
Minimizing Error of Stochastic Computation through Linear
Transformation

Yi Wu, Chen Wang, and Weikang Qian
University of Michigan-Shanghai Jiao Tong University Joint Institute

Shanghai Jiao Tong University, Shanghai, China
Email: {eejessie, wangchen_2011, qianwk}@sjtu.edu.cn

ABSTRACT
Stochastic computation is an unconventional computation-

al paradigm that uses ordinary digital circuits to operate on
stochastic bit streams, where signal value is encoded as the
probability of ones in a stream. It is highly tolerant of soft er-
rors and enables complex arithmetic operations to be imple-
mented with simple circuitry. Prior research has proposed a
method to synthesize stochastic computing circuits to imple-
ment arbitrary arithmetic functions by approximating them
via Bernstein polynomials. However, for some functions, the
method cannot find Bernstein polynomials that approximate
them closely enough, thus causing a large computation error.
In this work, we explore linear transformation on a target
function to reduce the approximation error. We propose a
method to find the optimal linear transformation parameters
to minimize the overall error of the stochastic implementa-
tion. Experimental results demonstrated the effectiveness
of our method in reducing the computation error and the
circuit area.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles

General Terms
Design, Performance

Keywords
stochastic computing; stochastic circuit; approximation

error; stochastic variation

1. INTRODUCTION
Stochastic computation is a method to explicitly use ran-

domness to perform computation [1]. Like conventional digi-
tal computation, stochastic computation uses digital circuits
to process information encoded by zeros and ones. However,
stochastic circuits take random bit streams as their inputs
and outputs. Each bit stream encodes a value equal to the
ratio of ones in that stream. For example, a stream of 8
random bits 1, 0, 1, 0, 0, 1, 0, 0 encodes the value 3/8.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI’15, May 20–22, 2015, Pittsburgh, PA, USA.
Copyright c© 2015 ACM 978-1-4503-3474-7/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742060.2743761.

One advantage of stochastic computation is that many
complex arithmetic operations can be realized using very
simple circuitry. As shown in Fig. 1, an AND gate can im-
plement multiplication: given that the two input stochastic
bit streams are independent, the probability of ones in the
output bit stream equals the product of the probabilities of
ones in the input streams. Previous works have also intro-
duced various simple circuits to implement other functions
such as addition, division, and square root [2, 3].

AND

A
B

0,1,0,1,0,0,0,0

1,1,0,0,1,0,1,0

0,1,0,0,0,0,0,0

b: 4/8

C

a: 2/8 c: 1/8

Figure 1: Multiplication on stochastic bit streams with
an AND gate. Here the inputs are 2/8 and 4/8. The
output is 2/8× 4/8 = 1/8, as expected.

Besides area efficiency, stochastic computation is also high-
ly tolerant of soft errors, because a single bit flip occurring
anywhere in the stream changes the value only slightly. The
strong fault tolerance of stochastic computation was visually
demonstrated by several image processing applications [4,5].

To apply stochastic computation to a wide variety of ap-
plications, an automatic way to synthesize stochastic com-
puting circuits is required. Recently, several synthesis ap-
proaches have been proposed [4,6,7]. One method proposed
by Qian et al. is to first approximate an arbitrary func-
tion via a Bernstein polynomial [8] and then implement that
Bernstein polynomial through a specific stochastic comput-
ing circuit [4].

However, we observe that for some functions, we cannot
find Bernstein polynomials of a low degree that approximate
them closely enough, hence causing a large approximation
error. In this case, Bernstein polynomial of a higher degree
is needed to reach a close approximation, which increases
area cost.

In this work, we propose a linear transformation technique
to reduce the approximation error. We perform a proper lin-
ear transformation on the original function to obtain a func-
tion that can be approximated very closely by a Bernstein
polynomial of a low degree. We then synthesize a circuit to
compute the transformed function. The value of the origi-
nal function can be easily obtained through an inverse linear
transformation, which is achieved by a simple modification
to the original design.

