
Design of Reliable Stochastic Number Generators
Using Emerging Devices for Stochastic Computing

Meng Yang and Weikang Qian
University of Michigan-Shanghai Jiao Tong University Joint Institute

Shanghai Jiao Tong University, Shanghai, China
Email: {yangm.meng, qianwk}@sjtu.edu.cn

Abstract—Stochastic computing (SC), an unconventional com-

puting paradigm that operates on stochastic bit streams, gains
more and more attention recently because of the low area and
power consumption of its computing core. SC relies on stochastic
number generators (SNGs) to generate input stochastic bit
streams. An SNG is composed of a random number source (RNS)
and a comparator. However, conventional SNGs, which use linear
feedback shift register (LFSR) as the RNS, consume much more
area and power than the SC core, offsetting the small area and the
low power advantages of the SC core. To mitigate this issue, some
emerging devices, such as memristor and spintronic devices, were
proposed to build SNGs. However, due to the large process varia-
tion in fabricating these devices, these SNGs are unreliable: their
output probabilities could have a large error than the desired val-
ues. In this paper, we propose a general method to design reliable
SNGs that use emerging device-based RNS’s. Experimental results
showed that our design is effective in improving the reliability.

Keywords—stochastic computing; novel nanoscale devices; sto-
chastic number generator (SNG)

I. INTRODUCTION

Stochastic computing (SC) was first introduced in 1960s as
an unconventional computing paradigm [1]. Its biggest differ-
ence from traditional binary computing is that it operates on
stochastic bit streams that encode real values through the
probabilities of 1s in the streams. For example, the bit stream
“01001100” represents 3/8. Due to the uniformly weighted en-
coding, SC has strong fault tolerance to bit flip errors. Moreover,
the probabilistic way of encoding data allows very simple digital
circuits to realize complex arithmetic operations. One notable
example is that multiplication can be realized by an AND gate,
as shown in Fig. 1(a). These circuits taking stochastic bit streams
as inputs and outputs are referred to as SC core.

Fig. 1. Examples of stochastic computing elements. (a) Multiplication of the
numbers encoded by stochastic bit streams can be realized by an AND gate; (b)
Scaled addition of the numbers encoded by stochastic bit streams can be
realized by a 2-to-1 multiplexer.

Because of its low area and power consumption, SC has been
applied in many application domains, such as image processing

[2][7], low-density parity-check (LDPC) decoding [3], artificial
neural networks [6], and digital filters [5].

Fig. 2. A stochastic number generator composed of an LFSR and a comparator.

SC relies on stochastic number generators (SNGs) to generate
input stochastic bit streams of the desired probabilities. A widely
used SNG is composed of a pseudo random number source, such
as a linear feedback shift register (LFSR), and a comparator, as
shown in Fig. 2 (more details on it will be discussed in Section
II). However, it consumes much more area and power than the
SC core. Furthermore, to guarantee the correct functionality, the
input stochastic bit streams should be mutually independent,
which means the number of SNGs is equal to the number of in-
puts of the SC core. As a result, the existence of the large and
power-hungry SNGs significantly mitigates the advantages of
the SC core in area and power consumption.

To reduce the area and power consumption of the SNGs in a
stochastic circuit, several solutions were proposed. One method
is to share a single LFSR among multiple SNGs. For example,
in [14], the circular shift of the output bits of the LFSR was pro-
posed to produce stochastic bit streams with low correlation. In
[15], the insertion of delay elements into the circuit was pro-
posed to decorrelate the stochastic bit streams. However, these
solutions cannot guarantee the perfect mutual independence of
the input streams and hence, could introduce error to the output
result.

Another method is to leverage the emerging devices, such as
memristors [8][10] and spintronic devices [9][11][12]. These
novel nanoscale devices usually have two different stable states
that can be converted into binary values. For example, the
memristor has a high-impedance state and a low-impedance
state, which can be switched by applying a programming pulse
to the device. Recent studies showed that the state switching of
some emerging devices is random and the switching probability
could be controlled by an input signal [8]. For example, the state
switching probability of a memristor is

 1 / , (1)

where is the width of the programming pulse and is a con-
stant value determined by the device itself and the amplitude of
the programming pulse. Therefore, by changing the value of , a
stochastic bit stream of an arbitrary probability can be generated.
Previous studies showed that SNGs based on these emerging de-
vices have much smaller area and lower power consumption
than the conventional CMOS-based SNGs. For example, the
power consumption of the design based on memristor is 16 times
lower than that of CMOS [8], while the design based on
spintronic devices can achieve a power reduction of 7 times [12].

