
Chapter 7
Approximate Logic Synthesis for FPGA
by Decomposition

Zhiyuan Xiang, Niyiqiu Liu, Yue Yao, Fan Yang, Cheng Zhuo,
and Weikang Qian

1 Introduction

With the breakdown of Dennard scaling, power consumption has become a bot-
tleneck for circuit design [1]. Meanwhile, many useful applications are inherently
error-tolerant. These include machine learning, pattern recognition, and image pro-

This work was supported by the State Key Laboratory of ASIC & System Open Research Grant
2019KF004. Zhiyuan Xiang and Niyiqiu Liu contributed equally.

Z. Xiang · N. Liu
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong
University, Shanghai, China
e-mail: xzy242215@sjtu.edu.cn; lnyq10@sjtu.edu.cn

Y. Yao
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: yueyao@cs.cmu.edu

F. Yang
State Key Laboratory of ASIC & System; Microelectronics Department, Fudan University,
Shanghai, China
e-mail: yangfan@fudan.edu.cn

C. Zhuo
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou,
China
e-mail: czhuo@zju.edu.cn

W. Qian (�)
University of Michigan-Shanghai Jiao Tong University Joint Institute and MoE Key Laboratory
of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China

State Key Laboratory of ASIC & System, Fudan University, Shanghai, China
e-mail: qianwk@sjtu.edu.cn

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. Liu, F. Lombardi (eds.), Approximate Computing,
https://doi.org/10.1007/978-3-030-98347-5_7

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98347-5_7&domain=pdf
mailto:xzy242215@sjtu.edu.cn
mailto:lnyq10@sjtu.edu.cn
mailto:yueyao@cs.cmu.edu
mailto:yangfan@fudan.edu.cn
mailto:czhuo@zju.edu.cn
mailto:qianwk@sjtu.edu.cn
https://doi.org/10.1007/978-3-030-98347-5_7

150 Z. Xiang et al.

cessing. Given these trends, approximate computing was proposed as a promising
way to design low-power digital circuits for these error-tolerant applications [2]. It
relaxes the stringent accuracy requirement to further reduce circuit area, delay, and
power consumption. An important area in approximate computing is approximate
logic synthesis (ALS), which automatically synthesizes a good approximate circuit
under a given error constraint.

Many existing ALS methods are designed for application-specific integrated
circuits (ASICs) [3–12], while only few target at field programmable gate arrays
(FPGAs) [13, 14]. Modern FPGAs are implemented by a network of lookup tables
(LUTs). A LUT of k inputs, known as k-LUT, can implement any k-input Boolean
function. This causes fundamental difference between FPGAs and ASICs. The
existing ALS methods for ASIC work on a different circuit representation than the
LUT network representation. Some ALS methods cannot be applied to handle LUT
networks [11], while the others can [5]. Although the former can still be applied in
the technology independent synthesis phase for FPGA, they require an additional
LUT mapping step to convert the intermediate design into the FPGA design, which
leads to a weak control over the final hardware cost. For the latter, they cannot fully
exploit the special features of LUT networks. Finally, the few ALS methods for
FPGA still rely heavily on the existing LUT mapping tools [13, 14]. Thus, they
also have a weak control over the final hardware cost. Therefore, in order to fully
explore the power of ALS for FPGAs, it is imperative to develop a method that
directly works on the LUT network representation and fully exploits the flexibility
of the FPGA designs.

For this purpose, we propose a novel method to perform ALS for FPGAs in this
work. Our method aims at reducing the LUT count. It directly works on the LUT
network and exploits the reconfigurability of the LUTs to reduce its size.

The basic idea of our method is to approximately implement a LUT subnetwork
by the minimum number of LUTs determined by the input size of the subnetwork.
To illustrate our idea, consider an optimized LUT subnetwork of 6 inputs shown in
the left part of Fig. 7.1. We assume that 3-LUTs are used. This optimal design is
implemented by four 3-LUTs. Note that in theory, the minimum number of 3-LUTs
needed to implement a 6-input function is 3.1 However, there does not exist any LUT
network of three 3-LUTs to implement the given function, as the LUT network in
the left part of Fig. 7.1 is claimed to be optimal. Nevertheless, if we allow errors, it
is possible to change the given function properly so that it can be implemented by
only three 3-LUTs; one example is shown in the right part of Fig. 7.1. Indeed, there
exist several different ways to connect three 3-LUTs. Furthermore, each 3-LUT
can implement many different functions. Thus, the number of functions that can
be implemented by a network of three 3-LUTs is enormous. On the one hand, this
flexibility is helpful, since it is possible for us to find one function very close to the
original one, thus with the minimum error introduced. On the other hand, given the
large design space, how to efficiently find such a function is a big challenge. Since a

1 With only two 3-LUTs, we can only realize a function with no more than 5 inputs.

7 Approximate Logic Synthesis for FPGA by Decomposition 151

Fig. 7.1 An approximate transformation that reduces the LUT count to the minimum value
determined by the input size of the function

LUT network naturally corresponds to a series of decompositions of a function, we
propose a decomposition-based technique to solve the above challenge and derive a
novel ALS method for FPGA.

Our main contributions are as follows:

• We propose a heuristic method to find an approximate disjoint decomposition
for a given function with small error.

• We extend the above method and propose a heuristic method to find an
approximate non-disjoint decomposition for a given function with small error.

• We propose an iterative decomposition algorithm that exploits both the approx-
imate disjoint and non-disjoint decompositions to realize a Boolean function
with the minimum number of LUTs determined by the input size of the function.

• We design an ALS flow for FPGA based on the iterative decomposition
algorithm. Our experimental results showed that the proposed flow achieves
more LUT count reduction than the previous state-of-the-art ALS methods for
FPGAs.

The rest of the chapter is organized as follows. Section 2 discusses the related
works. Section 3 provides the preliminaries. Section 4 presents our proposed
methods. Section 5 shows the experimental results. Finally, Sect. 6 concludes the
chapter.

2 Related Work

We describe some related works in this section. We first discuss the works related
to ALS for FPGA, followed by works related to ALS based on decomposition.

152 Z. Xiang et al.

2.1 Approximate Logic Synthesis for FPGA

Wu et al. proposed an ALS method for FPGA designs [13]. The method is based on
a heuristic that assumes that by removing some inputs of a function, the final LUT
count will drop. Following this heuristic, the method simultaneously removes some
inputs of a local subnetwork and modifies its logic function to minimize the error
introduced. Once the approximate function is derived, it further applies an existing
FPGA mapping tool to the function to obtain the final LUT network. Liu and Zhang
also proposed an ALS method and applied it to FPGA synthesis [14]. Their method
works on the gate network first and then maps the network into the FPGA design
through an FPGA mapping tool. Due to the use of the additional FPGA mapping
tool, these previous methods have a weak control over the final hardware cost. In
contrast, our method works on the LUT network representation directly to reduce
the LUT count.

