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Abstract Due to the inherent tolerance to inaccuracy in data-driven applications,
approximate multipliers have received growing attentions for its compactness and
energy-efficiency. However, the energy efficiency of an approximate multiplier
largely depends on how and where the inaccuracy is introduced into the design,
which can be roughly categorized to 3 design levels: (1) architecture, (2) algorithm,
and (3) circuit. Such large design space inevitably incurs design complexities and
challenges in selecting the appropriate multiplier for a particular application. Thus,
this paper provides a comprehensive review of the state-of-the-art (SOTA) designs
of approximate multipliers for future investigations.
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1 Introduction

Thanks to the rapid growth of Artificial Intelligence (AI) and Internet-of-Things
(IoT), energy efficiency has become a critical concern for IoT devices with con-
strained resources [1]. Among various efforts for energy efficiency optimization,
approximate computing has emerged as a promising alternative for designers to
trade computational accuracy with energy efficiency. This is especially applicable
to human sensory or machine learning tasks where a small amount of inaccuracy is
tolerable [2–6].

At the edge, IoT devices are designed to consume the minimum resource to
achieve the desired accuracy. However, the conventional processors, such as CPU
or GPU, can only conduct all the computations with pre-determined but sometimes
unnecessary precisions, inevitably degrading their energy efficiency. For example,
when running data-intensive applications, e.g., streaming, neural network, and im-
age processing, etc., multiplication is frequently invoked and consumes non-trivial
energy [7]. However, for a neural network, even with an inaccurate multiplier with
limited precision, such inaccuracymay get cancelled out without impacting the infer-
ence accuracy [8]. In other words, when running inaccuracy-tolerable applications
on the conventional processors, significant energy and time are actually spent on the
multipliers computing highly accurate outputs that are not necessarily demanded.
Thus, for the multiplication in IoT devices, there is a need to optimize its energy
efficiency by providing sufficient instead of excessively accurate computational pre-
cisions.

As a common arithmetic component that has been studied for decades [9,10], the
past focus for the multiplier is mainly placed upon accuracy and performance. Re-
cently, with awareness of the compromise between the stringent resource constraint
and the accuracy tolerance for edge applications, there have been various research
efforts for approximate multiplier design and optimization, ranging from algorithm,
architecture, to circuit [11–25].

Since many prior designs happen to rely on hand-crafted structures or heuristics,
it is then highly desired to systematically review and understand the pros and cons of
how and where the inaccuracy can be introduced into the design. Thus, this chapter
will review approximate multipliers from three different levels, i.e., architecture,
algorithm, and circuit. The remainder of this chapter is organized as follows. In
section 2, we review the background of approximate multiplier. Sections 3 to 5
discuss the approximate multipliers at architecture, algorithm, and circuit levels,
respectively, followed by the conclusions in section 6.
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Fig. 1 Comparison between fixed-point and floating-point formats.
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Fig. 2 An example of a 32-bit floating point multiplication according to IEEE 754 standard.

2 Background

2.1 Fixed Point v.s. Floating Point

Similar as many arithmetic functions implemented in hardware, the multiplier
design can be categorized to fixed point and floating point implementations as a
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trade-off among accuracy, dynamic range and cost. The major difference between
fixed point and floating point numbers is whether the implementation has a specific
number of digits reserved for the integer and fractional parts, respectively. In other
words, fixed point numbers have a decimal point at a fixed position. Obviously,
floating point may offer a wider dynamic range and higher precision than its fixed
point counterpart, but at the cost of area, speed, and power consumption.

Fig. 1 compares fixed point and floating point formats in the binary number
system. The fixed point format consists of a sign bit, an integer part, and a fractional
part, with a fixed binary point position. On the other hand, according to the IEEE 754
standard [26], which is a technical standard for floating point arithmetic, a floating
point number consists of sign, exponent, and mantissa. The mantissa of a normalized
floating point number is a fraction with its value between 1 and 2, where its first digit
is fixed to 1 and the rest is the fraction in the range of [0,1).