However, the probabilities of the stochastic bit streams gen-
erated by emerging device-based SNGs are subject to a large er-
ror due to the noise in the input control signal and the large pro-
cess variation occurred in manufacturing these devices. Take the
memristor SNG as an example. As shown in Eq. (1), its switch-
ing probability depends both on the programming pulse and on
its device parameters and thus, is vulnerable to both the noise in
the programming pulse and variation in its device parameters. In
order to fully take advantage of these emerging devices to build
SNGs with small area and low power consumption, we should
have a reliable design that guarantees the correct output proba-
bility even when the underlying devices are subject to large sig-
nal noise and process variation.

In this paper, we propose a general method to design such re-
liable SNGs using these emerging devices as the random sources.
Our method is not restricted to any specific emerging devices as
long as they can be used to build unbiased random sources. We
demonstrate the basic principles to build reliable SNGs from
these unreliable unbiased random sources and show a few im-
plementations based on the design principles. Experimental re-
sults show that our proposed techniques can ensure the correct
output probability of those emerging device-based SNGs while
still taking their advantages in area and power consumption.

The rest of this paper is organized as follows. In Section II,
we introduce the background on SNGs. In Section III, we pre-
sent the proposed method to design a reliable SNG. In Section
IV, we show the experimental results, which illustrate that our
proposed design is very effective in improving the reliability.
Finally, in Section V, we conclude the paper.

Probability
Conversion

Circuit
(PCC)

...

...

rk-1

ck-1

k

k

Unbiased
Random

Bits

Target
Bits

0,1,0,...

c/2k

r

c

rk-2

rk-3

r0

ck-2

ck-3

c0

RNS

Fig. 3. A general stochastic number generator.

II. BACKGROUND ON STOCHASTIC NUMBER GENERATORS

A general SNG is shown in Fig. 3. It is composed of a random
number generator (RNS) and a probability conversion circuit
(PCC). The RNS is composed of independent unbiased ran-
dom binary sources, each with probability of 0.5 to be a 1 and

the same probability to be a 0. For simplicity, an unbiased ran-
dom binary source is referred to as an unbiased random bit. The
PCC takes unbiased random bits , , … , and target
bits , , … , as inputs, where gives the precision of
the output probability. If the k target bits encoded a binary num-
ber … , then the PCC outputs a stochastic bit
stream with probability /2 . For simplicity, in what follows,
we refer to a stochastic bit stream with probability as a proba-
bility .

One typical RNS is the LFSR shown in Fig. 2, since each bit
of an LFSR is approximately an unbiased random bit and all of
them are mutually independent. A commonly used PCC is a
comparator as shown in Fig. 2. The comparator outputs a one if
and only if the binary number … is less than

. Then, it is obvious that the output probability of the compar-
ator is /2 .

Besides the comparator, there are two other widely-used
PCCs proposed in literature. One is the weighted binary genera-
tor (WBG), first introduced by Gupta and Kumaresan in 1988
[13]. An example of WBG with the precision 4 is shown in
Fig. 4. It consists of a number of AND gates to implement the
stochastic multiplication and an OR gate at the output stage to
add all weighted probabilities together. Specifically, given that
, … are unbiased random bits, we have

1
2
,

1
2
,

1
2
,

1
2
.

Therefore, the output probability of the final OR gate is

	
1
2

1
2

1
2

1
2 2

.

Fig. 4. A weighted binary generator with 4.

Fig. 5. A multiplexer chain with 4.

Another PCC is the multiplexer (MUX) chain. An example
with the precision 4 is shown in Fig. 5 [4]. For a MUX, if
the probabilities of its two data inputs are and and the prob-
ability of its selecting input is 0.5, then its output probability is
0.5 , a scaled sum on the two input probabilities, as

shown in Fig. 1(b). Given the configuration shown in Fig. 5, we
can easily see that the output probability of the MUX chain is

1
2

1
2

1
2

1
2

0
2
.