Although the linear transformation technique could reduce
the approximation error, it will amplify the error due to ran-
dom fluctuation, which is another major error component of
stochastic computation. In order to minimize the overall er-

349

ror of stochastic computation, we further propose a method
to find the optimal linear transformation parameters. The
proposed technique dramatically reduces the overall error.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the background on the Bernstein polyno-
mial based approach to synthesize stochastic computing cir-
cuit. Section 3 describes the linear transformation technique
that decreases the approximation error. Section 4 proposes a
method to determine the optimal linear transformation pa-
rameters to minimize the overall error of stochastic computa-
tion. Section 5 shows the experimental results. Conclusions
are drawn in Section 6.

2. BACKGROUND
2.1 Bernstein Polynomial Based Synthesis

Method
The method proposed in [4] first approximates the target

function by a Bernstein polynomial [8] and then implements
the Bernstein polynomial through a specific stochastic com-
puting circuit. A Bernstein polynomial of degree n is of the
form

Bn(x) =

n∑
i=0

biBi,n(x),

where each real number bi is a constant, called Bernstein co-
efficient, and each Bi,n(x) (i = 0, 1, 2, · · · , n) is a Bernstein
basis polynomial of the form

Bi,n(x) =

(
n

i

)
xi(1− x)n−i.

A Bernstein polynomial with all the coefficients in the u-
nit interval can be implemented by a stochastic computing
circuit shown in Fig. 2. Since it is the core of the stochastic
computing system, to be discussed later, we call the circuit
stochastic computing core. The core consists of an adder and
a multiplexer. An analysis in [4] showed that the probabil-
ity of the output Y to be one is in the form of a Bernstein
polynomial of degree n. As shown in the figure, the Bern-
stein coefficients bi’s are probability values. Therefore, the
Bernstein polynomial that can be realized by the stochas-
tic computing core must have all the coefficients in the unit
interval, i.e., 0 ≤ bi ≤ 1 for all i = 0, . . . , n.

+
X1
X2

Xn

MUX

Z0
Z1

Zn

Y

Ʃi Xi

...

P(Xi = 1) = x

P(Zi = 1) = bi

...

0
1

n

Figure 2: The stochastic computing core that imple-
ments a Bernstein polynomial Bn(x) =

∑n
i=0 biBi,n(x) with

all the coefficients in the unit interval.

Given an arbitrary target function f , a Bernstein polyno-
mial closest to f with all the coefficients in the unit interval
is obtained by solving the following optimization problem on
b0, . . . , bn:

minimize

∫ 1

0

(f(x)−
n∑

i=0

biBi,n(x))2 dx

subject to 0 ≤ b0, . . . , bn ≤ 1.

(1)

The computation of the target function f is realized by
implementing the approximate Bernstein polynomial using
the stochastic computing core.

2.2 Error Components of Stochastic
Computation

The result of stochastic computation based on the Bern-
stein approximation is affected by two major error compo-
nents — the approximation error and the error due to ran-
dom fluctuation [4]. Since the stochastic computing core
implements a Bernstein polynomial Bn(x) which approxi-
mates the target function f(x), we have the approximation
error as e1 = |Bn(x)− f(x)|.

The output of the stochastic computing core is a stochas-
tic bit stream (Y1, . . . , YN) of length N , where each Yi is
a random bit having probability Bn(x) of being one. For
this encoding mechanism, the final output of the stochastic
computing core is

S =
1

N

N∑
i=1

Yi, (2)

which is a binomial random variable taking values from the
set {0, 1

N
, . . . , N−1

N
, 1}. Therefore, although the output prob-

ability of the stochastic computing core is Bn(x), the actual
value encoded by the output bit stream is random and may
not be equal to Bn(x). The difference is e2 = |S − Bn(x)|,
which is an error due to random fluctuation.

The expectation of S, denoted as E[S], and the variance
of S , denoted as V ar(S), can be calculated as

E[S] = Bn(x), V ar[S] =
Bn(x)(1−Bn(x))

N
. (3)

Since V ar[S] = E[(S − E[S])2] = E[(S −Bn(x))2], we have

E[e22] =
Bn(x)(1−Bn(x))

N
.

The overall error of stochastic computation is e = |S −
f(x)|. It is bounded by the sum of the approximation error
and the error due to random fluctuation:

e ≤ |S −Bn(x)|+ |Bn(x)− f(x)| = e1 + e2.