Depending on the underlying number representations, designers may use either a
fixed point multiplier or a floating point multiplier to conduct multiplication. For the
floating point numbers, the multiplication procedure of 32-bit floating point numbers
is demonstrated in Fig. 2. The sign bits are XORed together and the exponents are
summed by an adder. Then, a bias of 24G?>=4=C_F83Cℎ − 1 is subtracted from the
sum to allow both negative and positive values for the exponent. Finally, the two
mantissas are multiplied and shifted to the range of 1 and 2 to produce the normalized
representation. The exponent will be adjusted if a shift happens. For a floating point
multiplication, the mantissa part is much more energy- and delay-consuming than
the other two parts, which is hence the focus of most research work [24,25]. On the
other hand, if no overflow, the fixed point multiplication is carried out as a regular
multiplication with its fractional part truncated to the designed bit-width. However,
the difference between the two multiplications is actually smaller than it seems. The
multiplication of the mantissa parts for floating point numbers can be always viewed
as a special case of fixed-point multiplication, where the integer part is 1. Thus, the
most critical operations in fixed and floating point multiplications can be considered
as the same.

Fig. 3 An example of 4-bit multiplication.
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(a)

(b)

Fig. 4 (a) An example of RSA based accumulator; (b) An example of CSA based accumulator.

2.2 Binary Multiplier

Before we go into details of approximate multiplier design, we would like to
introduce the basics of a binary multiplier, which is straightforward but sheds light
on different approximation techniques introduced in the latter sections.

Due to the nature of dealing with only two digits, 8.4., 0 and 1, binary multiplica-
tion actually can be considered as a process of addition and shifting. For example,
assume we have two 4-bit operands of G and H, where G is a multiplicand and H
is a multiplier. As shown in Fig. 3, similar as a decimal multiplication operation,
the binary multiplication is carried out for each bit of the multiplier (8.4., H8 for
8 = 0, 1, 2, 3) and the multiplicand (8.4., G={G3, G2, G1, G0}) to generate a partial
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Fig. 5 An example of Wallace Tree based multiplier.

product, 4.6., {?3,0, ?2,0, ?1,0, ?0,0} for the first row. This process is then repeated
for each bit of the multiplier H, with the partial product left-shifted by 1 bit. Fi-
nally, all the partial products are accumulated to obtain the multiplication result of
{A7,0, A6,0, A5,0, A4,0, A3,0, A2,0, A1,0, A0,0}. Thus, the operation of a binary multiplier
can be roughly divided to three stages, data input, partial product generation, and
accumulation.

Since the binary product does not generate a carry, the bit-wise multiplication can
be calculated with AND gates. Once all the partial products are generated, we can use
an array of adders to accumulate partial products as shown in Fig. 4(a), where HA
refers to half adder and FA refers to full adder. Obviously, the critical path of such a
structure is the carry propagation. For example, Fig. 4(a) demonstrates a ripple-carry
adder (RCA) based accumulator, with the carries propagated horizontally from right
to left, while Fig. 4(b) plots a carry-save adder (CSA) based accumulator with
carries propagated diagonally to achieve a shorter critical path for faster speed.

In order to further accelerate accumulation, C. S. Wallace proposed the Wallace
Tree structure in 1964 [27]. As shown in Fig. 5, theWallace Tree groups three partial
products together column-wisely to generate two outputs, 8.4., a sum and a carry,
thereby reducing the number of partial products by a factor of approximately 1.5.
The operation is repeated until only two rows are left, 8.4., 4 steps as in Fig. 5, which
are then added up to obtain the final result. Parallel computation and partial product
compression in each stage can be utilized to speed up the accumulation process [27].
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2.3 Approximate Multiplier

Approximate arithmetic has been a popular research area in the past decade.Many
prior work on approximate multiplier tackle the problem by introducing approxima-
tions at circuit, architecture or algorithmic levels to reduce critical path delay or im-
prove energy efficiency. For example, references [17,28–34] propose to approximate
K-map or prune out a few gates to simplify the gate netlist. Many work also focused
on improving the conventionalmultiplier architecture with approximate components,
such as adders, to speed up addition or partial product generation [17,35–40]. Kulka-
rni et al. proposed to construct a new approximate multiplier architecture using a
modified 2×2 multiply block [17]. From an even higher design level, Ahmed et al.
proposed a pipelined log-based approximation using the classical Mitchell multiplier
with an iterative procedure to improve the accuracy [41]. To speed up the iterative
procedure, they proposed to truncate the bits after the leading one to save energy. To
satisfy various accuracy requirement in different scenarios, another alternative is to
utilize hybrid methods with both approximate and accurate multipliers to adjust the
computational accuracy by selecting the appropriate multiplier, thereby trading off
between accuracy and cost [42, 43].