2.2 Approximate Logic Synthesis Based on Decomposition

Another direction of ALS is to perform approximate decomposition to some local
circuits to simplify them. Hashemi et al. [10] proposed a method based on Boolean
matrix factorization. It approximately factors the truth table of a multi-output
function as the product of two Boolean matrices. It then synthesizes an approximate
design based on the factorization. Yao et al. [15] proposed a method based on
Boolean decomposition. It performs approximate disjoint bi-decomposition that
recursively separates the input set of a function into two disjoint subsets. However,
the method is based on the special disjoint bi-decomposition and thus can only
generate networks of 2-input gates. In contrast, our method is based on a general
disjoint decomposition and therefore can be applied to synthesize networks of k-
LUTs with k ≥ 2. Furthermore, beyond approximate disjoint decomposition, we
also propose an approximate non-disjoint decomposition. Another related work
is the proposal of a two-LUT architecture that approximately realizes a given
function originally implemented by a single larger LUT [16]. The work also exploits
Boolean decomposition to configure the LUTs. However, it targets at LUT-based
computation, where a single large LUT implements the target function, which is
different from LUT-based FPGA, where many small LUTs are interconnected to
realize the target. Due to the architecture difference, the work only requires to
perform the approximate disjoint decomposition once. In contrast, our work needs
to perform multiple approximate disjoint decompositions recursively.

7 Approximate Logic Synthesis for FPGA by Decomposition 153

3 Preliminaries

In this section, we introduce the related preliminaries, including simple disjoint
decomposition, fanout-free cone, error measurement, and Monte Carlo simulation.

3.1 Simple Disjoint Decomposition

Our proposed method is based on simple disjoint decomposition, which was
pioneered by Ashenhurst [17] and Curtis [18]. We first introduce some definitions.

Definition 1 Let f be a logic function of n variables and X = {x1, . . . , xn} be
its inputs. Let {A,B} be a partition on X. The function f has a simple disjoint
decomposition with bound set A and free set B if there exist functions φ and F such
that f (X) = F(φ(A), B). The functions F and φ are called the free-set function
and the bound-set function, respectively. If the function f has a simple disjoint
decomposition, the function is said to be decomposable.

Not every logic function is decomposable. Ashenhurst gives a necessary and
sufficient condition for the existence of a simple disjoint decomposition under a
given partition on the input variables [17]. It is based on a 2-dimensional (2D) truth
table representation of the Boolean function, in which some variables define the
columns and the remaining define the rows. An example of the 2D truth table is
shown in Fig. 7.2. In what follows, we will also call this representation a Boolean
matrix. The following theorem gives the necessary and sufficient condition.

Theorem 1 Let {A,B} be a partition on X. A logic function f is decomposable
with bound set A and free set B if and only if the Boolean matrix with the variables
in A and B defining the columns and the rows, respectively, has at most four distinct
types of rows:

1. A pattern of all 0s
2. A pattern of all 1s
3. A fixed pattern p of 0’s and 1’s
4. The complement of the pattern p

A proof to the above theorem can be found in [19]. We use the following example
to illustrate how to obtain the simple disjoint decomposition once the condition in
Theorem 1 is satisfied.

Example 1 Figure 7.2 shows a Boolean matrix of a Boolean function f (x1, x2, x3, x4)

with variables x1 and x2 defining the rows and variables x3 and x4 defining the
columns. It satisfies the condition described in Theorem 1: row 1 falls into Type
3, rows 2 and 4 fall into Type 4, and row 3 falls into Type 2. Thus, function f is
decomposable with free set as {x1, x2} and bound set as {x3, x4}. We can set the
truth table of the function φ(x3, x4) as the pattern in Type 3. For this example, the
truth table is “0110,” and correspondingly, φ(x3, x4) = x3x4 + x3x4. Now, the first,

154 Z. Xiang et al.

Fig. 7.2 A 2D truth table, or Boolean matrix, of a function f

second, third, and fourth rows of the Boolean matrix represent the functions φx1 x2,
φx1x2, x1x2, and φx1x2, respectively. Therefore, we obtain the final expression of
f as

f = φx1 x2 + φx1x2 + x1x2 + φx1x2 = F(φ, x1, x2).�

3.2 Fanout-Free Cone (FFC)

Our proposed method is based on simple disjoint decomposition. However, it is
restricted to single-output Boolean functions. Given this restriction, we apply our
method to a particular structure in a circuit called fanout-free cone (FFC). We give
the relevant definitions in this section.

We focus on combinational circuits implemented by FGPA. They can be viewed
as a directed acyclic graph N = (V ,E), where V is the vertex set that contains all
LUTs in the circuit and E is the edge set that represents the wire connection among
all the LUTs. Given a node v ∈ V in a graph N(V,E), a cone of node v, denoted as
Cv , is a subgraph of N consisting of node v and some of its predecessors such that
any path from a node in Cv to v lies entirely in Cv [20]. The node v is called the
root of Cv . A fanout-free cone (FFC) is a cone in which the fanouts of every node
other than the root are in the cone [21].

3.3 Error Rate and Monte Carlo Simulation

There are two typical quantities to evaluate the error of an approximate circuit, error
rate (ER) and error magnitude (EM). ER is defined as the probability of an input
pattern that gives an erroneous output for the approximate circuit. EM measures

7 Approximate Logic Synthesis for FPGA by Decomposition 155

how much the output of the approximate circuit deviates from the correct output. It
is typically used for arithmetic circuits. In this work, we focus on ER.

The number of input combinations of a circuit is exponential to the input size,
and thus, it is impractical to enumerate them to calculate the exact ER. Instead, we
perform Monte Carlo simulation to obtain an estimation of the ER of an approximate
circuit, as is done in many other works [10, 11]. In our implementation, we chose the
sample size as 105. Besides that, as we will show later, in order to determine proper
approximate transformations for a sub-circuit, we need the occurrence probability
for each combination of some internal signals. It is also calculated through Monte
Carlo simulation. In this case, the simulation results for internal nodes are needed.
To speed up our program, we store the simulation results for each node in the
memory.

4 Methodology

In this section, we present the proposed method. We begin with an overview of the
basic idea, followed by the technical details.

4.1 Basic Idea

Our method works on the FFCs in the given LUT network. An FFC implements a
single-output function through a LUT subnetwork. In order to minimize the total
LUT count, we minimize the number of LUTs needed to implement a selected
FFC. Our method is based on the following observation: the minimum number of
k-LUTs needed to implement an n-input function is �n−1

k−1 �. For example, in order
to implement a 7-input (respectively, 8-input) function with 4-LUTs, the minimum
number of LUTs needed is 2 (respectively, 3). Although there exists flexibility in
the LUT connection and configuration, it may be impossible to exactly realize the
given FFC function with the minimum number of LUTs. However, if we introduce
minor modification to the original function f , it is possible.

For this purpose, we develop a method to perform approximate disjoint decom-
position for a given function. For an arbitrary function, it may not be decomposable.
Approximate disjoint decomposition essentially finds a decomposable function
close to it. In the context of FPGA synthesis, we repeatedly apply the approximate
disjoint decomposition to the function implemented by an FFC. In each round, we
derive an approximate disjoint decomposition with a bound set of size k. Assume
the obtained bound-set function is φ. Then, we implement it by a k-LUT. With this,
k inputs in the bound set are replaced by the single signal φ. Therefore, the input
size of the function is reduced by (k − 1). We repeat this process until the input
size of the function is no more than k. At this moment, the final function can be
implemented by a single k-LUT. However, for some cases, the number of inputs

156 Z. Xiang et al.

of the final function is fewer than k, making the last LUT not fully exploited. To
make full use of the last LUT, we propose to connect some signals in the previous
levels of the LUT network to the unused inputs of the last LUT. This requires to
replace the final approximate disjoint decomposition by an approximate non-disjoint
decomposition. We also develop a method for this.

