
APPROXIMATE BELIEF PROPAGATION DECODER FOR POLAR CODE

Menghui Xu, Shusen Jing, Chuan Zhang, Jun Lin, Weikang Qian and Xiaohu You

National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
Email:{mhxu, shs.jing, chzhang, xhyu}@seu.edu.cn

ABSTRACT

Polar code is increasing its popularity recently for its capacity-
achieving property for B-DMCs. However, when designing
decoders for polar code, it has always been an inevitable
concern for us to balance the decoding performance and the
hardware consumption. In this paper, we propose an ap-
proximate belief propagation (BP) decoder for polar code
for the first time. By introducing the approximate comput-
ing schemes, we reduced the critical path delay (CPD) and
the hardware consumption of the conventional BP decoders.
Simulation results show that the proposed approximate BP
decoder achieves nearly the same decoding performance as
the conventional one.

Index Terms— Polar code, belief propagation decoder,
approximate computing, hardware consumption.

1. INTRODUCTION

Polar code, proposed by Arıkan’s breakthrough paper
[1],has received significant attentions from both academia
and industries. It has been proved to be one of the first
capacity-achieving codes for binary-input discrete memory-
less channels (B-DMCs). Two main decoding algorithms for
polar code are successive cancellation (SC) decoding (or SC
list, SCL decoding) and belief propagation (BP) decoding.
The SC algorithm decodes bits in serial schedule with low
complexity, but it suffers from high decoding latency. On the
other hand, BP decoder works much faster than SC decoder
due to its inherent high parallelism and it is more popular
for decoder implementation. However, faced with the perfor-
mance requirements raised by applications that come along
with next generation such as 5G wireless communication
and Internet of Things (IoT), both polar decoders have to
increase either their list size L (for SCL decoding) or iter-
ation number I (for BP decoding). Since the complexities
of SCL decoder and BP decoder are of O(LN logN) [2–4]
and O(IN logN) [5], respectively, balancing the decoding
performance and hardware implementation complexity has
always been an inevitable concern for all designers.

However, 100% precision in computation is not always re-
quired, especially in some error-resilient systems such as im-
age processing, handwritten recognition, and neuromorphic

systems. In addition, decoders of forward error correction
(FEC) codes can be viewed as an error-resilient system since
they combat the noisy channel inputs. It has been shown in [6]
that BP decoding algorithm can be implemented under noisy
circuits. So decoders with approximate computing has been
considered as a promising solution to achieve better decoding
performance without hardware cost and energy dissipation. In
prior works, approximate computing has been already imple-
mented for LDPC decoders [7].

In this paper, we combined polar BP decoding and ap-
proximate computing together and proposed an efficient ap-
proximate BP decoder for polar code. The remainder of this
paper is organized as follows. Section 2 briefly reviews polar
codes and BP decoding algorithms. Section 3 presents the ap-
proximate BP decoder. Design flow for the proposed approxi-
mate BP decoder is given in Section 4. Section 5 compares the
hardware consumption of architecture with the conventional
one. Conclusions are drawn in Section 6.

2. REVIEW OF POLAR CODES AND BP DECODING
ALGORITHM

2.A. Polar Codes

Any polar code can be determined by the parameter set
of (N,K,A, uAc). Here, N = 2n denotes the code length,
K is the number of information bits, A is the set of infor-
mation bits, Ac is the complementary set of A, and uAc rep-
resents the frozen bits’ values. For polar encoding, xN

1 =
(x1, x2, ..., xn−1, xn) is constructed based on source vector
uN
1 = (u1, u2, ...un−1, un) as follows:

xN
1 = uN

1 GN = uN
1 BNF⊗n, (1)

where GN and BN are the generator matrix and bit reversal
permutation matrix respectively, and F⊗n is Kronecker power
of F = [ 1 0

1 1 ]. For decoding, the estimate of uN
1 is obtained

based on the channel output yN1 . The reader is referred to [1]
for more details.

2.B. BP Decoding Algorithm

Polar BP decoding can be illustrated by an n-stage factor
graph [8] shown in Fig, (1). The factor graph is consisted of



two types of nodes, F node and G node. Each node is labeled
with coordinate (i, j). Here the parameter i indicates the stage
number and the parameter j indicates the node number in the
column. Polar BP decoder updates and passes messages iter-
atively through this factor graph.

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,8)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(2,8)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(3,8)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(4,8)

=+ : F node : G node

Stage 1 Stage 2 Stage 3

Fig. 1. Factor graph of BP decoding with N = 8.