For all the prior work with various approximation techniques, it is actually very
challenging to precisely categorize the introduced approximation to a particular
design level, 8.4., circuit, architecture, or algorithm. Many of them actually involve
multiple design levels, as the high level approximation, 4.6., algorithm, may always
incur additional architecture changes [24, 25, 41–43].

In order to facilitate our review in the following sections, we would like to utilize
the following rules for categorization:

• Architecture: With the binary multiplier architecture in section 2.2 as a reference,
the introduced approximation is intended to improve the efficiency of a particular
stage in the reference architecture.

• Algorithm: The introduced approximation originates from a different algorithm
to conduct multiplication.

• Circuit: The approximation technique is not limited to a particular multiplier
architecture/algorithm and can be combined with the approximation techniques
at other design levels.

3 Approximate Multiplier with Architecture Level
Approximation

As is discussed in section 2, the conventional multiplier typically involves three
stages, 8.4., data input, partial product generation, and accumulation. To reduce the
number of partial products, an encoding stage can be included, 4.6., Booth encod-
ing [44]. When we design approximate multipliers based on such an architecture,
approximations can be introduced into any of the four aforementioned stages.
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3.1 Approximation at Input

It is simple yet effective to introduce approximation in data input for approximate
multiplier design. For example, we can remove a few least significant bits (LSBs) of
the input to reduce the input bit-width, which is supposed to have lower impact on
the result than those most significant bits (MSBs) [36, 45–47]. In general, there are
two types of data segmentation, dynamic segment method (DSM) and static segment
method (SSM) [36]. DSM segments the data according to the leading one, while
SSM is based on a given segmentation option. For example, as shown in Fig. 6(a),
DSM keeps : consecutive bits from the first non-zero bit of an unsigned number.
The parameter : determines the level of accuracy loss for approximate multiplier.
On the other hand, SSM in Fig. 6(b) provides a few pre-determined (8.4., static)
options when truncating the input data. The options can be like either leading : bits
(option 1) or last : bits (option 2), as suggested in [36]. It is also possible to keep the
bits in the middle (option 3) as a trade-off (Fig. 6(b)). Unlike DSM, SSM consumes
less hardware resources but may include more redundant bits. In [45], the additional
support for DSM requires 2 extra Leading-One Detectors (LOD), 2 extra encoders
and 1 extra barrel shifter.

Table 1 compares several approximate multipliers with approximation at input
stage, the results of which are compiled from [36, 45–47]. The data is collected on
8-bit unsigned multiplication using 45-nm Nangate technology. Five approximate
multipliers are included here and compared to an accurate multiplier [36, 45–47],
where SSM [36] is the approximate multiplier using SSM to truncate the input data;
DSM [36] and DRUM [45] both use DSM to truncate, while DRUM [45] always sets
the last bit to 1 and DSM [36] leaves as it is; LETAM [47] and TOSAM [46] truncate
both partial product and bit-width, while TOSAM uses 2 separate parameters for
partial product and bit-width, respectively, and LETAM only uses 1 parameter for
both. Parameter : is the number in the brackets for each multiplier. Five metrics
are presented in the table, mean relative error distance (MRED), power, delay, area,
and power-delay product (PDP) as the metric for energy efficiency. As shown in the
table, SSM results in a smaller area and power while the other DSM based methods
consume at least 1.5× larger area. Moreover, a larger bit-width or more complex
control generally yields to a higher accuracy or smaller delay but at the cost of larger
power and area consumption. Among all the DSM based multipliers, DRUM [45]
provides a better trade-off between accuracy and energy efficiency.

3.2 Approximation at Partial Product Generation

Venkatachalam et al. proposes an under-designed multiplier (UDM) architecture,
which brings approximation into the partial product generation stage [17]. UDM
partitions both multiplier and multiplicand into 2 parts, and then formulates a 2 × 2
multiplication. As shown in Fig. 7, each partial product can be produced with
an approximate multiplier. Another alternative to partial product generation is to
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(a)

(b)

Fig. 6 (a) An example of DSM truncation; (b) An example of SSM truncation.