Example 2 Consider a LUT network in the left part of Fig. 7.1. It implements
a function f with 6 inputs, i.e., X = {x1, · · · , x6}. If we want to implement
f using the minimum number of 3-LUTs, we need two rounds of approximate
disjoint decomposition. The intermediate steps are shown in Fig. 7.3a and b. In
the first round, suppose that the approximate disjoint decomposition produces an
approximation to f as F1(φ1(A1), B1) with the bound set A1 = {x2, x4, x5} and
the free set B1 = {x1, x3, x6}. The corresponding circuit is shown in Fig. 7.3a.
After the first round, we find that the function F1 has 4 inputs φ1, x1, x3, x6.
Thus, it cannot be realized by one 3-LUT. Therefore, we continue to the second
round of approximate disjoint decomposition. Now X = {φ1, x1, x3, x6}. Suppose
that the approximate disjoint decomposition produces an approximation to F1 as
F2(φ2(A2), B2) with the bound set A2 = {x1, x3, x6} and the free set B2 = {φ1}.
The resulting circuit is shown in Fig. 7.3b. Now the function F2 has only two inputs
φ1 and φ2. Thus, it can be realized by a 3-LUT. However, the last LUT has an
unused input. In this case, we perform an approximate non-disjoint decomposition
to change the disjoint decomposition F2(φ2(x1, x3, x6), φ1) into a non-disjoint one
as F3(φ3(x1, x3, x6), φ1, x1). The final LUT network is shown in Fig. 7.3c. For
this example, we reduce both the LUT count and the LUT network depth by one
compared to the original LUT network shown in the left part of Fig. 7.1. �

We call the above iterative procedure iterative approximate decomposition. It

requires
(
�n−1

k−1 � − 1
)

= �n−k
k−1 � iterations. The number of k-LUTs in the resulting

circuit is �n−1
k−1 �, the minimum achievable value. However, some FFCs in the circuit

may already contain the minimum number of LUTs. In this case, to further reduce
their LUT counts, we need to remove some of their inputs. For this purpose, we also
introduce an iterative input removal method. It can be treated as a special case of
the iterative approximate decomposition.

In the following, we will describe details of the approximate disjoint and non-
disjoint decompositions in Sects. 4.2 and 4.3, respectively. Then, we will describe
the iterative approximate decomposition in Sect. 4.4, followed by the iterative input
removal in Sect. 4.5. Finally, we will show the overall ALS flow in Sect. 4.6.

4.2 Approximate Disjoint Decomposition

In this section, we present the approximate disjoint decomposition for a fixed bound
set and free set. We note that a similar method is presented in [16]. The problem
solved by this technique is formally stated as follows: given a Boolean function

7 Approximate Logic Synthesis for FPGA by Decomposition 157

Fig. 7.3 An illustration of the proposed iterative approximate decomposition. (a) Applying the
first round of approximate disjoint decomposition. (b) Applying the second round of approximate
disjoint decomposition. (c) Applying an approximate non-disjoint decomposition

f (X) and a partition (X1, X2) of the input set X, find a decomposable function
F(φ(X1),X2) with the smallest ER over f . In what follows, if the bound set and
the free set are clear from the context, we will also represent the decomposable
function by a pair (F, φ) for simplicity.

The solution works on the Boolean matrix of the given function f with the
variables in X1 and X2 defining the columns and rows, respectively. Besides
that, in order to evaluate the ER of the approximate function over the original
function, we also need to know the occurrence probability of each input pattern
of the function f . For this purpose, we augment the Boolean matrix by including

158 Z. Xiang et al.

Fig. 7.4 Augmented matrices. (a) A non-decomposable function. (b) A decomposable function
that approximates the function in (a)

the occurrence probability of each input pattern. We call the resulting matrix an
augmented matrix. An example of this is shown in Fig. 7.4a. In each entry of the
matrix, the binary value represents the output of the function and the real value
represents the occurrence probability of each input pattern. For simplicity, we
actually show the occurrence percentage in the matrix. The occurrence probability
of each input pattern is obtained through the Monte Carlo simulation described
in Sect. 3.3. For example, consider a function on local inputs x1, x2, and x3.
Assume that the Monte Carlo simulation has M samples. Then, the occurrence
probability for (x1, x2, x3) = (a1, a2, a3), where a1, a2, a3 ∈ {0, 1}, is calculated
as C(a1, a2, a3)/M , where C(a1, a2, a3) is the number of times in the Monte Carlo
simulation when (x1, x2, x3) = (a1, a2, a3).

Given an arbitrary function, a fixed bound set, and a fixed free set, the function
may not be decomposable with the bound set and the free set. However, if we
make some proper changes to the entries in the Boolean matrix, we can construct a
decomposable function by introducing some error. The ER is calculated as

ε =
∑

i

∑
j

|B ′[i][j] − B[i][j]| · P [i][j], (7.1)

where B[i][j]’s and B ′[i][j]’s are the Boolean entries in the augmented matrices
of the original function and the decomposable function, respectively, and P [i][j]’s
are the probability entries in the augmented matrix of the original function. In other
words, the ER is the sum of the occurrence probabilities of those input patterns with
an output change.

7 Approximate Logic Synthesis for FPGA by Decomposition 159

Example 3 Given the function, the bound set, and the free set shown in Fig. 7.4a,
the function is not decomposable with the bound set and the free set according
to Theorem 1. However, by flipping the outputs of some input patterns, we can
construct a decomposable function. A possible example is shown in Fig. 7.4b. The
changed bits are labeled in red. By Eq. (7.1), the ER of the approximation is ε =
(6.7 + 12 + 2.2)% = 20.9%. �

By Theorem 1, for a fixed bound set A and free set B, the Boolean matrix of
a decomposable function is fully determined by two factors. The first is the fixed
pattern p in Theorem 1, which we call a pattern vector. Note that p ∈ {0, 1}2|A|

.
As shown in Example 1, the pattern vector determines the bound-set function. The
second is the collection of the type indices of all the rows. We represent it as a vector
r ∈ {1, 2, 3, 4}2|B|

, which we call a row-type vector. The ith entry in the row-type
vector represents one of the four types that the ith row belongs to. For example, for
the decomposable function shown in Fig. 7.4b, its pattern vector is p = (1, 0, 1, 1)

and its row-type vector is r = (1, 3, 1, 3).
In order to determine the decomposable function for a fixed bound set and free

set with the smallest ER over the original function, it is equivalent to finding the
optimal pair of pattern vector and row-type vector (p, r). However, there are 22|A| ·
42|B|

possible pairs in the solution space. A brute-force enumeration is prohibitive.
Instead, we propose an algorithm to search for a good local optimal solution. The
algorithm is based on the following two observations.

1. Once the pattern vector p is fixed, we can identify an optimal row-type vector
r efficiently. To do this, we only need to decide each entry in the optimal row-
type vector. To determine the ith entry, we compare the ith row of the original
Boolean matrix with four choices, which are a pattern of all 0s, a pattern of
all 1s, pattern p, and the complement of pattern p, and obtain the ER for each
choice. The final best choice for the ith entry is just the one with the smallest
ER.