2.3 Stochastic Computing System
Fig. 3 shows a stochastic computing system [4], which con-

sists of the stochastic computing core and the input/output
interface circuits. The circuit shown in the figure implements
a Bernstein polynomial of degree 3. The input interface
consists of uniform random number generators (URNGs)
and comparators. The URNGs produce independent ran-
dom numbers, which are fed into different comparators. As
shown in the figure, the inputs to the adder are independent
stochastic bit streams with the same probability to have a
one. The multiplexer selects one of the numbers b0, . . . , bn
represented in binary radix form. The output of the multi-
plexer is then compared with a random number to generate
the output stochastic bit stream Y . Finally, a counter con-
verts a stochastic bit stream into a binary radix number.

3. REDUCING THE APPROXIMATION
ERROR THROUGH LINEAR
TRANSFORMATION

The approach proposed in [4] requires the Bernstein poly-
nomial to have all of its coefficients in the unit interval.
Given this constraint, it is impossible to find a low degree
Bernstein polynomial to approximate some target function-
s closely. For example, consider a target function f(x)=
0.5 sin(8x) + 0.5. If we set the degree to 6, by solving the

350

MUX

+
counter

<

Y
b1[M-1:0] bS[9:0]

S[1:0]

R[9:0]

b0[M-1:0]

b2[M-1:0]

b3[M-1:0]

<

<

<

x[M-1:0]

Uniform
Random
Number
Generators

R1[M-1:0]

R2[M-1:0]

R3[M-1:0]

Stochastic Computing Core

Figure 3: The stochastic computing system.

optimization problem in (1), we obtain a Bernstein polyno-
mial with coefficients as [b0, b1, b2, b3, b4, b5, b6] =
[0.735, 1, 0.832, 0, 0, 0.455, 1].

Fig. 4 shows the approximation effect, from which we can
see that the approximation error is quite large. In the previ-
ous approach, in order to reduce the approximation error, a
Bernstein polynomial with a higher degree is required. This
causes a larger area for the stochastic computing system,
since the area of the system increases with the degree.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

x

f(x
)

 t

 target function
approximating function

Figure 4: Approximating the target function f(x)=
0.5 sin(8x)+ 0.5 by the optimal Bernstein polynomial with
all the coefficients in the unit interval.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

x

f(x
)

 t

 target function
approximating function

Figure 5: Approximating the target function f(x)=
0.5 sin(8x) + 0.5 by the optimal unconstrained Bernstein
polynomial.

For the same target function f(x)= 0.5 sin(8x)+0.5, if we
remove the constraint on the Bernstein coefficients, we can
obtain the coefficients of the optimal Bernstein polynomi-
al approximation as [b′0, b

′
1, b
′
2, b
′
3, b
′
4, b
′
5, b
′
6] = [0.530, 0.905,

2.898, -2.415, -0.088, 1.193, 0.979]. Its approximation ef-
fect is illustrated in Fig. 5. We can see that without the
constraint on the Bernstein coefficients, we are able to find a
very close Bernstein polynomial approximation to the target
function. However, such a Bernstein polynomial cannot be
implemented by the stochastic computing core. To reduce
the approximation error while making the Bernstein polyno-
mial suitable for stochastic implementation, we propose to
change the target function through a linear transformation.

In our method, we use a linear transformation of the origi-
nal function g(x) = cf(x)+d as the target. The transforma-

tion parameters c and d are determined as follows: Suppose
that the optimal unconstrained Bernstein polynomial that
approximates f(x) is Bo(x) =

∑n
i=0 biBi,n(x). We then se-

lect c and d so that for all i = 0, . . . , n, 0 ≤ cbi + d ≤ 1.
Given Bo(x) and the transformation parameters c and d,

we use Bg(x) = cBo(x) + d to approximate the new target
function g(x). Based on the property that

∑n
i=0 Bi,n(x) =

1 [9], we have

Bg(x) = cBo(x) + d = c

n∑
i=0

biBi,n(x) + d

n∑
i=0

Bi,n(x)

=

n∑
i=0

(cbi + d)Bi,n(x).

Thus, Bg(x) is a Bernstein polynomial with coefficients
(cb0 + d), . . . , (cbn + d). Based on our choice of c and d, all
the coefficients of Bg(x) are in the unit interval. Thus, we
can implement Bg(x) using the stochastic computing core.
In the ideal situation where there is no error due to random
fluctuation, the output S of the core is

S = Bg(x) ≈ g(x) = cf(x) + d.

