
A Data Structure-Based Approximate Belief
Propagation Decoder for Polar Codes

Menghui Xu1,2,3, Weikang Qian4, Zaichen Zhang2,3, Xiaohu You2,3, Chuan Zhang1,2,3,∗
1Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)

2National Mobile Communications Research Laboratory, Southeast University, Nanjing, China
3Purple Mountain Laboratories, Nanjing, China

4University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
{mhxu, chzhang}@seu.edu.cn, qianwk@sjtu.edu.cn

Abstract—Polar code, as the first code that can probably achieve
the capacity of B-DMCs, has received great attention. Belief
propagation (BP) decoding algorithm, a paralleled de-coding
approach for polar codes, suffers from high hardware complexity.
In this paper, we devoted ourselves to proposing a data structure-
based approximate BP decoder for polar code. Multiple
simulations have been done. The simulation results show that by
reforming the data structure of the received channel message and
introducing the approximate computing schemes, significant
hardware reduction has been made compared to its conventional
counterpart. The hardware architecture and corresponding
implementation results are also given in this paper.

Index Terms--Polar code, belief propagation decoder,
approximate computing, hardware consumption.

I. INTRODUCTION

Polar code, which has been discovered by Arıkan in his
breakthrough paper [1], has received significant attentions. It
is known as the first error correction code which is able to
reach the Shannon capacity for binary-input discrete mem-
oryless channels. For now, polar code has been chosen by
Enhanced Mobile Broadband (eMBB) control channel for
5G. The successive cancellation (SC) algorithm and belief
propagation (BP) algorithm are the two conventional decoding
algorithms for polar code [2]. The SC decoder decodes bit in
a serial manner with low hardware complexity, but it requires
long decoding latency. On the contrary, the belief propagation
algorithm is a more popular implementation for polar code for
its inherent high parallelism. It decodes faster and therefore
has a higher throughput than the serial SC decoder. The
complexities for SC decoding algorithm is O(LN log N)
[3]–[5] and O(IN log N) [6] for BP decoding algorithm.
Today, faces with the data transmission requirements raised
by 5G communication system, these two polar decoders
have to increase its list size or iteration number. Therefore,
reducing the implementation complexity of the polar decoders
has been a great issue for the designers.

Plenty of work has been done to prove that 100% accuracy is
not always necessary in computation [7], [8]. For example, in
the error-resilient systems like handwritten recognition and
image processing, a few erroneous pixels do not affect human
rec-ognizing the image. However, approximate computing
circuit has the unique advantage of high hardware efficiency as

they trade computing accuracy for hardware consumptions.
As the decoders are always work in noisy channels, decoders
for error correction code is also like an noisy system. In
addition, BP decoders can be implemented under noisy
circumstance [9]. Therefore, we introduce the approximate
computing scheme to relieve contradictions between
performance and consumption. Researches for approximate
LDPC decoders has been done in prior works [10], [11].

In this paper, we proposed a data structure-based approxi-
mate BP decoder by reforming the data structure of channel
massage and making use of the high hardware efficiency of
approximate computing scheme. The remainder of this paper
is organized as follows. Section II gives a brief review of polar
codes and belief propagation decoding algorithms. Section
III presents the architecture of the proposed data struture-
based approximate BP decoder. In Section IV, designing
methodology is given. Section V gives the implementation
results and compares the hardware consumption of architecture
with the conventional one. Section VI draws conclusion for
this paper.

II. REVIEW OF POLAR CODES AND BP DECODING

A. Polar Codes

In general, polar code is defined by the parameter set
of (N,K,A, uAc). N = 2n represents the length of polar
code, K denotes the number of information bit, A denotes
the set of information bit, and uAc denotes value for frozen
bits. In the process of polar encoding, we constructed vector
xN
1 = (x1, x2, ..., xN−1, xN) based on source vector uN

1 =
(u1, u2, ...uN−1, uN) as follows:

xN
1 = uN

1 GN = uN
1 BNF⊗n, (1)

where GN denotes the generator matrix and BN is the bit
reversal permutation matrix. F⊗n represents the Kronecker
power for F = [1 0

1 1]. After massage vector xN
1 is sent over

channels WN , the polar decoder receives the channel output
yN1 = (y1, y2, ..., yN−1, yN). Finally, polar decoder decides
the vector uN

1 based on the channel output yN1 , A and uAc .
More details can be referred to [1].

B. BP Decoding Algorithm

The factor graph [12] for a 8-bit polar code is given in
Fig. 1. There are two types of nodes in this factor graph.
Coordinate (i, j) means the labeled node is in stage number
i and column number j. The received channel massages are
passed and updated iteratively through this factor graph.