2. Once the row-type vector r is fixed, we can identify an optimal pattern vector p

efficiently. To do this, we only need to decide each entry in the optimal pattern
vector. Consider the ith entry in the pattern vector. It has only two choices, 0
and 1. We enumerate these two choices. For each choice, since the row-type
vector is fixed, we can obtain the ith column of the Boolean matrix B ′ of a
decomposable function determined by the row-type vector r and the pattern
vector p with the ith entry as that choice. We then obtain the ER of the ith
column of B ′ over that of the original Boolean matrix. We compare the ERs for
the two choices and select the choice giving a smaller ER.

Example 4 Consider the Boolean matrix shown in Fig. 7.4a. Suppose the fixed
pattern vector p = (1, 0, 1, 1). Now, we decide the entries in the optimal row-
type vector r one by one. With r[1] chosen as 1, 2, 3, 4, the first row in the new
Boolean matrix is (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 1), and (0, 1, 0, 0), respectively.
Comparing these four choices with the first row in the original Boolean matrix,
we can obtain their ERs as 6.7%, 14.5%, 21.2%, and 0, respectively. Since the

160 Z. Xiang et al.

Algorithm 1: Function ApxDecomp for finding a decomposable function with a
given bound set and free set that has a small ER over the given Boolean function
Input : An augmented matrix M specifying the given Boolean function, the bound set, the

free set, and the occurrence probability of each input pattern, and a parameter T .
Output : A decomposable function (F, φ).

1 IniPSet⇐ ∅;
2 for each row p in M.B do
3 calculate the optimal row-type vector r with the pattern vector set as p;
4 p.error ⇐ ER of the decomposable function determined by p and r;
5 choose T distinct rows in M.B with the smallest ERs and add them into IniPSet;
6 OptimSet⇐ ∅;
7 for each pattern vector p in IniPSet do
8 while p and r have been updated do
9 fix p and calculate the optimal r;

10 fix r and calculate the optimal p;
11 add the decomposable function (F, φ) determined by p and r into OptimSet;
12 return the decomposable function (F, φ) in OptimSet with the minimum ER;

last choice has the minimum ER, we choose r[1] as 4. The other entries of r are
determined similarly. The final optimal row-type vector is r = (4, 3, 1, 3).

Now, suppose the fixed row-type vector r = (4, 3, 1, 3). We decide the entries
in the optimal pattern vector p one by one. We use p[3] as an example. For p[3] =
0, 1, the third column in the new Boolean matrix is (1, 0, 0, 0)T and (0, 1, 0, 1)T ,
respectively. Comparing these two choices with the third column in the original
Boolean matrix, we can obtain their ERs as 3.5% and 15.1%, respectively. Thus,
we choose p[3] = 0. The other entries are determined similarly. The final optimal
pattern vector is p = (1, 0, 0, 1). �

The above two observations lead to a method to search for a local optimal
solution. Instead of searching for p and r simultaneously, we first fix p and optimize
r . Then, we fix r and optimize p. In this way, we keep updating p and r until they
do not change. Then, we reach a local optimal solution.

Based on the above idea, we propose an algorithm for finding a decomposable
function with a given bound set and free set that has a small ER over the original
function f . It is shown in Algorithm 1. The function takes an augmented matrix
M as inputs. The matrix specifies the given Boolean function, the bound set, the
free set, and the occurrence probability of each input pattern. The algorithm has two
major parts. The first part creates multiple initial pattern vectors p’s (see Lines 2–
5). This is important because there may exist many local minima in which our basic
optimization algorithm may get stuck. In order to improve the quality, one way is to
choose multiple initial starting points. In our implementation, we choose the initial
pattern vectors p’s from the existing rows. For this purpose, we visit each row p

in the Boolean matrix M.B of the augmented matrix, obtain the associated optimal
row-type vector r , and calculate the ER for this pair of p and r . We choose T distinct
row patterns p’s that give the smallest ERs as the initial pattern vectors p’s.

7 Approximate Logic Synthesis for FPGA by Decomposition 161

The second part of the algorithm visits each initial p selected from the first part.
For each p, it performs optimization on p and r alternatively until a local minimum
is reached (see Lines 8–10). Then, it stores the corresponding decomposable func-
tion (F, φ) into the set OptimSet (see Line 11). Finally, it returns the decomposable
function (F, φ) with the smallest ER in the set OptimSet.

4.3 Approximate Non-disjoint Decomposition

The approximate disjoint decomposition has the restriction that the bound and free
sets are disjoint. Depending on the input size of the given FFC, some LUTs in the
final LUT netlist obtained by the approximate disjoint decomposition may have
some unused inputs. For instance, as shown in Example 2, if only using approximate
disjoint decomposition, the last LUT LUT3 has one input unused. LUT3 together
with LUT2 implements the last approximate disjoint decomposition of the form
F2(φ2(x1, x3, x6), φ1). If we choose an input from LUT2 and connect it to the
unused input, as shown in Fig. 7.3c, the circuit area and depth do not change. By
properly configuring the functions of these two LUTs, we can possibly reduce the
ER. However, the resulting decomposition is not a disjoint decomposition anymore.
It is a non-disjoint decomposition of the form F(φ(A′), B ′), where A′ ⋂ B ′ 	= ∅.
The number of possible non-disjoint decompositions is even larger than the number
of disjoint ones. The search for an optimal one is time-consuming. We propose a fast
solution for a good approximate non-disjoint decomposition based on an existing
approximate disjoint decomposition.

Assume that an existing approximate disjoint decomposition has its bound set as
A and free set as B. The original function has a corresponding augmented matrix
with the variables in the sets A and B defining the columns and rows, respectively.
To create a non-disjoint decomposition, a variable from the bound set A will be
added to the free set B, creating a larger free set B ′. Correspondingly, we first
update the original augmented matrix. We call the resulting matrix the updated
augmented matrix. We use the following example to illustrate how to obtain the
updated augmented matrix.

Example 5 Suppose that the target function is f (x1, x2, x3) and the bound set A and
the free set B of an existing approximate disjoint decomposition are A = {x1, x2}
and B = {x3}. Figure 7.5a shows the augmented matrix of f with the variables
in A defining the columns and the one in B defining the rows. We assume that the
input combination (x1, x2, x3) follows a uniform distribution. Thus, the occurrence
probability of each input pattern is 1/8 = 12.5%.

Without loss of generality, suppose that we add x2 into the free set {x3} to con-
struct an approximate non-disjoint decomposition. We also let it be the first variable
in the free set. With x2 added into the free set, we modify the augmented matrix. The
updated one is shown in Fig. 7.5c. The height of the augmented matrix is doubled.
The upper half has x2 = 0, while the lower half has x2 = 1. The Boolean entries

162 Z. Xiang et al.

Fig. 7.5 An illustration of obtaining an approximate non-disjoint decomposition from an existing
approximate disjoint decomposition. The approximate outputs different from the original ones are
highlighted in red. (a) The augmented matrix for a function f . (b) The augmented matrix for
the closest approximate disjoint decomposition to f . (c) The updated augmented matrix for the
one in (a) with x2 added into the free set. (d) The updated augmented matrix for the one in (b)
with x2 added into the free set. (e) The augmented matrix for the closest approximate non-disjoint
decomposition to f

7 Approximate Logic Synthesis for FPGA by Decomposition 163

of the upper and lower half of the new matrix are the same as those of the original
augmented matrix. However, the probability entries are changed. For the entries
where the x2’s in the row and the column take different values, their probability
values are 0, since these combinations can never occur, while for the entries where
x2’s in the row and the column take the same value, their probability values are 1/8.