III. DESIGN OF RELIABLE STOCHASTIC NUMBER GENERATORS

In this section, we first show the basic assumption used in our
approach and give a motivating example. Then the design prin-
ciples for reliable SNGs are presented.

A. Basic Assumption and Motivation

In our approach, we make the following assumption: Small-
area and low-power unbiased random bits built from emerging
devices are available, which are used as the RNS. This is a valid
assumption. For example, we can configure the pulse width to
build a memristor-based unbiased random bit.

Note that our approach is different from that of [8], in which
only one memristor-based random source is used. In our case,
multiple memristor-based random sources are used. However,
due to the small area and low power advantages of emerging
device-based random sources, this is affordable. Furthermore,
we argue that our approach has the benefit of reducing the over-
head to generate input control signals. With the previous ap-
proach [8], different control signals should be provided to dif-
ferent SNGs. Furthermore, each control signal should be tunable
in order to provide different probabilities at different time. In our
case, only one fixed control signal is required, which produces
the 0.5 output probability under the nominal conditions. For ex-
ample, if we know the nominal value for the parameter in Eq.
(1) is , then we only need one pulse with width ln 2,
which controls all the memristor-based random sources. This en-
sures that each random source is unbiased when its parameter
is equal to the nominal value . Although in normal cases, the
actual for each random source fluctuates around , such a
fluctuation can be well-tolerated by our proposed design tech-
nique, which will be introduced next.

The basic idea of our approach is to design the PCC properly
so that it can guarantee the reliable output probability even if the
unbiased random sources are unreliable. Next, we first discuss
the issue of using a traditional PCC when the unbiased random
bits are unreliable.

Due to the noise in the input control signals and the process
variation of the devices, each random bit in the RNS cannot be
guaranteed to produce a probability of 1/2. Instead, the output
probability fluctuates around 1/2. For example, assume an RNS
is composed of two random bits and , which are imple-
mented by emerging devices. Their probabilities are 0.55 and
0.59, respectively. Table I shows the probability of occurrence
for each combination of and . For example, the occurrence
probability for the combination 0 and 0 is 1
0.55 1 0.59 0.1845. In the case where each random
bit is unbiased, we expect that each combination of and oc-
curs with the probability of 0.25. The third column of Table I
lists the difference of the actual occurrence probability for each
combination from 0.25.

Table I. The probability of occurrence for each combination of and . As-
sume 1 0.55 and 1 0.59. The fourth and fifth columns
show the output values of two example Boolean functions and , both pro-
ducing the output probability 0.5 when 1 1 0.5.

probability 0.25 , ,
00 0.1845 −0.0655 1 1

01 0.2655 +0.0155 1 0

10 0.2255 −0.0245 0 0

11 0.3245 +0.0745 0 1

Now assume that a 2-bit comparator is used as the PCC to
produce the output stochastic bit stream. For a given pair of tar-
get bits and , the output probability is the probability that
the binary number is strictly less than the binary num-
ber . Table II lists the expected output probability and
the actual probability for each pair of and . For example,
when 1 and 1 , the expected output probability is
0.75, while the actual output probability, based on the values in
Table I, is 0.1845 0.2655 0.2255 0.6755. The fourth
and the fifth columns of Table II show the absolute and the rel-
ative errors of the actual output probability over the expected
value, respectively. We can see that using the comparator as a
PCC, the output probability could be quite far away from the
expected value when the unbiased random bits are unreliable.
Similar conclusions can be drawn for other traditional PCCs.

The key to ensure the correctness of the output probability
lies in the proper design of the PCC, which we will explore next.

Table II. Comparison between the actual and the expected output probabilities
with the PCC as a comparator. The same assumption for Table I is used.

expected
probability

actual
probability

absolute
error

relative
error (%)

00 0 0 0 0
01 0.25 0.1845 0.0655 26.2
10 0.5 0.45 0.05 10
11 0.75 0.6755 0.0745 9.9

B. Design Principle for a Reliable Fixed Output Probability

In this section, we first demonstrate the principle to design a
circuit to produce a reliable fixed output probability. Such a cir-
cuit takes a number of unreliable unbiased random bits as inputs
and produces a given target probability /2 as accurately as
possible. In what follows, we focus on the Boolean function of
such a circuit.