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,8)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(2,8)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(3,8)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(4,8)

=+ : F node : G node

Stage 1 Stage 2 Stage 3

Figure 1. 8-bit belief propagation decoding.

The channel massage in BP decoding is represented by
log likelihood ratio (LLR). Two types of LLR massages are
involved in BP decoder: left-to-right message R and right-to-
left message L. The channel massage are initiated as follows:

Ln+1,j = ln
P (yj |xj = 0)

P (yj |xj = 1)
, (2)

R1,j =

{
0, if j ∈ A,

∞, if j ∈ Ac.
(3)

In this paper the round-trip schedule is employed in the
BP decoding. In BP decoding, channel messages are undated
iteratively according to Eq. (4).

Li,j = f(Li+1,2j−1, g(Li+1,2j , Ri,j+N/2)),

Li,j+N/2 = g(f(Ri,j , Li+1,2j−1), Li+1,2j),

Ri+1,2j−1 = f(Ri,j , g(Li+1,2j , Ri,j+N/2)),

Ri+1,2j = g(f(Ri,j , Li+1,2j−1), Ri,j+N/2).

(4)

where
f(x, y) =

1 + xy

x+ y
, (5)

g(x, y) = x · y. (6)

When BP decoder finish the decoding iterations, uN
1 can be

decided at the first column as follows:

ûj =

{
0, if R1,j × L1,j ≥ 0,

1, else.
(7)

III. PROPOSED APPROXIMATE BP DECODER

A. Quantization Schemes

Before doing data structure conversion, we need to fix the
proper quantization scheme for the original channel massage.
We use (256, 128) polar code for simulations. According to
the simulations, channel massages are mainly distributed in
the interval of [−8, 8]. Therefore, for (256, 128) polar code,
we use 1 bit sign and 3 bits integers for the original channel
massage.

Fig. 2 is the simulation for (256, 128) polar code. Here,
(1− 3− f) denotes the channel massage is represented by 1
bit sign, 3 bits integer and f bits fractional. As the simulation
results shown, the quantization scheme (1 − 3 − 3) performs
the best compared with other quantization schemes. So in this
paper, we use (1 − 3 − 3) as the quantization scheme for
the original channel massage in order to achieve satisfying
decoding performance.

2 2.5 3 3.5 4 4.5 5

E
b
/N

0
(dB)

10-6

10-5

10-4

10-3

10-2

10-1
B

E
R

N=256, floating point
N=256, fix point (1-3-3)
N=256, fix point (1-3-2)
N=256, fix point (1-3-1)

Figure 2. Simulation results for BP decoders.

B. Data Structure Conversion

As shown in Eq.s (5) and (6), the magnitude comparison is
the main operation for G nod in BP decoding. Therefore, in
the conventional BP decoder, channel massages are mostly
stored in the sign-magnitude form (SMF) for computation.
However, 100% accurate data are not necessary in approximate
computing, so it is reasonable for us to extract the key
information from the original data and omit the others.

Consider that the major computations of the G node pro-
cessing are magnitude comparisons, the key information for
G node is the locations of the first nonzero bit of the two
input data. On the other hand, additions are carried out in
the F node. The result of the processing in F node is largely
determined by the most significant bits (MSB). Therefore, the
key information for F node is the MSB of the two input data.
Since the first bit of MSB is fixed to 1, we only need to store
the second and the third significant bits.

In this paper, a sign-location-magnitude form (SLMF) is
first proposed in Fig. 3. According to Section III.A, we
presume that the original data stored in the SMF is 1 bit sign
and 6 bits magnitude. As shown in Fig. 3, the sign of the
input data is still stored in the first bit. Then, the next 3 bits
represent the location of the first nonzero bit of the original
input data. After that, the k-bit MSB of the magnitude will be
reserved and the rest are omitted. Here k is an parameter and
in this paper, we let k = 2.

S 6-bits Magnitude

S 3-bits Location k-bits Magnitude

(a) SMF

(b) SLMF

Figure 3. Data structure conversion.

For example, shown in Fig. 4, the received channel massage
is 0001011 which is stored in the SMF. In the data structure
conversion, first we keep the sign bit unchanged. Then, since
the first nonzero bit is the fourth bit of the input data, the
location bits in the SLMF are set to 110. After that, the second
and the third significant bits is stored in the magnitude bits
in SLMF, which are 0 and 1 in this case. The rest bits of
the original input are just ignored. Therefore, after the data
structure conversion, the received channel massage 0001011
is converted to its SLMF, 011001. Compared with its SMF,
the key information of the input data is retained. The length
of the data has been reduced to 6 bits, which will reduce the
hardware consumption of the polar decoders.