Thus, we can approximate the original function f(x) from
the output S using an inverse linear transformation (S−d)/c.

The above inverse linear transformation can be realized
by replacing the final counter used in the stochastic com-
puting system with an accumulator shown in Fig. 6. The
signal Y shown in Fig. 3 is connected to the EN input of the
accumulator.

adder

register
EN_load
EN
clock

Figure 6: An accumulator for implementing the inverse
linear transformation.

Assume that the length of the stochastic bit streams is N .
Before the stochastic computing system starts, the signal
EN load is set to one and an initial value −Nd/c is loaded
into the register. For each clock cycle, if the signal Y shown
in Fig. 3 is a one, then the signal EN is also a one. Then, the
register will be updated with the sum of a constant weight
1/c and the previous value in the register. After N clock
cycles, the final value in the register is

1

c

N∑
i=1

Yi −N
d

c
(4)

where Yi is the i-th bit in the output bit stream Y . From
Eq. (2) and (4), the final value is N(S − d)/c. If we choose
length N to be a power of 2, then we can obtain the stochas-
tic computing result (S − d)/c by shifting the value in the
register.

Using the linear transformation method, the approxima-
tion error is reduced. The approximation error is defined
as the difference between f(x) and the ideal output of the
system (i.e., output result without considering the error due
to random fluctuation), which is (Bg(x) − d)/c. Thus, the
approximation error is

|f(x)− (Bg(x)− d)/c| = |f(x)−Bo(x)|.

351

Since Bo(x) is the optimal unconstrained Bernstein poly-
nomial to approximate f(x), it gives the smallest approxima-
tion error |f(x) − Bn(x)| among all Bernstein polynomials,
including the one with all the coefficients in the unit inter-
val that best approximates f(x). Thus, using the proposed
linear transformation technique, we can reduce the approxi-
mation error compared to the previous approach.

4. DETERMINING THE LINEAR
TRANSFORMATION PARAMETERS
TO MINIMIZE THE ERROR OF
STOCHASTIC COMPUTATION

As we stated in Section 2.2, the result of the stochastic
computation is also subject to error due to random fluctu-
ation, which makes the output value of the stochastic com-
puting core, S, different from the Bernstein polynomial after
linear transformation, Bg(x). As a result, the actual output
of the system (S − d)/c is different from its ideal output
(Bg(x) − d)/c. The error caused by random fluctuation is
|S −Bg(x)|/c. To make this error small, c should be large.
However, a large c will not help reduce the approximation er-
ror. Thus, to minimize the overall error, we need to choose a
proper c. In this section, we propose a mathematical formu-
lation to find the optimal choice of the linear transformation
parameters c and d to minimize the overall error of stochastic
computation.

4.1 Formulation of the Optimization Problem
To indicate that the actual output S of the stochastic com-

puting core is related to the input x, we will rewrite S as
S(x). The final output of the system is (S(x)− d)/c. For a
given x, the overall computation error is

e(x) =

∣∣∣∣S(x)− d

c
− f(x)

∣∣∣∣ . (5)

To measure the average error of stochastic computation
for all x ∈ [0, 1], we use the square of the L2-norm of the
function e(x):

T =

∫ 1

0

e(x)2 dx. (6)

Since T is a random variable, we use the expectation on
T , represented as E[T], as a measure of the error of the
stochastic computation. Our target is to find c and d to
minimize E[T]. From Eq. (5) and (6), we have

E[T] = E

[∫ 1

0

(
S(x)− d

c
− f(x)

)2

dx

]
.

Define

U =
S(x)−Bg(x)

c
, V =

Bg(x)− d

c
− f(x),

where Bg(x) is the Bernstein polynomial implemented by
the stochastic computing core. Note that U is a random
variable and V is a deterministic value. Thus, we have

E[T] = E

[∫ 1

0

(U + V)2 dx

]
=

∫ 1

0

(
E[U2] + 2V E[U] + V 2) dx.

(7)

From Eq. (3), we have

E[S(x)] = Bg(x), E[(S(x)−Bg(x))2] =
Bg(x)(1−Bg(x))

N
.

Given the above two equations, we could further simplify
Eq. (7) as

E[T] =

∫ 1

0

Bg(x)(1−Bg(x))

c2N
dx

+

∫ 1

0

(Bg(x)− cf(x)− d)2

c2
dx.