In the ideal case where all the random bits are with probability
of 0.5 to be a 1, in order to produce an output probability /2 ,
we only need random bits , … , and we can use any
Boolean function , … , with the on-set size as [16].
Here, the on-set of a Boolean function refers to the set of input
combinations that make the Boolean function evaluate to 1. For
example, the fourth and the fifth columns of Table I show the
output columns of two truth tables of Boolean functions that pro-
duce the output probability 2/4 for the ideal case. Indeed, for the
ideal case, each input combination occurs with the probability
1/2 . With minterms in the on-set of the Boolean function,
the output probability is /2 .

However, in real situations, the probability of a random bit
fluctuates around 0.5. Assume the probability of (0

1) is 0.5 , where | | ≪ 1. Next we consider the proba-
bility that , … , , where , … , is any
fixed input combination in the Boolean space 0,1 . We denote
such a probability as , … .

For illustration purpose, consider 3 and 0,
1, 0. The probability of 0, 1, 0 is

0,1,0 0, 1, 0 	
1 0.5 0.5 1 0.5 	
0.5 0.5 0.5 	
1
8

1
4

∆,

where ∆ contains higher-order products on ’s. Given that ’s
are small, we can ignore ∆. Therefore, we have

0,1,0
1
8

1
4

.

In the general case, we have

, …
1
2

1
2

2 1 .

In the ideal case, the probability 	 , … should be
1/2 . We denote the error of the probability , …
compared to its ideal value as , … . Therefore, we
have

, …
1

2
2 1 .

From the above equation, we can also obtain

, … 1 ,… ,1 	

1
2

1 2 ,… , .

This indicates that the error of the occurrence probability of
the input combination , … , could exactly cancel that of
the input combination , … , under the first order ap-
proximation. Therefore, if we assign the pair of input combina-
tions , … , and , … , into the on-set of the
Boolean function, they will contribute a value of 1/2 to the
output probability with a very small error. Therefore, when is
an even number, we can arbitrarily assign /2 distinct pairs of
the input combinations of the form , … , and

, … , into the on-set of the Boolean function. This will
realize the output probability /2 very closely.

For the example in Table I, if the desired output probability is
1/2 (i.e., 2), one possible assignment of the input combina-
tions to the on-set of the Boolean function is , 0,0
and 1,1 , as shown by the fifth column in Table I. With this
assignment, the actual output probability is

, 0,0 , 1,1 	
0.1845 0.3245 0.509,

which is only 1.8% away from the desired value of 1/2. In con-
trast, if the input combinations , 0,0 and 0,1 are
chosen, which corresponds to using a comparator as the PCC,
the actual output probability is

, 0,0 , 0,1 	
0.1845 0.2655 0.45,

 which is 10% away from the desired value (see Table II).
However, the above principle cannot be followed exactly

when is odd, since no matter how the input combinations are
assigned to the on-set, there always exists one input combination

, … , in the on-set for which the matching one
, … , is not in the on-set. This could introduce a large

error when is odd. To further address this problem, we pro-
pose to use 1 unbiased random bits to realize an arbitrary
target probability /2 . In this case, in order to realize the out-
put probability /2 , we can arbitrarily assign distinct pairs
of the input combinations of the form , … , and

, … , into the on-set of the Boolean function. It is clear
that a Boolean function , … , constructed by the above
way has no output error under the first order approximation, due
to the error cancelling effect of each pair of matching input com-
binations in the on-set. Therefore, we refer to this type of Bool-
ean function as error cancelling function (ECF) for the output
probability /2 .

The following theorem gives a characterization of an ECF.

Theorem 1
A (1)-input Boolean function , … , is an ECF for the
output probability /2 (0 2 1) if and only if it sat-
isfies that , … , , … , and the size of its on-set
is 2 . ∎

Proof: “only if” part: by the way of constructing an ECF for
the output probability /2 , it is clear that , … ,

, … , and the size of its on-set is 2 .
“if” part: since , … , , … , and the size of the

on-set of is 2 , the on-set can be partitioned into distinct
pairs of the input combinations of the form , … , and

, … , . By the definition, is an ECF for the output prob-
ability /2 .	∎

In summary, in order to reliably generate an output probabil-
ity /2 , a solution is to use an ECF , … , for that prob-
ability, taking 1 unbiased random bits as inputs.