Table 1 Comparison on 8-bit approximation multipliers with input approximations [46].

Multiplier MRED power (uW) Delay (ns) Area (um2) PDP (fJ)

Accurate 0 360 0.85 417 306
SSM [36] N/A 68 N/A 75 N/A
DSM(3) [36] 0.1444 128 0.8 182 102.2
DSM(4) [36] 0.0680 205 1.08 233 221.46
DRUM(3) [45] 0.1260 104 0.7 143 72.73
DRUM(4) [45] 0.0640 172 1 208 172.16
LETAM(3) [47] 0.0290 270 1 310 270
TOSAM(1,5) [46] 0.0406 231 0.88 291 203.44

introduce an intermediate variable to replace the partial products (0.:.0. altered
partial product (APP)) and then conduct approximations [48–50]. As discussed in
section 2, a partial product can be generated using AND gates:

??<,= = G< · H= , (1)

where G< and H= represent <Cℎ and =Cℎ bit of two inputs G and H, respectively.
Similar as carry look-ahead adder, the propagate and generate signals can be defined
as:

?<,= = ??<,= + ??=,< , (2)

6<,= = ??<,= · ??=,< . (3)

Since the generate signals are possibly all 0’s, they can then be compressed column-
wisely using an OR gate. The propagate signals can be computed with approximate
adders to achieve a more compact design than the original multiplier. Yang et al.



10 Ying Wu, Chuangtao Chen, Chenyi Wen, Weikang Qian, Xunzhao Yin, Cheng Zhuo

employs a similar idea of using two signals of approximate sum and error recovery
vector to approximate the partial product [49]. Table 2 compares the impact of
different partial product approximation methods with results compiled from [17,48],
where UDM refers to the method in Fig. 7 [17]; APP and APP_M refer to the
approximate multiplier using altered partial products as in [48], while the most
significant column is accurately computed without approximation in APP_M. The
designs are compared on MRED, normalized mean error distance (NMED), power,
delay, area, and PDP. It is expected that APP incurs larger error than APP_M with
smaller area, delay, and power. UDM is more accurate than APP at the cost of more
than 2× power consumption, but inferior to APP_M almost across all the metrics.
Thus, APP_M achieves a better trade-off between accuracy and energy efficiency.

Fig. 7 An example of UDM in [17].

Table 2 Comparison on 16-bit approximate multipliers using partial product approximation [48].

Multiplier MRED NMED Power (uW) Delay (ns) Area (um2) PDP (fJ)

Accurate 0 0 1776.49 0.68 4859.28 1208.01
UDM [17] 3.32e-2 1.39e-2 1318.51 0.67 3938 883.4
APP [48] 7.63e-2 1.78e-2 503.15 0.47 2158.56 236.48
APP_M [48] 2.44e-4 7.10e-6 1102.03 0.66 3319.2 727.34

3.3 Approximation at Accumulation

At accumulation stage, adders and compressors are themajor computingmodules.
In addition to approximate adders, it is a natural idea to use approximate compressors
to speed up accumulation [30, 38, 48–53]. For example, Venkatachalam et al. use
approximate adders and approximate compressors to compress the partial product
array to two rows, which are then added up through a ripple carry adder [48]. Liu
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et al. further propose to ignore the carry signals in adders to reduce the critical path
delay, which are then utilized later for error recovery [38].

Recently, many researchers also propose to separate the partial product array
column-wisely to two or three groups, as shown in Fig. 8. As the leading bits
may have larger impact on accuracy, each group can introduce different levels of
approximation [30, 49, 50, 52, 53]. For example, OR gates can be deployed in the
last group for LSBs to reduce the hardware cost. The accuracy of the approximate
multiplier can be tuned by adjusting the control parameters [49]. References [30,52]
propose to use high-order approximate compressors with error recovery for the
partial product groups with lower accuracy requirements. It is also straightforward
to completely ignore the less important groups of partial products as more aggressive
approximation. Mahdiani et al. propose to divide the partial product array into four
groups through horizontal and vertical slicing, as shown in Fig. 9 [54]. The partial
products on the right of Vertical Break Level (VBL) or above the Horizontal Break
Level (HBL) are then ignored. In other words, only the partial products on the bottom
left are used for calculation. Apparently, the approximation level can be adjusted by
tuning VBL and HBL.