(8)

Eq. (8) shows how the parameters c and d affect our error
measurement E[T]. From that equation, we can see that
the value of E[T] also depends on the Bernstein polynomial
Bg(x), or more specifically, its Bernstein coefficients. How-
ever, with c and d not known yet, we do not know Bg(x)
neither. Thus, we will also treat the coefficients of Bg(x) as
unknowns. Suppose that the Bernstein polynomial Bg(x) of
degree n is

Bg(x) =

n∑
i=0

biBi,n(x).

Our target is to find a set of values b0, b1, . . . , bn, d, c to min-
imize the objective function (8). Note that b0, . . . , bn should
satisfy the constraint that 0 ≤ bi ≤ 1 for all i = 0, . . . , n.

4.2 Solution of the Optimization Problem
In this section, we will show how to transform the opti-

mization problem into a standard quadratic programming
problem. For this purpose, we first define the following new
variables

b∗i =
1

c
bi, for i = 0, . . . , n (9)

c∗ =
1

c
, d∗ =

d

c
. (10)

Define

B∗g (x) =

n∑
i=0

b∗iBi,n(x). (11)

Then, B∗g (x) = 1
c
Bg(x). We can rewrite objective func-

tion (8) as

E[T] =

∫ 1

0

B∗g (x)(c∗ −B∗g (x))

N
dx

+

∫ 1

0

(B∗g (x)− f(x)− d∗)2 dx.

(12)

Now our target is to find a set of values b∗0, . . . , b
∗
n, d
∗, c∗ to

minimize the objective function (12).
By substituting (11) into (12) and expanding (12), we can

rewrite the objective function as

fobj(z) =
1

2
zTHz + cTz +

∫ 1

0

f2(x) dx, (13)

where

z = [b∗0, . . . , b
∗
n, d
∗, c∗]

T
, c = [c1, c2]T ,H =

[
H1 H2

HT
2 H3

]

352

with

c1 = [−2

∫ 1

0

f(x)B0,n(x) dx, . . . ,−2

∫ 1

0

f(x)Bn,n(x) dx],

c2 = [2

∫ 1

0

f(x) dx, 0]

H1 =
2(N − 1)

N
H ′1,

H ′1 =
∫ 1

0
B0,n(x)B0,n(x)dx . . .

∫ 1

0
B0,n(x)Bn,n(x)dx∫ 1

0
B1,n(x)B0,n(x)dx . . .

∫ 1

0
B1,n(x)Bn,n(x)dx

...
. . .

...∫ 1

0
Bn,n(x)B0,n(x)dx . . .

∫ 1

0
Bn,n(x)Bn,n(x)dx

 ,

H2 =

 −2
∫ 1

0
B0,n(x)dx 1

N

∫ 1

0
B0,n(x)dx

...
...

−2
∫ 1

0
Bn,n(x)dx 1

N

∫ 1

0
Bn,n(x)dx

 ,

H3 =

[
2 0
0 0

]
.

Note that c and H in Eq. (13) are all known matrices. The
original set of constraints that 0 ≤ bi ≤ 1, for i = 0, . . . , n,
is now transformed into a new set of constraints on b∗i and
c∗ as

0 ≤ b∗i ≤
1

c
= c∗, for i = 0, . . . , n. (14)

By now, we have transformed the problem of minimizing
the error of stochastic computation to finding a set of val-
ues b∗0, . . . , b

∗
n, c
∗, d∗ to minimize the objective function (13)

subject to the constraint (14). This is a standard quadrat-
ic programming problem and can be solved using standard
techniques. Once we obtain the optimal solution, we can get
the optimal Bernstein coefficients b0, . . . , bn and the optimal
linear transformation parameters c and d based on Eq. (9)
and (10).

5. EXPERIMENTAL RESULTS
We performed experiments on five test functions shown in

Table 1 to study the effect of the proposed linear transfor-
mation technique. For each test function, we can find an
unconstrained Bernstein polynomial of degree 6 to approx-
imate it very closely. However, for the first four functions,
if we approximate them by Bernstein polynomials with co-
efficients in the unit interval, we need polynomials of degree
at least 12 to get a close approximation. For Test5, we can
still find a degree 6 Bernstein polynomial with all the coef-
ficients in the unit interval to approximate it closely. Test5
was used here to show that our method takes the previous
method as a special case. For all the experiments, we fixed
the length of the stochastic bit streams N as 1024.