C. Design Principle for Reliable Probability Conversion
Circuits

In this section, we extend the design principle for a reliable
fixed output probability to design reliable PCCs. Again, we fo-
cus on the Boolean function of a reliable PCC.

Based on the design principle for a reliable fixed output prob-
ability, a reliable PCC should take 1 unbiased random bits
, … , as inputs. Besides, same as a traditional PCC, a reliable

PCC should take extra target bits , … , as inputs. There-
fore, the Boolean function of a reliable PCC has 2 1 inputs.
We assume it is , … , , , … , .

Now consider any fixed target bit combination
, … , ∈ 0,1 . By the basic function of a PCC, we re-

quire that the output probability of the func-
tion	 , … , , , … , is /2 , where … .
Note that given that , … , are all fixed, the function

, … , , , … , is a function that only depends on var-
iables , … , . Indeed, the function , … , , , … , is
just a cofactor of the function , denoted as … ,… , .
Therefore, we require that the output probability of the cofactor
of , … ,… , , be /2 , when , … , are all unbi-
ased random bits. Furthermore, we require the output probability
of the cofactor … ,… , to be reliable when the input
random bits are unreliable. Therefore, an immediate solution to
design a reliable PCC is to let the cofactor of ,

… ,… , , be an ECF for the probability /2 , for all
input combinations , … , ∈ 0,1 . To be formal, we
first give the following definition.

Definition 1
A (2 1)-input Boolean function , … , , , … , is
an error cancelling probability conversion function (ECPCF)
for a precision if it satisfies the condition that for all

, … , ∈ 0,1 , the cofactor … , … , is an
ECF for the probability /2 , where … . ∎

Based on the above discussion, we conclude that one valid
way to design a reliable PCC is to use an ECPCF.

Next, we show that there exists an important link between an
ECPCF and the Boolean function of a traditional PCC. On the
one hand, given an arbitrary traditional PCC, we can construct
an ECPCF from the Boolean function of the traditional PCC. On
the other hand, given an arbitrary ECPCF, we can extract from
it the Boolean function of a traditional PCC. The above two
claims are more formally presented by Theorems 2 and 3 below.
For simplicity, these two theorems are described assuming
2.

Theorem 2
Given a traditional PCC with its Boolean function as
, , , , where and are the inputs for the random

bits and and are the inputs for the target bits, then the func-
tion

, , , , , , , , , ,

is an ECPCF.	∎

Proof: By Definition 1, we only need to show that for all
, ∈ 0,1 , the cofactor , , is an ECF for the

probability /2 , where .

Consider any , ∈ 0,1 . We have

, , , , , , 	
, , , , , , 	

, , .	
Thus, we have

, , , , 	
, , .

Since , , , is the Boolean function of a traditional
PCC, the size of the on-set of the cofactor , is

. Note that when 1 , , ,
, ; when 0 , , , , .

Therefore, the size of the on-set of the function , ,

is 2 . Thus, the output probability of the function
, , is /2 . Based on Theorem 1, we conclude that
, , is an ECF for the probability /2 . This finishes

the proof. ∎

Theorem 3
Given an ECPCF , , , , , where , , and are the
inputs for the unbiased random bits and and are the inputs
for the target bits, then the function

, , , 0, , , , .

is the Boolean function of a traditional PCC of precision
2.	∎

Proof: In order to prove the claim, we only need to show that
for any , ∈ 0,1 , the output probability of the cofactor

, , , , is /2 , where .

Now, consider any , ∈ 0,1 . By the definition of an
ECPCF, the cofactor , , of is an ECF for the
probability /2 . Given this, by Theorem 1, we have

, , , , and the size of the on-set of
, , is 2 . Therefore, the size of the on-set of the

function 0, , is . Since 0, ,
, , the output probability of the function ,

is /2 . This concludes the proof. ∎

Theorem 2 shows a concrete way to construct a circuit for an
ECPCF from a traditional PCC. An example of this for 2 is
shown in Fig. 6. The circuit contains two copies of a traditional
PCC, which can be a comparator, a WBG, or a MUX chain. One
copy takes unbiased random bits and and the other takes
their negations as the random input bits. The third unbiased ran-
dom bit is used as the selection input to a MUX. Given that an
ECPCF is a valid way to realize a reliable PCC, the circuit
shown in Fig. 6 is a reliable PCC. Note that by our design, the
unbiased random bit as the selection input to the MUX can also
be unreliable.