�
For the existing approximate disjoint decomposition of the original function, it

also has a corresponding augmented matrix MF . Suppose that the Boolean part of
the augmented matrix is characterized by a pattern vector p and a row-type vector
r . With a variable x from the bound set added into the free set, we can also obtain
an update augmented matrix from MF using the same method described above. The
Boolean part of the updated augmented matrix is characterized by a pattern vector
p′ and a row-type vector r ′. Assume that x is added as the first variable in the free
set. Then, it can be easily seen that p′ = p and r ′ is two r’s cascaded together.

Example 6 For the function shown in Fig. 7.5a, Fig. 7.5b shows the augmented
matrix MF of an approximate disjoint decomposition with the lowest ER. The
Boolean part of the matrix is characterized by the pattern vector p = (0, 1, 1, 0)

and the row-type vector r = (3, 3).The ER of this decomposition is 1/4.
With x2 added into the free set as its first variable, we can also obtain the updated

augmented matrix as shown in Fig. 7.5d from MF . The Boolean part of the updated
augmented matrix is characterized by the pattern vector p′ = (0, 1, 1, 0) and the
row-type vector r ′ = (3, 3, 3, 3). Clearly, p′ = p and r ′ is two r’s cascaded together.

�
To derive an approximate non-disjoint decomposition, we work on the updated

augmented matrix of the original function. Similar as the disjoint case, a non-
disjoint decomposition can also be characterized by a pattern vector and a row-type
vector. Thus, we only need to find an optimal pattern vector p∗ and row-type vector
r∗. By the above discussion, we can see that the existing approximate disjoint
decomposition gives an initial solution for the non-disjoint decomposition with the
pattern vector as p′ and the row-type vector as r ′. Then, by applying the alternative
pattern and row-type vectors updating mechanism described in Sect. 4.2, we are
guaranteed to find a non-disjoint decomposition with ER no more than that of the
given approximate disjoint decomposition.

Example 7 For the function shown in Fig. 7.5a, the existing approximate disjoint
decomposition gives an initial solution for the non-disjoint decomposition as shown
in Fig. 7.5(d). By Example 6, the initial pattern vector is p′ = (0, 1, 1, 0) and
the initial row-type vector is r ′ = (3, 3, 3, 3). By applying the alternative pattern
and row-type vectors updating mechanism, we can eventually derive a non-disjoint
decomposition shown in Fig. 7.5e. Its pattern vector is p = (0, 1, 1, 0) and its row-
type vector is r = (1, 3, 2, 3). From the pattern and row-type vectors, we can get the
final approximate non-disjoint decomposition as F(φ, x2, x3) = x2x3 + x3φ with
φ = x1x2 + x1x2. Its ER is 0. �

164 Z. Xiang et al.

Note that the above discussion assumes that only one variable from the bound set
is added into the free set. However, the method can also be extended to add more
than one variable from the bound set into the free set. Also, the discussion is on a
special case where the input added into the free set is a direct fanin variable xi of the
bound-set function φ(x1, . . . , xn). However, the method can also be extended when
the input is a transitive fanin of the bound-set function. For this general case, the
probability entries in the updated augmented matrix should be set as the occurrence
probabilities of the corresponding input patterns, which can be obtained by the
Monte Carlo simulation.

4.4 Iterative Approximate Decomposition

In this section, we present the details on how we obtain a structure with the fewest
LUTs to implement a given function corresponding to an FFC in the circuit. It
exploits both the approximate disjoint and non-disjoint decomposition techniques
described above. It first builds a LUT network with the fewest LUT only using the
approximate disjoint decomposition. However, the last LUT may have some unused
inputs. Then, it applies the approximate non-disjoint decomposition to exploit the
unused inputs to further reduce ER.

The proposed approximate disjoint decomposition method works under the
assumption that the bound set and the free set are given. Before we apply it to find
a good approximate decomposition, we need to decide the bound set. Suppose that
the given function has n inputs. By the basic idea described in Sect. 4.1, we need
to select a bound set of size k. Therefore, there are

(
n
k

)
choices for the bound set in

total. Different bound sets lead to different decomposable functions F(φ(X1),X2)

and the associated ERs.
Furthermore, as we stated in Sect. 4.1, for a typical function, we need to

do multiple rounds of approximate disjoint decomposition. This brings another
problem. That is, the different choices made at the previous rounds influence the
later choices. For example, in Example 2, in the first round, we choose bound set
A1 = {x2, x4, x5}, and by applying the approximate disjoint decomposition, we
obtain the decomposable function F1(φ1(A1), B1). Then, in the second round, the
target function for the decomposition is F1. In contrast, if we choose the bound
set A′

1 = {x1, x3, x5} in the first round, then by applying the approximate disjoint
decomposition, we obtain another decomposable function F ′

1(φ
′
1(A

′
1), B

′
1). Then, in

the second round, the target function for the decomposition is F ′
1. This will lead to

a different final solution.
In order to address the above issues, we propose an iterative approximate

decomposition algorithm based on local beam search [22]. The idea is that in each
round of the decomposition loop, we always keep m ≥ 1 promising decomposable
functions

F1(φ1(A1), B1), . . . , Fm(φm(Am), Bm).

7 Approximate Logic Synthesis for FPGA by Decomposition 165

Algorithm 2: The proposed iterative approximate decomposition
Input: Simulation result sim, a given FFC C, and parameters T and m.
Output: An approximate LUT network with the minimum LUT count.

1 TopChoice⇐ {C};
2 TopChoice[1].H ⇐ the Boolean function of C;
3 � TopChoice[1] is the first element in the set TopChoice;
4 n ⇐ the input size of C;
5 for i = 1 to �(n − k)/(k − 1)� do
6 MaxHeap⇐ ∅;
7 � MaxHeap stores the approximate circuits. Its key is the ER;
8 for j = 1 to |TopChoice| do
9 for each partition (bSet, fSet) on the input set of TopChoice[j].H do

10 M ⇐ createMatrix(sim, bSet, fSet, TopChoice[j]);
11 (F, φ) ⇐ApxDecomp(M, T);
12 NewCkt⇐ apply(TopChoice[j], F, φ, bSet, fSet);
13 NewCkt.calculateError(sim);
14 MaxHeap.insert(NewCkt);
15 if |MaxHeap| > m then
16 MaxHeap.deleteMax();
17 TopChoice⇐ ∅;
18 for j = 1 to |MaxHeap| do
19 insert the circuit corresponding to the free-set function of MaxHeap[j] into

TopChoice;
20 if (n − 1) is not a multiple of (k − 1) then
21 for j = 1 to |TopChoice| do
22 TopChoice[j].ApxNonDisjuncDecomp();
23 return the approximate circuit in TopChoice with the smallest ER;

In the next round, we obtain all approximate decomposable functions derived from
F1, . . . , Fm and keep the top m based on the smallest ERs.