Fig. 8 An example of partial product array that is divided into three groups with different levels of
approximation.

3.4 Approximate at Booth Encoding

Booth encoding is used to reduce the number of partial products, which can be
generated in parallel at the cost of additional area. Radix-4 Booth algorithm is a
common option deployed for high-bit-width multipliers [55]. Qian et al. propose an
approximate Wallace-Booth multiplier with approximate modified Booth encoding
(MBE), approximate 4-2 compressors, and approximateWallace tree [31]. In addition
to Radix-4 algorithm, Radix-8 Booth algorithm is also widely used to further reduce
the number of partial products. However, Radix-8 algorithm demands odd multiples
and hence needs additional adders. To reduce the increased partial product generation
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Fig. 9 An example of Broken-Array Multiplier (BAM) [54].

delay in Radix-8 algorithm, Jiang et al. suggest an approximate adder to generate the
oddmultiples formultiplication [56],which can reduce the delay of carry propagation
as a trade-off between speed and accuracy.

4 Approximate Multiplier with Algorithm Level Approximation

Unlike the work in the last section that modify the reference multiplier architec-
ture, some researchers propose to rebuild the multiplication operation from a higher
level, 8.4., algorithm, which naturally results in a new multiplier architecture. In
this section we will review three different multiplier approximations at algorithm
level: logarithm based approximation, approximation with linearization, and hybrid
approximation.

4.1 Logarithm-Based Approximation

With logarithmic transformation, the multiplication can be converted to addition,
where the two operands are the logarithms of multiplicand and multiplier, respec-
tively. The first logarithm based multiplier (LM) was proposed by Mitchell et al. in
1962 [57]. For a multiplication of � × �, we have:

� = 2:1 (1 + G1) , (4)

log2 (�) = :1 + log2 (1 + G1) , (5)

where � is the input operand, :1 is the position of leading one, and G1 is the fraction
part that lies in [0, 1). The same formulation can be applied to the other operand �
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with the parameters of :2 and G2. The logarithm of the multiplication can be written
as:

log2 (� × �) = :1 + :2 + log2 (1 + G1) + log2 (1 + G2) . (6)

According to Eq. (6), the implementation based on the Mitchell’s algorithm [57]
requires leading one detector (LOD), binary-logarithm converter (BLC), adder, and
logarithm-binary converter (LBC). The procedure for the Mitchell’s algorithm is
demonstrated in Fig. 10 for a 16×16 multiplier. To reduce the implementation com-
plexity, the logarithm computation in Eq. (6) can be approximated by:

log2 (G + 1) ≈ G, 0 ≤ G < 1 . (7)

Then we have: �× � ≈ 2:1+:2+G1+G2 = 2:1+:2 × 2G1+G2 . Based on the carry of G1 + G2,
Eq. 7 can be further approximated as:

� × � ≈
{
2:1+:2 (G1 + G2 + 1), G1 + G2 < 1 ,
2:1+:2+1 (G1 + G2), G1 + G2 ≥ 1 .

(8)

Compared with the original multiplication, when G1 + G2 < 1, the error of Eq. (8)
can be expressed as:

�AA>A = � × � − 2:1+:2 (G1 + G2 + 1)
= 2:1+:2 (1 + G1) (1 + G2) − 2:1+:2 (G1 + G2 + 1)
= 2:1+:2G1G2

(9)

It is noted that the error term of 2:1+:2G1G2 has the same structure as � × � =

2:1+:2 (1 + G1) (1 + G2). Then we can repeat the approximation procedure to compute
2:1+:2G1G2, which indicates an iterative process to achieve higher accuracy using
logarithm-based approximation. In [41], the iterative approximation for G1 + G2 ≥ 1
has been explored together with a truncation scheme. Liu et al. further investigate
the logarithmic based approximate multipliers using different approximate adders
and find that set-one-adder (SOA) can achieve a higher accuracy [58]. As shown in
Fig. 11, an SOA consists of one approximate adder for the lower< bits and one exact
adder for the higher =−< bits. The approximate adder always sets the lower< bits to
logic 1 and hence results in over-estimation. Such an over-estimation is particularly
designed to compensate for the accuracy loss of a logarithmic based approximate
multiplier, as the Mitchell’s algorithm always underestimates the multiplication
result. Similar compensation schemes have been introduced in [59–61] to improve
the average error introduced by theMitchell’s algorithm at the cost of area and power
consumption.