The proposed design of a reliable PCC roughly doubles the
area and power consumption of those of the underlying tradi-
tional PCC. However, as long as the area and power consump-
tion of the RNS using emerging devices are much smaller than
those of the LFSR, the overall area and power consumption of
the SNG composed of emerging device-based RNS and the reli-
able PCC will still be smaller than those of the traditional
CMOS-based SNG.

r1r0

c1c0
0

1
r2

y

1 0r r

3 2

c1c0

PCC

PCC

2

2

r2r1r0

Fig. 6. Proposed design of a reliable probability conversion circuit.

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental results on our pro-
posed reliable design of SNG.

A. Reliability of the Output Probability

We first study the reliability of the output probability when
the input unbiased random bits are unreliable. To model these
unreliable unbiased random bits, we assume that the probability
of each is 0.5 , where is the noise. We assume is a Gauss-
ian random variable with mean of 0 and standard deviation .
For all the experiments in this section, the precision is chosen
as 8.

Fig. 7. The actual output probability generated by a comparator versus the target
output probability.

Fig. 7 shows the curves of the actual output probability versus
the target probability for a traditional PCC using a comparator.
Fig. 8 shows the same curves for our proposed reliable PCC
based on comparators. The standard deviation for each ran-
dom bit is set as 0.1. In both figures, the blue curve, which is a
straight line, indicates the expected relation between the actual
output probability and the target output probability. There are
also 50 purple curves in both figures. Each purple curve corre-
sponds to the real relation between the actual output probability
and the target output probability for a set of 8 random bits with
randomly generated noises added to their expected values.
Clearly, our proposed reliable PCC generates more accurate out-
put probability than the traditional PCC for any target probabil-
ity.

Fig. 8. The actual output probability generated by our proposed reliable com-
parator-based PCC versus the target output probability.

In Fig. 9, we vary the standard deviation of the injected noise
from 0.025 to 0.25 and compare the average absolute error of
the output probability for the traditional PCC and the reliable
PCC. To obtain the average absolute error for each standard de-

viation , we generate 8000 sets of 8 random bits with the stand-
ard deviation of the injected noise as . For each set of fixed
random bits, we obtain the average absolute error over all the
target probabilities of 8-bit precision. The final absolute error is
calculated as the average of these 8000 runs. It can be seen that
the average absolute error increases with the noise level for both
PCCs, which is expected. The proposed reliable PCC is much
more accurate than the traditional PCC when the noise level is
low. However, the slope of the curve for the reliable PCC in-
creases with the noise level. This is because when the noise level
is large, the higher-order errors caused by the noise in the ran-
dom source are not ignorable, which causes the absolute error to
increase faster. Nevertheless, the slope of the curve for the reli-
able PCC is always smaller than that for the traditional PCC, due
to the ability of the reliable PCC to cancel the first-order errors
induced by the noise in the random source.

Fig. 9. The average absolute error of the output probability versus the standard
deviation of the injected noise for the traditional PCC and our proposed reliable
PCC.

Fig. 10. The average relative error of the output probability versus the standard
deviation of the injected noise for the traditional PCC and our proposed reliable
PCC for three target probabilities, 1/8, 1/2, and 7/8.

In Fig. 10, we further show how the average relative error
changes with the standard deviation of the injected noise for
three specific target probabilities, 1/8, 1/2, and 7/8. Again, we
vary the standard deviation from 0.025 to 0.25. To calculate the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Probability

A
ct

ua
l P

ro
ba

bi
lit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Probability

A
ct

ua
l P

ro
ba

bi
lit

y

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Standard Deviation of Noise

A
ve

ra
ge

 A
bs

ol
ut

e
E

rr
or

Traditional

Reliable

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Standard Deviation of Noise

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Traditional 1/8
Reliable 1/8

Traditional 1/2

Reliable 1/2

Traditional 7/8
Reliable 7/8

relative error for a specific target probability and a standard de-
viation , we generate 8000 sets of 8 random bits with the stand-
ard deviation of the injected noise as . For each set of fixed
random bits, we calculate the relative error for the specific target
probability. The final average relative error is the average of
these 8000 runs. It can be seen that for both PCCs, as the target
probability decreases, the relative error increases, which is ex-
pected. For our proposed PCC, even if the target probability is
as small as 1/8 and the noise level is as large as 0.25, the relative
error is still within 4%. In contrast, for the traditional PCC, when
the target probability is small, such as 1/8, the relative error
could be more than 20% for a large noise level.