The algorithm is shown in Algorithm 2. It takes an FFC as its input. Suppose
the input size of the FFC is n. As we stated in Sect. 4.1, the iterative approximate
decomposition needs �(n − k)/(k − 1)� rounds. In each round, there is a set of
partial LUT networks obtained from the previous round. They are stored in the
set TopChoice. Each element in TopChoice also has a data member H storing
the latest function to be decomposed. We iterate over all elements in TopChoice
(see Line 8). For the j th element TopChoice[j], we further iterate over all pairs
of bound set and free set partitioned from the input set of the function H of
TopChoice[j] (see Line 9). For each pair of bound set bSet and free set fSet, the
function createMatrix prepares the augmented matrix M from the bound set, the
free set, the simulation trace, and the current partial LUT network TopChoice[j]
(see Line 10). Then, the function ApxDecomp shown in Algorithm 1 is called to
generate a good decomposable function that approximates the function H associated
with TopChoice[j] (see Line 11). After that, the obtained decomposable function
is applied to the partial circuit TopChoice[j] to derive a new circuit NewCkt (see
Line 12). Then, the ER of the new circuit is calculated (see Line 13) before it is
inserted into a max heap MaxHeap (see Line 14). The max heap is indexed on the

166 Z. Xiang et al.

ER of the circuit. If its size is larger than m, then the element in it with the largest
ER is removed (see Lines 15–16). This essentially ensures that in each round, at
most m candidates with the smallest ERs are kept. After all the elements in the
set TopChoice have been visited, the set TopChoice is first reset to an empty set
(see Line 17), and then, the circuit corresponding to the free-set function of each
element in MaxHeap is inserted into TopChoice (see Lines 18–19). This leads to the
next round.

After the entire decomposition loop finishes, we obtain m LUT networks with
the minimum LUT count only through the approximate disjoint decomposition. If
(n − 1) is not a multiple of (k − 1), then the last k-LUT of each LUT network
in the set TopChoice will have some unused inputs. In this case, for each LUT
network, we apply the approximate non-disjoint decomposition to further reduce
its ER, while keeping the circuit area and depth (see Lines 20–22). The non-
disjoint decomposition is based on the disjoint decomposition for the last k-LUT.
To reduce the search space, the additional inputs added into the free set are chosen
as the primary inputs of the FFC that are different from the inputs in the current
free set. We iterate over all possible input choices. For each choice, we build the
updated augmented matrix with its probability entries obtained from the Monte
Carlo simulation. Then, the solution described in Sect. 4.3 is applied to find an
optimal non-disjoint decomposition for that input choice. Once all choices of the
primary inputs are traversed, the non-disjoint decomposition with the lowest ER
is selected. Finally, the approximate LUT network with the smallest ER in the set
TopChoice is returned (see Line 23).

4.5 Iterative Input Removal

The proposed iterative approximate decomposition can effectively reduce the LUT
count of an FFC if the LUT count of the original FFC is more than the minimum
value �n−1

k−1 �. However, some FFCs in a circuit may already contain the minimum
number of LUTs. We call them optimal-size FFCs. For these FFCs, if we want
to further reduce their LUT counts, we need to reduce the number of inputs. The
way we reduce the number of inputs of FFCs is called input removal. One basic
requirement for input removal is that the ER introduced should be minimal.

We can exploit the proposed approximate disjoint decomposition to remove any
given set of inputs and obtain a function on the remaining inputs with the smallest
ER over the original function. In the approximate disjoint decomposition, if we only
allow each row to be either all 0s or all 1s, then the resulting function is independent
of the bound-set inputs. For example, in a disjoint decomposition with the bound
set as {x1, x2} and the free set as {x3, x4}, if the first and fourth rows of the Boolean
matrix are all 0 and the second and third rows are all −1, then the function given by
the decomposition is F(x1, x2, x3, x4) = x3x4 + x3x4, independent of the variables
x1 and x2.

Thus, if we want to remove a set of inputs, we can set them as the bound set and
solve for a special case of the approximate disjoint decomposition where each entry

7 Approximate Logic Synthesis for FPGA by Decomposition 167

of the row-type vector is only limited to either 1 or 2. This will give a function
without these inputs and with the lowest ER. However, another problem is that
we do not know which set of inputs we should remove to obtain the lowest ER.
Theoretically, this can be determined by examining all input combinations, but it
will lead to an exponential complexity. To improve the efficiency of the algorithm,
instead, we do the input removal iteratively. In each iteration, the bound set size
is fixed to 1 and the input choice with the lowest ER is obtained and removed.
The iteration repeats until we cannot remove an input without letting the error
accumulated so far exceed a given threshold ε, which is set as 0.1 times the given
ER threshold in our implementation. This process is called iterative input removal.
In the extreme case where all inputs of the FFC are removed, we essentially reduce
the FFC to a constant. In our overall ALS flow, besides the optimal-size FFC, we
also apply the iterative input removal to nonoptimal-size FFCs, which can also help
reduce the LUT count.

4.6 Overall ALS Flow

In this section, we present the overall ALS flow integrating our proposed techniques.
It is shown in Fig. 7.6a. During the process, we keep an ER margin, initialized as the
given ER threshold (see Box 1), to help us ensure that the ER of the approximate
circuit does not exceed the ER threshold. We perform multiple synthesis rounds. In
each round, we first perform global Monte Carlo simulation (see Box 3), which will
be used later to obtain the probability entries in the augmented matrices for various
local FFCs. Then, we traverse the nodes in a topological order (see Box 4). For each
node, we visit all of its candidate FFCs (see Box 5). In our study, we consider FPGA
technology using 4-LUTs, that is, k = 4. Given this k value, we found that our
proposed iterative approximate decomposition is runtime-efficient when the input
size is no more than 12. Also, a nontrivial FFC in the LUT network should have at
least (k + 1) inputs. Thus, we limit the candidate FFCs to those with the input sizes
from 5 to 12.

For each candidate FFC, we obtain a local approximate transformation for it
(see Box 5). The details of this step are shown in Fig. 7.6b. It applies the proposed
iterative input removal followed by the iterative approximate decomposition. For
each node n, after all of its FFCs are visited, we first eliminate those FFCs with
the local transformations that would increase the delay of n if the transformation
is applied. This guarantees that our method does not increase the depth of the
LUT network. We also eliminate those FFCs such that the ERs of their local
transformations exceed the ER margin. This guarantees that the approximate
transformation to be selected will not let the ER of the circuit exceed the ER
threshold. For the remaining FFCs, we choose the FFC c with the largest score
and replace c by its local transformation (see Box 6). The score for an FFC is
defined as l/e, where l is the number of LUTs we can reduce by replacing the FFC
with its local transformation and e is the ER of that transformation. By our scoring

168 Z. Xiang et al.

Fig. 7.6 The proposed approximate logic synthesis flow for FPGAs. (a) The proposed flow. (b)
The flow to obtain a local approximate transformation

mechanism, this change maximizes the LUT count reduction per ER introduced.
After the change, we decrease the ER margin by the ER of the selected local
transformation (see Box 6). Then, we visit the next node in the topological order
until all the nodes have been visited.

Within each round, if we re-simulate the whole circuit each time we change
an FFC, it would take a long time. However, if we do not, for any FFC that
overlaps with the modified one and has not been visited, the occurrence probabilities
of its input combinations may not be accurate. To balance the runtime with the
accuracy, we count the nodes we have visited in the current round. When d more
nodes have been visited, we will perform global Monte Carlo simulation. In our

7 Approximate Logic Synthesis for FPGA by Decomposition 169

implementation, we set d as 10. Also, for any FFC that overlaps with an FFC that
has been modified after the last global simulation, we will skip it.