Table 3 evaluates 8 × 8 logarithm-based approximate multipliers using ST Mi-
cro’s 28nm technology [61]. The results are compiled from [61] to compare the
metrics of MRED, NMED, power, delay, area, and PDP. Three logarithm-based
approximate multipliers are compared with an accurate Wallace-tree based multi-
plier, where Mitchell [57] refers to the original Mitchell’s algorithm; ALM-SOA-5
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Fig. 10 Procedure for the Mitchell’s algorithm [57].

Fig. 11 Architecture of an =-bit set-one-adder [58].

Table 3 Comparison on 8-bit logarithm based approximate multipliers [61].

Multipliers MRED NMED Power (uW) Delay (ns) Area (D<2) PDP (fJ)

Accurate 0 0 99.3 1.06 235.9 105.2
Mitchell [57] 0.0368 0.0014 66.26 1.42 281.2 94.09
ALM-SOA-5 [58] 0.0396 0.0007 61.04 1.39 255.4 84.84
ILM-5 [61] 0.0951 0.001 50.37 1.64 255.3 82.61

combines Mitchell’s algorithm with SOA with < = 5 as in [58]; ILM-5 includes ad-
ditional rounding of the inputs to the nearest power of 2 on top of the approximation
techniques used in ALM-SOA-5. As shown in the table, all the logarithmic ap-
proximate multipliers can achieve good accuracy with 33.3-49.3% power reduction
consumption, while the delay is increased by 31.1-54.7%. Among the three approx-
imate multipliers, ALM-SOA-5 can achieve a better trade-off between accuracy and
energy efficiency.
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4.2 Approximation with Linearization

Multiplication is a nonlinear operation implemented with a few additions and
compressions. In mathematics, it is a natural idea to approximate a nonlinear curve
with a piece-wise linear function. Thus, researchers have attempted to use linear
arithmetic operations to approximate the nonlinear multiplication [24, 25]. It is
noted that, while logarithm based approximate designs are built on top of Eq. (8), it
is actually a special case of linearization approximation.

Without loss of generality, the multiplication can be considered as a function of
two variables, whose linear approximation can be always expressed as:

5 = GH ≈ 50??A>G = 0G + 1H + 2; , (10)

where G and H are the input operands; 0, 1, and 2 are the coefficients. In [24],
an iterative linear approximation for floating-point multiplication is proposed to
approximate themultiplication according toEq. (10). For themantissas of normalized
floating-point numbers, the range is [1, 2) × [1, 2), which is a square domain. By
appropriately partitioning the domain into smaller sub-domains and assigning a
proper linear function to each, the original nonlinear surface for the multiplication
can be approximated by a series of piece-wise linear functions, one for each sub-
domain. Fig 12 summarizes the computation procedure called ApproxLP using
the linear approximation in [24]. It is clear that the accuracy can be improved by
partitioning more sub-domains, the number of which grows exponentially with the
approximate level. Thus, the efficiency ofApproxLP in [24] actually quickly degrades
with a larger approximation levels. Moreover, the comparators used for each level in
Fig. 12 also introduce non-trivial delay overhead. Fig. 13 plots the error distributions
of ApproxLP for different approximation levels, which are symmetric over 0 and
hence result in a zero average error.

To reduce the number of comparators, Chen et al. propose to partition the input
domain into identical smaller square sub-domains [25]. For one level higher, each
domain (or sub-domains) is further partitioned into four identical smaller ones. With
such an iterative process, there are 4= sub-domains for level = approximation. For a
rectangular domain [G1, G2] × [H1, H2], the optimal coefficients to minimize the mean
square error (MSE) between 50??A>G = 0G + 1H + 2 and 5 = GH are [25]:

0 =
H1 + H2
2

1 =
G1 + G2
2

2 = −01

(11)

Fig. 14 demonstrates the multi-level approximate multiplier architecture of OAM
in [25]. In the figure, Level 0 is denoted as the basic approximation module, which
provides an initial estimation 5 00??A>G , while the deeper levels act as error compen-
sation to gradually improve the overall accuracy. Thus, the run-time configurability
can be easily realized by specifying the desired depth. Unlike ApproxLP [24], the
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if x+y≥1 else

Z=Z+0.5y-0.5 Z=Z-0.5x

Inputs: x and y
if x≥y else

if x+y≥1 else

Z=Z+0.5x-0.5 Z=Z-0.5y
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else

Z=Z+0.25y
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Fig. 12 Computation procedure using the linear approximation in [24].

