strong tolerance to bit-flip 

errors. As shown in Fig. 10, stochastic coding also has a strong 

tolerance to variations of ReRAM resistance (or conductance). 

Thus, a new solution to enhance the reliability of the ReRAM-

based crossbar circuit based on stochastic coding has been 

proposed [32].  

A. Stochastic Coding with Single-level Cell and Multi-level 

Cell  of ReRAMs 

In binary coding, as different bits at different positions 

have different significance, the most significant bits (MSBs) 

can amplify the weight variation. In contrast, the stochastic 

coding has all the bits of the same significance. However, the 

stochastic coding needs more cells for representing the same 

range of data as the binary coding. For example, (2𝑁 − 1) bits 

are needed in the stochastic coding with single-level cells to 

represent the same precision of the N-bit binary coding. The 

decimal number 10, expressed in the binary coding as “1010”, 

is represented as “111111111100000” in the stochastic coding. 

To further increase the efficiency of the ReRAM crossbar 

accelerator, the 2-bit MLCs are widely used in neural network 

architectures [25]. MLCs reduce the bits needed to represent 

data. When k-bit MLCs are used, only 
𝑛

𝑘
 and 

2𝑛−1

2𝑘−1
 of cells are 

needed in binary coding and stochastic coding, respectively. 

For example, the decimal number 10 can be expressed in the 

binary coding as “22” with 2-bit MLCs, and be expressed in 

the stochastic coding as “33310”. Using MLC causes more 

benefit for stochastic coding than for binary coding. 

Fig. 11 shows why stochastic coding is more variation-

resistant than binary coding when using MLCs. Assuming 2-

bit MLCs are used and the variation of each cell is uniform, the 

variations of different cells can compensate in stochastic 

coding due to the equivalent significance of each cell. In 

contrast, in binary coding, the compensation is insufficient: the 

variations of MSB cells have a greater impact on the value. 

As the results shown in Ref. [32], even under a relatively 

large variation level of σ=0.8, using stochastic coding to 

represent the weight can directly improve the accuracy by 30% 

compared with that using binary coding, for small neural 

networks such as MLP or LeNet. However, for some deep 

neural networks such as Vgg16, the accuracy improvement is 

not significant by only changing the coding format. Therefore, 

we also propose a stochastic coding assisted optimal mapping 

method to further reduce the variation impact, as will be 

discussed in the next subsection. 

B. Stochastic Coding Assisted Variation-aware Optimal 

Mapping and Architecture 

As all the bits in the stochastic coding have the same 

significance, the order of these bits does not change the 

represented value. When using MLCs, there is more than one 

way to encode the data. For example, the decimal number 10 

can be represented in multiple forms, such as “33310”, 

“33220”, or “22222”. Since each ReRAM unit has a different 

variation, different mapping methods will lead to different 

final weight variations. If the mapping method is not 

appropriate, it is difficult to fully compensate for the variations 

between different cells. 

In this case, to make the best use of the coding flexibility 

brought by stochastic coding and find the optimal mapping 

way, a variation-aware optimal mapping has been proposed, 

which can greatly reduce the weight variations, even for deep 

neural networks with large datasets. More details can be found 

in Ref. [33]. 
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In addition, the architecture of the ReRAM crossbar 

accelerator is changed accordingly. The traditional binary 

ReRAM crossbar accelerator uses ADCs to convert current 

into digital values, and then uses a shift module and an adder 

to calculate the final value [25]. The proposed architecture uses 

stochastic coding to represent the weights, so it does not need 

the shift module after the ADC. Therefore, the proposed SC-

based architecture also reduces the hardware overhead.  

C. Results and Discussions 

The proposed method is evaluated with two neural 

networks on two datasets. The accuracy of various methods for 

four different combinations of neural networks and datasets is 

listed in Table II. We set the device variation s as 1, which is 

a very large level. If the proposed method can guarantee a 

small accuracy loss under this extreme case, the accuracy loss 

will also be smaller for  s<1. The “Ideal” row gives the ideal 

accuracy with floating-point weights and no variation. The 

“Binary computing” method is the traditional binary 

computing architecture. The “Stochastic computing” method 

is the SC-based architecture with the stochastic coding assisted 

variation-aware optimal mapping. All these methods use four 

2-bit MLCs to represent a weight, so the hardware costs of 

these methods are the same. 

The results show that stochastic coding assisted optimal 

mapping method can improve accuracy significantly. The 

proposed method has at least 62.58% higher accuracy than the 

traditional binary computing architecture. It is worth noting 

that the accuracy loss in stochastic computing mostly 

originated from the lower representation precision of the 

stochastic coding itself. In addition, the energy/area-efficiency 

can be further improved if the MLC has more levels [33]. 

V. CONCLUSIONS 

In this paper, three reliability-enhanced design methods are 
demonstrated, which are all based on emerging computing 
paradigms. The results show that some emerging computing 
paradigms can inherently enhance reliability, which can be used 
with the unreliable emerging device to build a dependable 
system. It should be noted that these emerging computing 
paradigms typically target at applications that do not require 
absolute computational accuracy, so the accuracy constraint 
can be relaxed in exchange for power, area, speed, and/or 
reliability. The results also indicate that the cross-layer design 
framework is urgently needed in advanced technology nodes 
and beyond CMOS devices.   
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