After all nodes in the LUT network are visited, we check whether any FFC
has been modified to a constant value as a special case of the local approximate
transformation (see Box 8). If so, we will apply traditional logic synthesis method
to propagate the constant and further simplify the circuit (see Box 9). Then, we
check whether in the current round, the circuit has been modified (see Box 10). If
not, it means that there is no chance to further improve the circuit and we return
the circuit as the final result (see Box 12). Otherwise, we begin a new round and
update the ER margin by decreasing it by the actual ER (see Box 11). This update
is because the ER of an approximate transformation is measured at the output of
an FFC. However, due to the logic masking effect, an error at the output of an FFC
may not be observed at the primary outputs of the circuit [11]. Thus, the actual ER
could be smaller. Therefore, before the next round starts, we obtain the actual ER
through simulation and update the ER margin as the given ER threshold minus the
current ER.

5 Experimental Results

In this section, we present the experimental results. We implemented our algorithm
in C++ and tested it on a computer with 3.4 GHz CPU and 8GB memory. The
parameters T and m in Algorithm 2 were both set as 5.

Our benchmark circuits include all the random control circuits in the EPFL
benchmark suite with the LUT count smaller than 1000. Besides them, in order to
compare our method with the state-of-the-art ALS methods for FPGA [13, 14], we
also included the same MCNC circuits used in [13] and [14]. The original circuits
were mapped into networks of 4-LUTs using the logic synthesis tool ABC [23]. We
executed the mapping command “if -K 4” multiple times to get the FPGA circuits
with the minimum numbers of LUTs as the inputs to our algorithm.

5.1 The Performance of Our Method

Tables 7.1 and 7.2 show the synthesis results of our ALS method for the MCNC
and EPFL benchmarks, respectively, under 5% ER constraint. The columns “size”
and “depth” list the LUT network size, measured by the number of used LUTs,
and the LUT network depth, respectively. The columns under “our baseline” list the
sizes and depths of the well-optimized circuits as the inputs to our ALS method.
The column “SRR” lists the size reduction ratio (SRR), calculated as the ratio of the
LUT number reduction over the LUT number of the input circuit. The arithmetic
mean SRRs for the two sets of benchmarks are 24.9% and 29.3%, respectively.
For most benchmarks, our method can achieve more than 10% of size reduction.

170 Z. Xiang et al.

Ta
bl
e
7.
1

T
he

re
su

lts
of

ou
r

m
et

ho
d

an
d

th
e

pr
ev

io
us

m
et

ho
ds

[1
3,

14
]

fo
r

th
e

M
C

N
C

be
nc

hm
ar

ks
un

de
r

th
e

E
R

th
re

sh
ol

d
of

5%

O
ur

ba
se

lin
e

O
ur

m
et

ho
d

B
as

el
in

e
[1

3,
14

]
SC

A
L

S
[1

4]
W

u
[1

3]

C
ir

cu
it

Si
ze

D
ep

th
Si

ze
D

ep
th

SR
R

R
un

tim
e

(s
)

Si
ze

D
ep

th
Si

ze
D

ep
th

SR
R

Si
ze

SR
R

C
43

2
68

11
61

11
0.

10
3

17
5.

4
97

10
55

10
0.
43
3

79
0.

18
6

C
88

0
11

7
8

97
8

0.
17

1
72

12
8

8
10

7
8

0.
16

4
10

2
0.
20
3

C
19

08
11

7
9

46
3

0.
60
7

32
12

2
9

88
9

0.
27

9
50

0.
59

0

C
26

70
21

0
7

14
8

7
0.
29
5

89
6.

7
29

5
7

22
4

7
0.

24
1

25
2

0.
14

6

C
35

40
35

1
12

33
2

11
0.

05
4

18
29

.3
34

6
12

30
5

11
0.
11
8

32
5

0.
06

1

C
53

15
46

5
8

45
0

8
0.

03
2

29
54

.7
50

3
9

43
9

9
0.
12
7

46
8

0.
07

0

C
75

52
59

6
8

41
0

8
0.
31
2

25
66

.6
59

3
8

44
0

8
0.

25
8

48
6

0.
18

0

A
lu

4
68

9
7

42
1

7
0.

38
9

21
6

71
0

7
41

1
7

0.
42
1

48
3

0.
32

0

A
lu

2
19

8
10

15
0

8
0.
24
2

44
2.

3
16

0
12

13
5

11
0.

15
6

13
6

0.
15

0

A
pe

x6
24

7
6

19
7

4
0.

20
2

66
8.

4
25

3
6

21
0

6
0.

17
0

19
7

0.
22
1

da
lu

44
5

11
29

7
8

0.
33
3

11
00

.6
42

5
11

32
9

11
0.

22
6

34
9

0.
17

9

M
ea

n
31

8
8.

8
23

7
7.

5
0.
24
9

99
5.

8
33

0
9

24
9

8.
8

0.
23

6
26

6
0.

21
0

7 Approximate Logic Synthesis for FPGA by Decomposition 171

Table 7.2 The result of our methods for the EPFL benchmarks under the ER threshold of 5%

Our baseline Our method

Circuit Size Depth Size Depth SRR Runtime (s)

ALU ctrl 58 3 52 3 0.103 11.4

cavlc 299 6 248 6 0.171 365.5

Decoder 305 2 290 2 0.049 14.7

i2c 376 5 246 4 0.346 36.7

int2float 68 6 59 6 0.132 50.8

Priority 183 42 25 4 0.863 104.8

Router 72 5 31 1 0.569 3.2

Arbitor 650 23 286 13 0.560 36.7

mean 251 11.5 165 8.8 0.293 78.0

The effectiveness of our method is closely related to the number of nonoptimal-
size FFCs in the input circuit. For some circuits like decoder in Table 7.2, they
have few nonoptimal-size FFCs. With an insufficient number of such FFCs fed
into the iterative approximate decomposition algorithm, our method cannot find
approximate transformations with small ERs to further improve the circuit size.
Thus, the size reduction for them is limited.

In our method, we need to re-simulate the whole circuit after applying some
approximate transformations to the circuit. This process is repeated until the ER
of the approximate circuit exceeds the error threshold. Before each round of re-
simulation, we record the size of the current LUT network together with its ER.
The plots of SRR versus ER are shown in Figs. 7.7 and 7.8 for the MCNC and the
EPFL benchmarks, respectively. For all the circuits, the size reduction gradually
increases as the ER increases to 5%. For our method, if we introduce x% error into
the circuit, we can typically gain a 2.5×% to 4×% size reduction. For some circuits
such as priority and router, the LUT network sizes reduce significantly with a
small amount of error introduced. Furthermore, for some circuits (e.g., priority
and router), the approximation process stops before the ER threshold 5% is
reached because at these stopping points, our algorithm cannot find nonoptimal-size
FFCs in the circuits or the remaining few nonoptimal-size FFCs only have local
transformations with ERs larger than the remaining ER margin.

Tables 7.1 and 7.2 also list the running time of our method. As the running time
depends not only on the size of the circuit but also on the number of iterations in
the synthesis procedure, we only show the average running time of one iteration for
each circuit. The average running time theoretically is proportional to the number
of FFCs in the circuit, which is roughly proportional to the number of LUTs of the
circuit. However, there are some exceptions, as they have too many or too few FFCs
compared to their LUT sizes (e.g., decoder). Also, some circuits may only have
small-size FFCs, which lead to extremely short running time compared to LUT sizes
of the circuits, like Alu4, i2c, router, and arbitor.