Fig. 13 Error distributions of ApproxLP at different approximation levels [24].

comparators are no longer needed for OAM [25]. Thus, the delay of OAM can be
significantly improved when compared to ApproxLP even for a similar number of
sub-domains.

Since the two coefficients of 0 and 1 are the middle points of the intervals where
the operands belongs to, a circuit-friendly implementation can be achieved for the
error compensation at each level as in Eq. (12) [25]:
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Δ 5= =

{[(
G [=]?(1) : (−1)

)
× (H − ˆH=−1)

]
+
[ (
H[=]?(1) : (−1)

)
× (G − ˆG=−1)

]}
� (= + 1) (12)

+
[ (
G [=] ⊕ H[=]

)
?(1) : (−1)

]
� (2= + 2).

where ”? :” is the conditional operator and G [=] is the =Cℎ bit of mantissa G; ⊕ is
XOR operation; ˆG=−1 is the = − 1 bits truncation of mantissa G with an extra bit 1
at =Cℎ position; � represents right shift operation. Since the amount of right shift
is pre-determined at each level, the right shift operation does not require additional
circuits to implement. Thus, the number of operations at each level for OAM is
reduced to 5, which results in a constant area complexity, while ApproxLP has an
area complexity of $ (4=) [25].

The errors of the approximate multiplier OAM [25] were reported as below for
Maximum-Absolute-Error (MAE),Mean-Square-Error (MSE), andMean-Absolute-
Error (MeanAE) for approximation level =:

"�� =
1
4=+1

"(� =
1

9 × 16=+1

"40=�� =
1
4=+2

(13)
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Similar as ApproxLP [24], OAM [25] has zero-mean error distribution, which is an
appealing feature for applications with consecutive multiply-accumulate operations.

Table 4 compares two approximate multipliers using linearization based approxi-
mations, where the accurate reference multiplier is a 32-bit floating point multiplier
IP from the UMC 40nm library, and the approximate multipliers are configured
to different approximation levels as indicated by the numbers in the brackets. The
results are compared on MSE, delay, area, and area-delay-product (ADP) as energy
efficiency metric. It is found that, for the same approximation level, OAM [25] al-
ways performs better than ApproxLP [24].When compared to the accurate multiplier
IP, OAM [25] can achieve 68.6% area saving and 50% delay improvement at the
cost of 2.7×10−5 MSE, with more than one order of magnitude energy efficiency
improvement.

Table 4 Comparison on approximate multipliers using linearization based approximation.

Multiplier MSE Delay (ns) Area (um2) ADP (ns·um2)

Accurate 0 5.4 8219 44382.6
ApproxLP (0) N/A 2.0 1446 2892
ApproxLP (1) 6.9e-04 2.7 2126 5740.2
ApproxLP (2) 4.3e-05 3.1 2890 8959
OAM (0) N/A 1.9 1418 2694.2
OAM (1) 4.3e-04 2.3 2082 4788.6
OAM (2) 2.7e-05 2.7 2583 6974.1

4.3 Hybrid Approximation

There are a few approximate designs that combine the multipliers with different
precisions together to adapt to the varying accuracy requirements [42,43], which are
called hybrid approximation in this chapter. For example, reference [42] propose to
combine accurate and approximate multipliers together to adjust the computational
accuracy by selecting the appropriate multiplier. For the approximate multiplier,
after detecting the number of consecutive 1’s or 0’s of the mantissa, the mantissa can
then be rounded to 1 or 2, both of which make the multiplication as a shift operation.
If a higher precision is required, the accurate multiplier is then invoked to conduct
the calculation. Reference [43] uses the sum of two mantissas to approximate the
multiplication. A tuning strategy is proposed to decide the working mode of the mul-
tiplier by detecting the number of the consecutive bits of the inputs. However, such
methods heavily rely on an accurate or high-precision multiplier, which significantly
increases the circuit area. Furthermore, it is difficult to predict whether approximate
or accurate computation should be conducted.
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5 Approximate Multiplier with Circuit Level Approximation

This chapter discusses a few general circuit-level techniques for approximation,
such as K-map modification, gate-level pruning, and voltage over-scaling (VOS),
which are applicable to various architectures or algorithms.