Table 1: Five test functions used in our experiments.

Test1 0.5 sin(8x) + 0.5
Test2 1− 4(x− 0.5)2

Test3 4x2 log(x+ 0.1) + 0.53
Test4 59.2x4 − 118.7x3 + 74.9x2 − 15.4x+ 1
Test5 e−3x

5.1 Error of Stochastic Computation
In this section, we studied the computation error of the

system designed using our method. We used the first four

test functions as the targets. Since an unconstrained Bern-
stein polynomial of degree 6 can approximate each test func-
tion very closely, we chose the degree of Bg(x) as 6. For each
test function, we solved the quadratic programming problem
proposed in Section 4.2 and obtained the optimal choice of
Bg(x) and the linear transformation parameters c and d.
The parameters c and d for the four test functions are listed
in Table 2.

Table 2: Linear transformation parameters c and d for
the first four test functions.

Test1 Test2 Test3 Test4
c 0.405 0.893 0.961 0.308
d 0.379 0 0.039 0.538

With these design parameters, we simulated our stochas-
tic computing system to obtain the computation error. For
each function, we obtained computation errors for 101 inputs
x = 0, 0.01, . . . , 1. For each function and each input x, we
simulated the stochastic computing system 100 times. We
then averaged the errors for these 100 simulations. Final-
ly, for each function, we averaged the errors over all input
points.

For comparison purpose, we also simulated the system de-
signed using the previous method [4]. The system was de-
signed based on a Bernstein polynomial of degree 6, but with
all the coefficients in the unit interval. We obtained its com-
putation error in the same way as above.

The errors of the two methods for each test function are
listed in Table 3. We can see that when the degrees of the
Bernstein polynomials implemented by the two systems are
the same, the proposed method reduces the computation
error significantly in comparison with the previous method.

Table 3: Average error of the proposed method and the
previous method [4].

Test1 Test2 Test3 Test4
proposed method 0.0396 0.0128 0.0103 0.0422
method in [4] 0.1539 0.0354 0.0251 0.1959

5.2 Hardware Cost
In this section, we studied the hardware cost of the pro-

posed stochastic computing system. Still, we used the first
four test functions as the targets.

The previous stochastic computing system is shown in
Fig. 3. The proposed system is similar, but with the final
counter replaced by the accumulator shown in Fig. 6. We
used linear feedback shift registers (LFSR) as URNGs. The
precision M of the binary radix numbers was chosen as 10.
In order to count the number of ones in a stream of 1024
bits, the counter in the previous system has 10 bits. The
accumulator in our system works on binary numbers with
10 and 6 bits before and after the binary point, respectively.

We fixed the degree of the Bernstein polynomial used in
the proposed system as 6. For the previous system, we man-
ually adjusted the degree n of the Bernstein polynomial until
the system produces an average error close to that of the pro-
posed system. The degrees n we obtained are listed in the
second row of Table 4.

With the above design parameters, we used the Synop-
sys Design Compiler [10] to synthesize the two systems and
evaluate their areas. The designs were mapped to the Nan-
gate FreePDK45 library [11]. The area of each system for
each test function is listed in Table 4. We also showed the

353

percentage of area saving of the proposed system over the
previous system. We can see that for these four test func-
tions, when the amount of computation errors are close, the
proposed method produces a system with smaller area than
the previous system.

Table 4: The degree of the Bernstein polynomial re-
quired by the method [4] in order to achieve close error
to our proposed method, the areas for the two systems,
and the percentage of area saving of the proposed system.