For BP decoding, two types of log likelihood ratio (LLR)
messages: left-to-right message L and right-to-left message
R, are involved. They are initiated by Eqs. (2) and (3), re-
spectively.

Ln+1,j = ln
P (yj |xj = 0)

P (yj |xj = 1)
, (2)

R1,j =

{
0, if j ∈ A,

∞, if j ∈ Ac.
(3)

Then messages are passed iteratively from left to right and
then from right to left according to Eq. (4).

Li,j = f(Li+1,2j−1, g(Li+1,2j , Ri,j+N/2)),

Li,j+N/2 = g(f(Ri,j , Li+1,2j−1), Li+1,2j),

Ri+1,2j−1 = f(Ri,j , g(Li+1,2j , Ri,j+N/2)),

Ri+1,2j = g(f(Ri,j , Li+1,2j−1), Ri,j+N/2);

(4)

where

f(x, y) = x+ y, (5)

g(x, y) ≈ sign(x)sign(y)min(|x|, |y|). (6)
After I iterations, the j-th bit is estimated according to:

ûj =

{
0 if R1,j ≥ 0,

1 else.
(7)

3. PROPOSED APPROXIMATE BP DECODER

3.A. Quantization Schemes

Before giving details of BP polar decoders, we need to
decide the quantization scheme first. We use (64, 32) polar
code for simulations. We find that the values of LLR mainly
distributed in the interval of [−35, 35] Which means 1 sign-
bit and 5 integer-bits are required at least for quantization in
order to achieve satisfying performance.

The fixed point simulation results for the (64, 32) polar
code with different quantization schemes are shown in Fig.
(2). Here, (s − k − l) denote s sign-bit, k bits integer and l
bits fractional. According to Fig. (2), the (1-5-3) quantization
scheme achieves a good trade off between performance and
complexity, therefore is employed by following implementa-
tions.

0.5 1 1.5 2 2.5 3 3.5

Eb/N0(dB)

10-3

10-2

10-1

B
E

R

floating point
fixed point (1-5-3)
fixed point (1-5-2)
fixed point (1-5-1)

Fig. 2. Performance comparison of different quantization
schemes.

3.B. Conventional Architecture for G Node

According to Eq. (6), it is shown that the comparison
of absolute value is carried out during BP decoding process.
As a result, the LLR messages are usually stored in sign-
magnitude form (SMF) for convenience.

The major computation of the G node processing is mag-
nitude comparison. For the conventional G node, we need to
compare the two binary data from the high-order to the low-
order bit by bit until two different bit with the same location
are found. However, in some cases, we have to compare al-
most all the bits to find out which is the bigger or smaller
one. But in fact, the two input data are about the same, which
means whichever we choose to be the bigger or smaller one
may not have an affection on the final result. So in these cases,
the conventional architecture of G node results in a waste of
time and power.



3.C. Proposed Approximate Architecture for G Node

In this section, an approximate architecture for G node
is proposed. For approximate G node, we only compare the
high-order n−k bits and the rest k bits are ignored. The detail
is shown in Fig. (3) with an example of k = 2.

an-1       a3a2

0      1

Comparator

bn-1       b3b2  a1a0  b1b0

sa sb

sa sn-1       s3s2  s1s0

0      1

Fig. 3. Proposed approximate architecture for G node.

If a[n−1:k] ≥ b[n−1:k], then the approximate G node pre-
dicts s[n−1:0] = b[n−1:0]. Otherwise we have s[n−1:0] =
a[n−1:0]. However, when we have a[n−1:k] = b[n−1:k] and
the ignored k bits of a is smaller that those of b, we will get a
wrong result.

Supposing that a and b are random input numbers with
uniform distribution, then the probability of a[n−1:k] =
b[n−1:k] and the probability of the a[k−1:0] < b[k−1:0] are
derived as follows:{

P (a[n−1:k] = b[n−1:k]) = ( 12 )
n−k

,

P (a[k−1:0] < b[k−1:0]) =
2k−1
2n+1 .

Hence, the Error Rate (ER) of the proposed approximate
G node is considered as follows:

ER = (
1

2
)
n−k

· 2
k − 1

2k+1
=

2k − 1

2k+1
. (8)

According to Eq. (8), for a specific n, a larger k will cause
greater performance loss and less hardware consumption. We
use half-rate polar codes with code length N = 64 for sim-
ulation. The quantization scheme is (1-5-3), including 1 sign
bit, 5 integer bits and 3 fractional bits. The result is shown in
Fig. (4). With a proper number of ignored bits k, the approx-
imate decoder performs nearly the same as the conventional
accurate one with less hardware consumption.