0

(a) SMF

(b) SLMF

0 0 1 0 1 1

0 1 1 0 0 1

Sign Magnitude

Sign MagnitudeLocation

Figure 4. Data Structure Conversion for 0001011.

C. Conventional Architecture for G Node

As mentioned above, channel massages are mostly stored
in the sign-magnitude form (SMF) for computation in the
conventional BP decoder. As shown in Fig. 5, let as and bs
denote the sign bits of two input data a and b. aM and bM
denote the magnitude bits of the input data. The output data
S is consist of sign bit ss and magnitude bit sM .

In the conventional architecture, the G node compares two
SMF input from the high-order to the low-order bit by bit until
it finds two different bits with the same location. However,
when the magnitudes of two input data are very close, it
becomes a waste of time and power to compare in this way.
The conventional architecture may compare almost every bit
to figure out the smaller one of the two input data. But
this is meaningless. The two numbers are actually the same
magnitude. Therefore, the choice of number for the out put
data may not have significant affection on the final decoding
performance.

Comparator

as bs

ss

0 1

aM bMbM

SMSM

Figure 5. Conventional G node.

D. Proposed G Node

Here, a data structure-based approximate architecture for G
node is proposed. The architecture is based on data in sign-
location-magnitude form (SLMF). For the proposed architec-
ture of approximate G node, only the location bits of the input
data are compared. The rest bits are directly chosen according
to the comparison result of the location bit. Fig. 6 gives the
proposed architecture. To be mentioned, the magnitude bits
can also be compared if better Error Rate is required.

aL2aL1aL0

0 1

Comparator

bL2bL1bL0

as bs

ss

0 1

aM1aM0 bM1bM0

sL2sL1sL0sL2sL1sL0 sM1sM0sM1sM0

Figure 6. Architecture for data structure-based approximate G node.

If a[L2:L0] ≥ b[L2:L0], then we get the output of the
approximate G node sL = aL and sM = aM . Otherwise
we have sL = bL and sM = bM . However, in case that

a[L2:L0] = b[L2:L0] and the magnitude bits of a is smaller,
the approximate G node will predict wrong computing result.

The Error Rate (ER) is analyzed as follows. If we have
random number a and b with uniform distribution, the prob-
ability of a[L2:L0] = b[L2:L0] and the probability of the
aMk−1:M0 < bMk−1:M0 can be computed:{

P (a[L2:L0] = b[L2:L0]) = (12)
3
,

P (a[Mk−1:M0] < b[Mk−1:M0]) =
2k−1
2k+1 .

Therefore, the ER of G node is derived by Eq. (8):

ER = (
1

2
)
3

· 2
k − 1

2k+1
=

2k − 1

2k+4
. (8)

If better ER is required, the magnitude bits of the input can
also be compared when the two location bits are the same.
Here, simulation results of (256, 128) polar codes are shown
in Fig. 7. When 1 bit of the magnitude bits are compared
in G node, the proposed decoder decodes with much less
hardware cost with negligible performance loss compared with
the conventional decoder.

2 2.5 3 3.5 4 4.5 5

E
b
/N

0
(dB)

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

conventional BPD
approximate BPD
approximate BPD, 1 magitude bit compared

Figure 7. Simulation results of approximate BP decoders.

E. Conventional Architecture for F Node

As afore mentioned, channel massages are stored in the
sign-magnitude form (SMF) for computation in the conven-
tional BP decoder. In the conventional F node, addition or
subtraction are carried out. The channel messages in SMF
could not be used directly in F node. The conventional F
node use their complement forms as the input and then doing
addtion or subtraction. After the computing in F node, the
channel massages are trasmitted to their SMF back.

As Fig. 8 shows, the original input and output channel
message are stored in the SMF. Similarly, as and bs denote
the sign bits of two input data a and b. aM and bM denote the
magnitude bits of the input data. The output data S is consist of
sign bit ss and magnitude bit sM . AOU adds 1 to its input. As
shown in the figure, there are totally 3 data format conversion
before and after the operation which results in long critical
path delay.

Inverter Inverter

Adder Adder

1 0

aMas aMas bMbs bMbs

1 0

Adder

Inverter

Adder

1 0

sMSs sMSs

1 1

1

Figure 8. Conventional F node.