5.1 K-Map Modification

Karnaugh map (K-map) is a common method for Boolean algebra expression
simplification. The basic idea of K-map is to group the adjacent squares with the
same logic values as much as possible. However, it is quite common in practice one
or more squares cannot be grouped, causing additional logics and hence area. Thus,
the approximation to K-map can be introduced to modify the adjacent square to the
same value so as to group the squares and obtain a more compact representation. For
example, the approximate multiplier UDM discussed in section 3 is comprised of a
2×2multiplicationmodule [17], which can be designed throughK-mapmodification.
Bymodifying theK-map as in Fig. 15, the basic block can act as both a partial product
generator and a compressor with an error rate of 1/16 [17]. As shown in Fig. 16, when
compared to the accurate logic implementation, the approximate implementation
needs much fewer logic gates (37.5% reduction) with a shorter critical path.

The K-map modification can be applied to other arithmetic functions, such as
adders [28], compressors [29, 30], and booth encoding modules [31, 32, 62]. For
example, Yin et al. uses K-map modification to design an approximate modified
Booth encoding (AMBE) module. With the modified K-map in Fig. 17, the original
expression for modified Booth encoding algorithm:

%% 9 = (-28 ⊕ -28−1) (-28+1 ⊕. 9 ) + (-28 ⊕ -28−1) (-28+1 ⊕ -8) (-28+1 ⊕. 9−1) , (14)

can be simplified to [32]:

%%
′
9 = (-28 ⊕ -28−1) (-28+1 ⊕ . 9 ) . (15)

5.2 Gate-Level Pruning

Gate-level pruning provides an alternative to simplify netlist. It is based on
the probabilistic pruning, which prunes less active gates from a circuit with limited
accuracy loss [33]. Jeremy et al. propose to transform the circuit to a graph and prune
the nodes with the lowest significance-activity product (SAP) during synthesis [34].
The term “significance” indicates the importance of each node/gate, while “activity”
refers to the toggling rate of the gate. The significance for the output nodes is user-
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Fig. 15 An example of modifying K-map to achieve more compact design [17].

(a) (b)

Fig. 16 Comparison on the implementations of the 2 × 2 multiplier module: (a) Accurate logic
implementation; (b) Approximate logic implementation [17].

Fig. 17 A K-map example of AMBE [32].

defined and then backward propagated to calculate the significance of other gates.
The activity of a node can be extracted from the .SAIF file (Switching Activity
Interchange Format), which presents the toggle counts of wires. The digital design
flow with gate-level pruning is presented in Fig. 18.
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Fig. 18 An example of gate-level pruning in digital design flow [34].

5.3 Voltage Over-scaling

Voltage scaling is a common method used to reduce power consumption [22]. In
general, the operating supply voltage needs to be higher than +33−2A8C , which is the
minimum supply voltage to ensure the timing of the critical path [23,63,64]. While
voltage over-scaling (VOS) reduces power effectively, error is introduced inevitably.
Hence, the key idea of VOS is to reduce the errors introduced by timing violations
due to VOS [64]. Since VOS mainly impacts the critical and near-critical paths, it is
desired to adjust the architecture of each computation module to achieve a shorter
critical path and alleviate the impact of low supply voltage [23]. Liu et al. further
propose an analytical method to assess computation errors due to VOS, which can
then select the corresponding architecture and setup [23].

6 Conclusions

In this chapter, we reviewed approximate multipliers from three levels, i.e., archi-
tecture, algorithm, and circuit. At architecture level, various approximation strategies
were presented and discussed according to the stages of a conventional reference
multiplier. At algorithm level, logarithm-based, linearization-based, and hybrid ap-
proximations were reviewed. Finally, at circuit level, we introduced three circuit level
approximation techniques that can be applied togetherwith any of the aforementioned
approximation methods at architecture or algorithm levels. Detailed experimental re-
sults were presented in each section to help understand the pros and cons of different
techniques at different design layers.
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