Test1 Test2 Test3 Test4
degree of Bernstein

17 14 12 17
polynomial in [4]

area (µm2)
method in [4] 1497 1266 1136 1497

proposed method 775
area saving (%) 48.2 38.8 31.8 48.2

The proposed system replaces the counter in the previous
system with an accumulator, which has a larger area than
the counter. Therefore, when the degrees of the Bernstein
polynomials implemented by the two systems are the same,
the proposed system has a larger hardware cost. In order to
determine when our proposed design will have advantage in
area over the previous design, we further used Design Com-
piler to synthesize the two stochastic computing systems for
different degrees of the Bernstein polynomials. Fig. 7 plots
the areas of the two systems versus degrees. We performed
linear regression on each set of points and obtain a linear
relation between the circuit area a and the degree d. The
relations for the proposed method and the previous method
are shown by Eq. (15) and (16), respectively.

a1 = 75.9d1 + 319.2. (15)

a2 = 75.9d2 + 204.1. (16)

When the area of the proposed system is smaller than that
of the previous system, i.e., a1 ≤ a2, we have d2−d1 ≥ 1.52.
Therefore, if the degree of the Bernstein polynomial required
by the previous method is larger than the degree required
by the proposed method by 2, the proposed method is more
area efficient.

6 8 10 12 14 16 18 20600

800

1000

1200

1400

1600

1800

2000

Degree n

Ar
ea

/μ
 m

2

previous method
proposed method

Figure 7: The areas of the proposed system and the
previous system for implementing Bernstein polynomials
with different degrees.

5.3 The Relation between the Proposed Method
and the Previous Method [4]

In this section, we took Test5 as the target function and
implement it using the proposed technique. Note that Test5
can be approximated closely by a degree 6 Bernstein poly-
nomial with all the coefficients in the unit interval. In the
proposed technique, we chose the degree of Bg(x) as 6. Af-
ter solving the quadratic programming problem shown in
Section 4.2, we obtained the optimal linear transformation
parameters as c = 1 and d = 0. This means that there is no

linear transformation needed in order to implement Test5.
Therefore, the system synthesized by the proposed method
essentially degenerates to the system synthesized by the pre-
vious method [4]. This indicates that our method takes the
previous method as a special case.

6. CONCLUSION AND DISCUSSION
In this paper, we proposed a technique using linear trans-

formation to synthesize stochastic computing systems. We
formulated an optimization problem to find the best linear
transformation parameters to reduce the overall computa-
tion error. The design technique is effective to those func-
tions which cannot be approximated closely by a Bernstein
polynomial with all the coefficients in the unit interval. Com-
pared with the previous method without linear transforma-
tion, our method could reduce the computation error as well
as the circuit area.

The proposed technique performs the final inverse linear
transformation through an accumulator, which converts the
output stochastic bit stream into a binary radix number.
Thus, the proposed system is applicable when the final result
of the stochastic computation should be encoded in binary
radix form.

The proposed linear transformation technique is applied
in the context of the Bernstein polynomial-based synthesis
approach. However, we believe that the technique can also
be applied to the finite state machine (FSM)-based approach
introduced in [6]. The details will be studied in our future
work.

Acknowledgement
This work is supported by National Natural Science Foun-

dation of China (NSFC) under Grant No. 61204042.

7. REFERENCES
[1] B. Gaines, “Stochastic computing systems,” in

Advances in Information Systems Science. Plenum,
1969, vol. 2, ch. 2, pp. 37–172.

[2] B. Brown and H. Card, “Stochastic neural computation
I: Computational elements,” IEEE Transactions on
Computers, vol. 50, no. 9, pp. 891–905, 2001.

[3] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse
coded arithmetic,” in International Symposium on
Circuits and Systems, vol. 1, 2000, pp. 599–602.

[4] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja,
“An architecture for fault-tolerant computation with
stochastic logic,” IEEE Transactions on Computers,
vol. 60, no. 1, pp. 93–105, 2011.

[5] P. Li and D. Lilja, “Using stochastic computing to
implement digital image processing algorithms,” in
International Conference on Computer Design, 2011,
pp. 154–161.

[6] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel,
“The synthesis of complex arithmetic computation on
stochastic bit streams using sequential logic,” in
International Conference on Computer-Aided Design,
2012, pp. 480–487.

[7] A. Alaghi and J. Hayes, “A spectral transform
approach to stochastic circuits,” in International
Conference on Computer Design, 2012, pp. 315–321.

[8] G. Lorentz, Bernstein Polynomials. University of
Toronto Press, 1953.

[9] R. Farouki and V. Rajan, “On the numerical condition
of polynomials in Bernstein form,” Computer Aided
Geometric Design, vol. 4, no. 3, pp. 191–216, 1987.

[10] Design Compiler, Synopsys Inc.
[11] Nangate FreePDK45 library, Silicon Integration

Initiative, Inc.

354