F. Proposed F Node

Since mutiple data format conversion result in significant
critical path delay, it is better to remove these time-consuming
operations. Therefore, an data structure-based approximate
architecture for F node is proposed. Details are shown in Fig.
9.

aL2aL1aL0 bL2bL1bL0

Comparator

0 1

SR

aM1aM0 bM1bM0

Adder

as bs

0 1

Ss sM1sM0sL2sL1sL0

Figure 9. Architecture for data structure-based approximate F node.

As shown in Fig. 9, like we mentioned above, a, b are
the SLMF input channel messages and s denotes the output
channel message. let as and bs denote the sign bits of two
input data a and b. aM and bM denote the magnitude bits of
the input data. The output data S is consist of sign bit ss and
magnitude bit sM .

In our proposed F node, the location bits of the two input
data is compared first. Then, one of the magnitude bits will
be reduced or expanded by certain times through the shift
registers in Fig. 9. After that, addition or subtraction is carried
out according to the two input sign bits. In this design, we only
need to perform a 3-bit addition or subtraction. The highest
bit is fixed to 1 and it represents the first nonzero bit of the
input. The rest two bits are the magnitude bits of the input.

As Fig. 10 shows, subtraction is performed directly without
data format conversion. Therefore, only one of the three data
format conversion is reserved for proposed architecture for F

aM bM

Adder Subtracter Comparator

Inventer

AOU

1 0

0 1

as bs

sM

Figure 10. Proposed approximate architecture for the full adder.

node. aM + bM and aM − bM are computed simultaneously.
After that, one of the computing result will be saved as the
final magnitude for the output data s.

TABLE I. OPERATIONS OF THE FULL ADDER IN F NODE

as bs Relative Size ss sM
0 0 - 0 aM + bM
1 1 - 1 aM + bM
0 1 aM ≥ bM 0 aM − bM
0 1 aM < bM 1 −(aM − bM)

1 0 aM ≥ bM 1 aM − bM
1 0 aM < bM 0 −(aM − bM)

The specific arithmetical operations of the full adder in F
node is illustrated in table I. When as ⊕ bs = 0, the F node
implement aM+bM . Otherwise, it implements aM−bM . When
aM ≥ bM , ss = as. Otherwise, ss = bs.

Compared with the original F node, only 3-bit addition
or subtraction is carried out, which significantly reduced the
hardware consumption. In addition, subtraction is performed
directly without data format conversion. Therefore, only one
data format conversion is reserved in F node. Therefore, the
critical path delay is significantly reduced.

Simulations are performed using (256, 128) and (64, 32)
polar codes in Fig. 11. The channel massage is stored in SLMF,
1 bit sign, 3 bits location and 2 bits magnitude. The result
shows that the proposed data structure-based approximate BP
decoder decodes with little performance gap compared with
the accurate decoder.

IV. DESIGNING METHODOLOGY FOR THE PROPOSED
APPROXIMATE POLAR BP DECODERS

Although the proposed data structure-based approximate
BP decoder successfully reduces the hardware consumption
compared with the conventional counterpart, implemented
without a careful designing method could result in signifi-
cant performance loss for the approximate decoder. Here, a
designing methodology for the proposed data structure-based
approximate polar BP decoder is given as follows:

2 2.5 3 3.5 4 4.5 5

E
b
/N

0
(dB)

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

N=256, conventional
N=256, approximate
N=64, conventional
N=64, approximate

Figure 11. Simulation results of BP decoders with different bits of AOU.

Step 1: Before designing a data structure-based approximate
polar BP decoder, the received channel massage needs to be
converted from its sign-magnitude form to the sign-location-
magnitude form. In this paper, we use 1 sign bit, 3 location
bits and 2 magnitude bits for (256, 128) polar code.

Step 2: Approximate computing scheme is used for the
computing nodes in conventional BP decoder in order to
improve the hardware efficiency. Simulation result shows
that the hardware consumption is reduced for the proposed
approximate architecture without fatal performance loss.

Step 3: The degree of approximation should be adjusted ac-
cording to the overall error rate and requirement on accuracy.

V. HARDWARE IMPLEMENTATION AND COMPARISON

The architecture of the proposed data structure-based ap-
proximate BP decoder is implemented at the Register Transfer
Level (RTL) using Verilog HDL and Synthesized to Nangate
65nm open library with Synopsys Design Compiler. Table II
gives the implementation results of the proposed approximate
and also conventional architecture.