172 Z. Xiang et al.

Fig. 7.7 Size reduction ratio vs. error rate plot for the MCNC benchmarks

Fig. 7.8 Size reduction ratio vs. error rate plot for the EPFL benchmarks

5.2 Comparison with the Existing ALS Methods for FPGA

We compared our method with the state-of-the-art ALS methods for FPGA [13, 14]
using the 11 MCNC circuits. Their synthesis results for the 11 circuits under 5%

7 Approximate Logic Synthesis for FPGA by Decomposition 173

ER constraint are also listed in Table 7.1. The columns under “baseline [13, 14]”
show the sizes and depths of their baseline input circuits. By comparing the sizes
and depths of our baseline inputs and theirs, we find that, on average, our baseline
inputs are slightly better than theirs. We believe that it is caused by the different
synthesis tools used in the initial FPGA optimization. Note that as our baselines are
smaller and faster than theirs, it means that our synthesis task is more challenging
than theirs.

Due to the difference in baseline inputs, the SRRs of the methods in [13] and [14]
were calculated with their baseline results. The entries in bold highlight the cases
where the method of the corresponding column is the best. We note that our method
is not as good as the previous methods for some benchmarks, such as C432, C3540,
and C5315. There are two reasons for this. One is that some benchmarks (e.g.,
C3540) have few FFCs, causing our method to yield limited improvement. The
other is that our baseline inputs for some benchmarks (e.g., C432 and C5315) are
much smaller than theirs, making the improvement space of our method limited.
Nevertheless, it can be seen that our proposed method achieves more best results
than the other two. By comparing the arithmetic mean SRRs listed in Table 7.1,
we can also conclude that our method is better than those in [13] and [14] in size
reduction. Although our method is area-oriented, it can also effectively reduce the
circuit depth. The average depth reduction ratio on the MCNC benchmarks by our
method is 14.1%, while that by the method in [14] is 1.5%.

6 Conclusion

In this chapter, we proposed an ALS method for FPGAs. It is based on the novel
approximate disjoint and non-disjoint decomposition techniques and the iterative
approximate decomposition method, which transforms local LUT subnetworks into
approximate ones with the minimum numbers of LUTs. Our experimental results
showed that our proposed method is better than the state-of-the-art ALS methods
for FPGA.

The current work only considers the error metric as ER. However, it is possible to
extend it for other metric like average error magnitude (AEM) by further considering
how the local error affects different POs. We will develop method for AEM in our
future work.

References

1. Waldrop MM. The chips are down for Moore’s law. Nature. 2016;530(7589):144–7.
2. Mittal S. A survey of techniques for approximate computing. ACM Comput Surv.

2016;48(4):62:1–62:33.

174 Z. Xiang et al.

3. Shin D, Gupta SK. A new circuit simplification method for error tolerant applications. In:
Design, automation & test in Europe conference & exhibition. 2011. pp. 1–6.

4. Venkataramani S, Sabne A, Kozhikkottu V, Roy K, Raghunathan A. SALSA: systematic logic
synthesis of approximate circuits. In: Design automation conference. 2012. pp. 796–801.

5. Venkataramani S, Roy K, Raghunathan A. Substitute-and-simplify: A unified design paradigm
for approximate and quality configurable circuits. In: Design, automation & test in Europe
conference & exhibition. 2013. pp. 1367–1372.

6. Miao J, Gerstlauer A, Orshansky M. Multi-level approximate logic synthesis under general
error constraints. In: International conference on computer-aided design. 2014. pp. 504–510.

7. Vasicek Z, Sekanina L. Evolutionary approach to approximate digital circuits design. IEEE
Trans Evol Comput. 2015;19(3):432–44.

8. Chandrasekharan A, Soeken M, D. Große, Drechsler R. Approximation-aware rewriting of
AIGs for error tolerant applications. In: International conference on computer-aided design.
2016. pp. 83:1–83:8.

9. Scarabottolo I, Ansaloni G, Pozzi L. Circuit carving: A methodology for the design of
approximate hardware. In: Design, automation & test in Europe conference & exhibition. 2018.
pp. 545–550.

10. Hashemi S, et al. BLASYS: Approximate logic synthesis using Boolean matrix factorization.
In: Design automation conference. 2018. pp. 55:1–55:6.

11. Wu Y, Qian W. ALFANS: Multilevel approximate logic synthesis framework by approximate
node simplification. IEEE Trans Comput Aided Des Integr Circ Syst. 2020;39(7):1470–83.

12. Meng C, Qian W, Mishchenko A. ALSRAC: Approximate logic synthesis by resubstitution
with approximate care set. In: Design automation conference. 2020. pp. 187:1–187:6.

13. Wu Y, Shen C, Jia Y, Qian W. Approximate logic synthesis for FPGA by wire removal and local
function change. In: Asia and South Pacific design automation conference. 2017. pp. 163–9.

14. Liu G, Zhang Z. Statistically certified approximate logic synthesis. In: International conference
on computer-aided design. 2017. pp. 344–351.

15. Yao Y, Huang S, Wang C, Wu Y, Qian W. Approximate disjoint bi-decomposition and its
application to approximate logic synthesis. In: International conference on computer design.
2017. pp. 517–24.

16. Meng C, Xiang Z, Liu N, Hu Y, Song J, Wang R, Huang R, Qian W. DALTA: A decomposition-
based approximate lookup table architecture. In: International conference on computer-aided
design. 2021. pp. 1–9.

17. Ashenhurst RL. The decompositions of switching functions. In: International symposium on
the theory of switching functions. 1959. pp. 74–116.

18. Curtis HA. A new approach to the design of switching circuits. Van Nostrand; 1962.
19. Shen VS, McKellar AC. An algorithm for the disjunctive decomposition of switching

functions. IEEE Trans Comput. 1970;100(3):239–48.
20. Cong J, Ding Y. Flowmap: an optimal technology mapping algorithm for delay optimization

in lookup-table based FPGA designs. IEEE Trans Comput Aided Des Integr Circ Syst.
1994;13(1):1–12.

21. Cong J, Ding Y. Combinational logic synthesis for LUT based field programmable gate arrays.
ACM Trans Des Autom Electron Syst. 1996;1(2):145–204.

22. Russell S, Norvig P. Artificial intelligence: a modern approach. Prentice Hall; 2009.
23. Mishchenko A, et al. ABC: A system for sequential synthesis and verification. 2007. [Online].

Available: http://www.eecs.berkeley.edu/~alanmi/abc/.

http://www.eecs.berkeley.edu/~alanmi/abc/

	7 Approximate Logic Synthesis for FPGA by Decomposition
	1 Introduction
	2 Related Work
	2.1 Approximate Logic Synthesis for FPGA
	2.2 Approximate Logic Synthesis Based on Decomposition

	3 Preliminaries
	3.1 Simple Disjoint Decomposition
	3.2 Fanout-Free Cone (FFC)
	3.3 Error Rate and Monte Carlo Simulation

	4 Methodology
	4.1 Basic Idea
	4.2 Approximate Disjoint Decomposition
	4.3 Approximate Non-disjoint Decomposition
	4.4 Iterative Approximate Decomposition
	4.5 Iterative Input Removal
	4.6 Overall ALS Flow

	5 Experimental Results
	5.1 The Performance of Our Method
	5.2 Comparison with the Existing ALS Methods for FPGA

	6 Conclusion
	References