3.D. Conventional Architecture for F Node

For the updating schedule in F nodes, messages should
be transformed into their complement forms before addition
or subtraction and then converted back to the SMF after the
computation. As shown in Fig. (5), input messages a, b and
output message s are stored in the SMF. Let Sa, Sb, Ss rep-
resent the sign of a, b and s, respectively. Let Ma, Mb, Ms

represent the magnitude of a, b and s, respectively. The F

0.5 1 1.5 2 2.5 3 3.5

Eb/N0(dB)

10-3

10-2

10-1

100

B
E

R

floating point
fixed point
ignored bit k=1
ignored bit k=2
ignored bit k=3

Fig. 4. Simulation results of BP decoders with different ig-
nored bit k.

node functions as an adder and subtracter when Sb = 0 and
Sb = 1 respectively. The adding one unit (AOU) adds 1 to
its input. The architecture in Fig. (5) suffers from long criti-
cal path delay due to data format conversion at the input and
output ports.

Inventer Inventer

AOU AOU

1      0

MaSa MbSb

1      0

adder

Inventer

AOU

1      0

MsSs

Fig. 5. Conventional architecture for F node.

3.E. Proposed Approximate Architecture for F Node

We notice that the architecture in Fig. (5) suffers from
long CPD because of the data format conversion. In addition,
the AOU and comparator in the conventional architecture in-
creases the overall hardware consumption and the CPD. So, in
this section, an efficient approximate architecture for F node
is designed and is shown in Fig. (6).

As shown in Fig. (6), similarly, input messages a, b and
output message s are also stored in the SMF. Let Sa, Sb, Ss

represent the sign of a, b and s, respectively. Let Ma, Mb,



Ma

Sa

Mb

Sb

Adder Subtracter Comparator

Inventer

AOU

1      0 0      1

0      1

Ss

Sa Sb

Ms

Fig. 6. Proposed approximate architecture for F node.

Ms represent the magnitude of a, b and s, respectively. For
the proposed approximate architecture, subtraction is directly
carried out instead of doing data format conversion before
computation. As a result, we only need one data format con-
version for F node. Ma +Mb and Ma −Mb are computed at
the same time and the magnitude of the final result s is chosen
from these two values.

Table 1. principles of the proposed approximate F node.

Sa Sb Relative Size Ss Ms

0 0 - 0 Ma +Mb

1 1 - 1 Ma +Mb

0 1 Ma ≥ Mb 0 Ma −Mb

0 1 Ma < Mb 1 −(Ma −Mb)

1 0 Ma ≥ Mb 1 Ma −Mb

1 0 Ma < Mb 0 −(Ma −Mb)

The specific arithmetical operations of F node is illus-
trated in table 1. When Sa ⊕ Sb = 0, the F node imple-
ment Ma +Mb. Otherwise, it implements Ma −Mb. When
Ma ≥ Mb, Ss = Sa. Otherwise, Ss = Sb.

an-1       a4a3 a2 a1 a0

a2 a1 a0an-1       a4a3

Fig. 7. Proposed approximate AOU with m = 3.

In the proposed architecture for F node, we also introduce
approximate schemes for the add one unit (AOU) since the
operation of AOU may not significantly affect the final com-
puting result. We only add 1 to the m low-order bits of the
input. In addition, the carry out bit of the adding one opera-
tion is dropped without being propagated to higher bits. To
reduce the overall relative error, these m low-order bits are all
set to 1 if the carry out bit is 1. Fig. (7) gives an example of
the approximate AOU with m = 3.

0.5 1 1.5 2 2.5 3 3.5

Eb/N0(dB)

10-3

10-2

10-1

B
E

R

floating point
fixed point
3 bits of AOU
1 bit of AOU

Fig. 8. Simulation results of BP decoders with different bits
of AOU.

Similarly, we use half-rate polar codes with code length
N = 64 for simulation. The quantization scheme is also(1-5-
3). The result in Fig. (8) shows that even if when m = 1, the
proposed approximate BP decoder still achieves almost the
same decoding performance as the conventional one, which
makes it possible to remove this AOU in the proposed archi-
tecture.