Benefit from the efficient architecture of the full adder in
F node, the proposed data structure-based approximate BP
decoder now has a 550 MHz clock frequency. Also, the
proposed approximate decoder has significant advantage in
hardware efficiency. The cost of arithmetic logic unit (ALUT)
approximate decoder is reduced by 19.5% than its accurate
counterpart. In addition, since data in SLMF only need 6
bit for storage, the number of registers reduces 22.1%. The
total area is reduced by 16.1%. The most important thing is
that the hardware reduction mentioned above introduces little
performance degredation for the BP decoder.

VI. CONCLUSION

In this paper, a data structure-based approximate BP de-
coder for polar code is proposed. Channel massages are
converted from its SMF to SLMF. Corresponding approximate
computing schemes are used to balance decoding efficiency
and hardware efficiency. The designing methodology for the
proposed architecture is also presented. Simulation results

TABLE II. IMPLEMENTATION RESULTS FOR (256, 128) POLAR CODE

Hardware overheads This work Conventional [13] Reduction
Max. Frequency (MHz) 550 500 -

ALUT 263, 780 327, 757 19.5%

Registers 59, 845 76, 900 22.1%

Area (mm2) 0.73 0.871 16.1%

proves that, compared with the original one, the proposed data
structure-based approximate one has little performance loss.
Our future work will be focus on the relationship between
decoding performance of the proposed decoder and the error
rate in the approximate achitecture.

ACKNOWLEDGEMENT

This work is supported in part by NSFC under grants
61871115 and 61501116, Jiangsu Provincial NSF for Excellent
Young Scholars under grant BK20180059, the Six Talent
Peak Program of Jiangsu Province under grant 2018-DZXX-
001, the Distinguished Perfection Professorship of Southeast
University, the Fundamental Research Funds for the Central
Universities, the SRTP of Southeast University, and the Project
Sponsored by the SRF for the Returned Overseas Chinese
Scholars of MoE.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for con-
structing capacity-achieving codes for symmetric binary-
input memoryless channels,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 3051–3073, 2009.

[2] E. Arikan, “A performance comparison of polar codes
and reed-muller codes,” IEEE Commun. Lett., vol. 12,
no. 6, pp. 447–449, 2008.

[3] X. Liang, C. Zhang, M. Xu, S. Zhang, and X. You,
“Efficient stochastic list successive cancellation decoder
for polar codes,” in Proc. IEEE International System-on-
Chip Conference (SOCC), 2015, pp. 421–426.

[4] F. Leduc-Primeau, S. Hemati, W. J. Gross, and S. Man-
nor, “A relaxed half-stochastic iterative decoder for
LDPC codes,” in Proc. IEEE Global Telecommunications
Conference (GLOBECOM), 2009, pp. 1–6.

[5] C. Zhang and K. Parhi, “Low-latency sequential and
overlapped architectures for successive cancellation polar
decoder,” IEEE Trans. Signal Process., vol. 61, no. 10,
pp. 2429–2441, 2013.

[6] E. Arıkan, H. Kim, G. Markarian, U. Ozgur, and
E. Poyraz, “Performance of short polar codes under ML
decoding,” in Proc. IEEE ICT-Mobile Summit, Santander,
Spain, Jun. 2009.

[7] J. Han and M. Orshansky, “Approximate computing: An
emerging paradigm for energy-efficient design,” in IEEE
European Test Symposium (ETS). IEEE, 2013, pp. 1–6.

[8] M. Xu, X. Liang, C. Zhang, Z. Wu, and X. You,
“Stochastic bp polar decoding and architecture with

efficient re-randomization and directive register,” in Proc.
Signal Processing Systems (SiPS), IEEE International
Workshop on. IEEE, 2016, pp. 315–320.

[9] C. H. Huang, Y. Li, and L. Dolecek, “Belief propagation
algorithms on noisy hardware,” IEEE Trans. Commun.,
vol. 63, no. 1, pp. 11–24, 2015.

[10] Y. Zhou, J. Lin, and Z. Wang, “Efficient approximate
layered ldpc decoder,” in Proc. IEEE International Sym-
posium on Circuits and Systems, 2017, pp. 1–4.

[11] L. R. Varshney, “Performance of ldpc codes under faulty
iterative decoding,” IEEE Trans. Inf. Theory, vol. 57,
no. 7, pp. 4427–4444, 2011.

[12] J. Sha, X. Liu, Z. Wang, and X. Zeng, “A memory
efficient belief propagation decoder for polar codes,”
Communications, China, vol. 12, no. 5, pp. 34–41, 2015.

[13] M. Xu, S. Jing, J. Lin, W. Qian, Z. Zhang, X. You,
and C. Zhang, “Approximate belief propagation decoder
for polar codes,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 1169–1173.