B. Area and Power Consumption

In this section, we study the area and power consumption of
our proposed reliable PCC. Obviously, it increases the area and
power consumption for the PCC part. However, with the small
area and low power advantages of those emerging device-based
random bits, it is possible that the entire area and power con-
sumption of the reliable emerging device-based SNG (RESNG),
which is built with the emerging random source and our reliable
PCC, are still less than those of the traditional CMOS-based
SNG (TCSNG), which is built with an LFSR and a traditional
PCC. As our method is generally applicable to any emerging de-
vice-based random bits, in this section, we will obtain the limits
on the area and power consumption for those random bits show-
ing that our proposed SNG has smaller area and lower power
consumption than the TCSNG.

 We consider three PCCs, which are comparator, WBG, and
MUX chain. For each PCC, we synthesize a TCSNG and a reli-
able PCC (RPCC) using that PCC. All the circuits are synthe-
sized by Synopsys design compiler [17] and placed and routed
by Cadence SoC encounter [18]. A 45nm Nangate open cell li-
brary is used as the technology library [19]. Precisions
4,8,12,16 are considered. Table III shows the simulation results
of the area and power consumption of the TCSNG and the
RPCC for each chosen PCC and precision . The seventh col-
umn and the eighth column show the area budget and the power
budget for one random bit with emerging device. If the area con-
sumptions of the TCSNG and the RPCC are and , respec-
tively, and the precision is , then the area budget for the emerg-
ing device-based random source is and that for one single
random bit is / 1 . Similarly, we can obtain the
power budget for a single random bit.

From these results, we can clearly see that different types of
PCC have different area and power budgets. For area budget, on
average, using a MUX chain as the PCC gives the smallest area
budget, while using a comparator as the PCC gives the largest
one. For power consumption, using a WBG as the PCC gives the
smallest power budget, while using a comparator as the PCC
gives the largest one. Based on the preliminary data reported in
some research works, we find that our proposed approach is very
promising in reducing the area and power consumption of the
SNGs. For example, the work [9] proposes an implementation
of random bit using magnetic tunnel junction (MTJ) device. In
this work, a 64 64 MTJ array-based multi-bit true random
number generator is reported to have an area of 139.96 μm2 with

45 nm technology node. Therefore, the area of a single MTJ-
based random bit is 0.034 μm2, which is much smaller than all
the area budgets reported in Table III. Another work [8] esti-
mated that a single memristor-based unbiased random bit con-
sumes 5μW, which is much smaller than some power budgets
reported in Table III.

Table III. Area and power consumption comparison between the traditional
PCC and our proposed reliable PCC.

PCC
Preci-
sion

Clock
period

(ns)
Circuit

Area
(μm2)

Power
(μW)

Area
budget for

one
random
bit (μm2)

Power
budget for

one
random
bit (μW)