4. DESIGN FLOW OF APPROXIMATE POLAR BP
DECODERS

Although by introducing approximate computing scheme,
we reduced the hardware consumption of the conventional BP
decoder, however, the decoding performance may suffer from
significant degradation without careful design. In this sec-
tion, we propose a design flow of the approximate polar BP
decoder:

Step 1: For a polar BP decoder, we have to find optimal
quantization schemes for left-to-right and right-to-left mes-
sages. For example, we use (5-3) for half rate polar codes
with code length N = 64 bits.

Step 2: We introduce approximate computing scheme to
the quantized polar BP decoder and redesign the F and G node
respectively. By evaluating the simulation result of decoding
performance, we make balance between the degree of accu-
racy and the hardware consumption.



Step 3: We combine all the approximate computing
schemes together and adjust the degree of accuracy by the
overall decoding performance.

5. HARDWARE IMPLEMENTATION AND
COMPARISON

To demonstrate the advantage of the proposed approxi-
mate BP decoder, the corresponding implementation results
for (64 − 32) BP polar decoder are listed in table 2. It is
shown that the proposed approximate BP decoder shows good
hardware reduction than the accurate one. Compared with the
conventional decoder, the arithmetic logic unit (ALUT) re-
duction of the approximate decoder is 36.3%. Meanwhile,
the number of registers reduces 9.0%. However, this kind of
hardware reduction has little adverse effect on decoding per-
formance.

Table 2. implementation of different architectures for (64 −
32) polar code.

Hardware overheads Conventional Approximate Reduction
ALUT 97, 283 61, 958 36.3%

Registers 16214 14751 9.0%

6. CONCLUSION

In this paper, an approximate BP decoder for polar code is
proposed for the first time. Approximate computing schemes
are introduced to alleviate the contradiction between higher
throughput and hardware consumption. The flow for design-
ing an approximate polar BP decoder is also proposed. Sim-
ulation results show that the proposed approximate comput-
ing schemes lead to negligible performance degradation com-
pared with the conventional one, which makes the proposed
approximate polar BP decoder highly attractive in the future.

References
[1] Erdal Arıkan, “Channel polarization: A method for con-

structing capacity-achieving codes for symmetric binary-
input memoryless channels,” vol. 55, no. 7, pp. 3051–
3073, 2009.

[2] Xiao Liang, Chuan Zhang, Menghui Xu, Shunqing
Zhang, and Xiaohu You, “Efficient stochastic list suc-
cessive cancellation decoder for polar codes,” in Proc.
IEEE International System-on-Chip Conference (SOCC),
2015, pp. 421–426.

[3] François Leduc-Primeau, Saied Hemati, Warren J Gross,
and Shie Mannor, “A relaxed half-stochastic iterative de-

coder for LDPC codes,” in Proc. IEEE Global Telecom-
munications Conference (GLOBECOM), 2009, pp. 1–6.

[4] Chuan Zhang and Keshab Parhi, “Low-latency sequential
and overlapped architectures for successive cancellation
polar decoder,” vol. 61, no. 10, pp. 2429–2441, 2013.

[5] E. Arıkan, H. Kim, G. Markarian, U. Ozgur, and
E. Poyraz, “Performance of short polar codes under ML
decoding,” in Proc. IEEE ICT-Mobile Summit, Santander,
Spain, Jun. 2009.

[6] Chu Hsiang Huang, Yao Li, and Lara Dolecek, “Belief
propagation algorithms on noisy hardware,” IEEE Trans-
actions on Communications, vol. 63, no. 1, pp. 11–24,
2015.

[7] Yangcan Zhou, Jun Lin, and Zhongfeng Wang, “Effi-
cient approximate layered ldpc decoder,” in IEEE Inter-
national Symposium on Circuits and Systems, 2017, pp.
1–4.

[8] Jin Sha, Xing Liu, Zhongfeng Wang, and Xiaoyang Zeng,
“A memory efficient belief propagation decoder for polar
codes,” Communications, China, vol. 12, no. 5, pp. 34–
41, 2015.


	 Introduction
	 Review of Polar Codes and BP Decoding Algorithm
	 Polar Codes
	 BP Decoding Algorithm

	 Proposed Approximate BP Decoder
	 Quantization Schemes
	 Conventional Architecture for G Node
	 Proposed Approximate Architecture for G Node
	 Conventional Architecture for F Node
	 Proposed Approximate Architecture for F Node

	 Design Flow of Approximate Polar BP Decoders
	 Hardware Implementation and Comparison
	 Conclusion