Compara-
tor

4 2.16
TCSNG 34.58 55.67

2.61 5.87
RPCC 21.54 26.29

8 2.25
TCSNG 80.33 99.92

4.17 6.93
RPCC 42.82 37.56

12 2.56
TCSNG 114.38 146.99

3.85 8.70
RPCC 64.37 33.84

16 2.65
TCSNG 155.87 188.72

4.51 8.96
RPCC 79.26 36.39

WBG

4 2.44
TCSNG 34.04 63.14

2.39 2.77
RPCC 22.07 49.29

8 2.70
TCSNG 71.28 107.00

3.58 6.16
RPCC 39.10 51.54

12 3.10
TCSNG 110.92 70.82

3.74 1.01
RPCC 62.24 57.70

16 3.38
TCSNG 145.23 92.10

3.71 1.02
RPCC 82.19 74.78

MUX
Chain

4 2.52
TCSNG 31.65 65.17

2.13 5.30
RPCC 21.01 38.69

8 3.35
TCSNG 65.70 92.97

3.31 3.92
RPCC 35.91 57.68

12 4.18
TCSNG 96.55 139.70

3.52 6.42
RPCC 50.80 56.20

16 5.00
TCSNG 127.41 164.55

3.63 6.83
RPCC 65.70 48.49

V. CONCLUSION

Due to their small area and low power consumption, emerg-
ing device-based random sources are a promising choice for
building the stochastic number generators (SNGs) for stochastic
computing. However, one challenge to use them to build SNGs
is that the output probability of the SNG is not reliable, due to
the noise in the input control signal and the large process varia-
tion for these emerging devices. In this work, we propose a gen-
eral method to design reliable SNGs with these emerging de-
vices-based random sources. The key is to build a reliable prob-
ability conversion circuit (PCC). We propose general principles
to design such a PCC. Based on these principles, we find that a
reliable PCC can be easily constructed from a traditional PCC.
Experimental results showed that our proposed PCC generates
much more accurate output probability than the traditional PCC.
We also evaluated area and power consumption of the proposed
PCC, and obtained the area and power budget for the random
sources used in the SNG, which can be used as a guideline to

design novel emerging device-based random sources for sto-
chastic computing.

ACKNOWLEDGMENT

This work is supported by National Natural Science Founda-
tion of China (NSFC) under Grant No. 61472243 and 61204042.

REFERENCES
[1] B.R. Gaines, “Stochastic Computing,” AFIPS Spring Joint Computer

Conf., 1967, pp. 149-156.

[2] A. Alaghi, C. Li, and J.P. Hayes, “Stochastic circuits for real-time image-
processing applications,” Design Autom. Conf., 2013, pp. 136:1-136:6.

[3] V.C. Gaudet and A.C. Rapley, “Iterative Decoding Using Stochastic
Computation,” Electron. Lett., vol. 39, pp. 299-301, 2003.

[4] B.D. Brown and H.C. Card, “Stochastic neural computation I:
computational elements,” IEEE Trans. Comp., vol. 50, pp. 891-905, 2001.

[5] N. Saraf, K. Bazargan, D. J. Lilja and M. D. Riedel, “IIR filters using
stochastic arithmetic,” Design, Autom. & Test in Europe, 2014, pp. 1-6.

[6] B. Li, M. H. Najafi, and D. J. Lilja, “Using stochastic computing to reduce
the hardware requirements for a restricted Boltzmann machine classifier,”
Intl. Symp. on FPGA, 2016, pp. 36-41.

[7] P. Li et al., “Computation on stochastic bit streams: Digital image
processing case studies,”. IEEE Trans. on VLSI, vol. 22, pp. 449-462,
2014.

[8] P. Knag, W. Lu, and Z. Zhang, “A native stochastic computing
architecture enabled by memristors,” IEEE Trans. Nanotech., vol. 13, pp.
283-293, 2014.

[9] H. Lee et al., “Design of high-throughput and low-power true random
number generator utilizing perpendicularly magnetized voltage-
controlled magnetic tunnel junction,” AIP Advances, vol. 7, no. 5, 055934,
2017.

[10] Y. Wang et al., “A novel true random number generator design leveraging
emerging memristor technology,” Great Lakes Symp. on VLSI, 2015, pp.
271-276.

[11] A. Fukushima et al., “Spin dice: A scalable truly random number
generator based on spintronics,” Applied Physics Express, vol. 7, no. 8,
pp. 083001, 2014.

[12] R. Venkatesan et al., “Spintastic: spin-based stochastic logic for energy-
efficient computing,” Design, Autom. & Test in Europe, 2015, pp. 1575-
1578.

[13] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN
sequences,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol.
36, no. 4, pp. 603-606, 1988.

[14] H. Ichihara et al., “Compact and accurate stochastic circuits with shared
random number sources,” Intl. Conf. Comp. Design, 2014, pp. 361-366.

[15] T.-H. Chen and J.P. Hayes, “Analyzing and controlling accuracy in
stochastic circuits,” Intl. Conf. Comp. Design, 2014, pp. 367-373.

[16] W. Qian and M.D. Riedel, “Two-level logic synthesis for probabilistic
computation,” in Intl. Workshop on Logic & Synthesis, 2010, pp. 95-102.

[17] Synopsys Inc., http://www. synopsys. com.

[18] Cadence Inc., http://www.cadence.com.

[19] Nangate Inc., http://www.nangate.com

