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Abstract—Stochastic computing (SC), an unconventional com-

puting paradigm that operates on stochastic bit streams, gains 
more and more attention recently because of the low area and 
power consumption of its computing core. SC relies on stochastic 
number generators (SNGs) to generate input stochastic bit 
streams. An SNG is composed of a random number source (RNS) 
and a comparator. However, conventional SNGs, which use linear 
feedback shift register (LFSR) as the RNS, consume much more 
area and power than the SC core, offsetting the small area and the 
low power advantages of the SC core. To mitigate this issue, some 
emerging devices, such as memristor and spintronic devices, were 
proposed to build SNGs. However, due to the large process varia-
tion in fabricating these devices, these SNGs are unreliable: their 
output probabilities could have a large error than the desired val-
ues. In this paper, we propose a general method to design reliable 
SNGs that use emerging device-based RNS’s. Experimental results 
showed that our design is effective in improving the reliability. 

Keywords—stochastic computing; novel nanoscale devices; sto-
chastic number generator (SNG) 

  

I. INTRODUCTION 

Stochastic computing (SC) was first introduced in 1960s as 
an unconventional computing paradigm [1]. Its biggest differ-
ence from traditional binary computing is that it operates on 
stochastic bit streams that encode real values through the 
probabilities of 1s in the streams. For example, the bit stream 
“01001100” represents 3/8. Due to the uniformly weighted en-
coding, SC has strong fault tolerance to bit flip errors. Moreover, 
the probabilistic way of encoding data allows very simple digital 
circuits to realize complex arithmetic operations. One notable 
example is that multiplication can be realized by an AND gate, 
as shown in Fig. 1(a). These circuits taking stochastic bit streams 
as inputs and outputs are referred to as SC core. 

 
Fig. 1. Examples of stochastic computing elements. (a) Multiplication of the 
numbers encoded by stochastic bit streams can be realized by an AND gate; (b) 
Scaled addition of the numbers encoded by stochastic bit streams can be 
realized by a 2-to-1 multiplexer. 

Because of its low area and power consumption, SC has been 
applied in many application domains, such as image processing 

[2][7], low-density parity-check (LDPC) decoding [3], artificial 
neural networks [6], and digital filters [5]. 

 
Fig. 2. A stochastic number generator composed of an LFSR and a comparator. 

SC relies on stochastic number generators (SNGs) to generate 
input stochastic bit streams of the desired probabilities. A widely 
used SNG is composed of a pseudo random number source, such 
as a linear feedback shift register (LFSR), and a comparator, as 
shown in Fig. 2 (more details on it will be discussed in Section 
II). However, it consumes much more area and power than the 
SC core. Furthermore, to guarantee the correct functionality, the 
input stochastic bit streams should be mutually independent, 
which means the number of SNGs is equal to the number of in-
puts of the SC core. As a result, the existence of the large and 
power-hungry SNGs significantly mitigates the advantages of 
the SC core in area and power consumption. 

To reduce the area and power consumption of the SNGs in a 
stochastic circuit, several solutions were proposed. One method 
is to share a single LFSR among multiple SNGs. For example, 
in [14], the circular shift of the output bits of the LFSR was pro-
posed to produce stochastic bit streams with low correlation. In 
[15], the insertion of delay elements into the circuit was pro-
posed to decorrelate the stochastic bit streams. However, these 
solutions cannot guarantee the perfect mutual independence of 
the input streams and hence, could introduce error to the output 
result. 

Another method is to leverage the emerging devices, such as 
memristors [8][10] and spintronic devices [9][11][12]. These 
novel nanoscale devices usually have two different stable states 
that can be converted into binary values. For example, the 
memristor has a high-impedance state and a low-impedance 
state, which can be switched by applying a programming pulse 
to the device. Recent studies showed that the state switching of 
some emerging devices is random and the switching probability 
could be controlled by an input signal [8]. For example, the state 
switching probability of a memristor is 

 1 / , (1)



where  is the width of the programming pulse and  is a con-
stant value determined by the device itself and the amplitude of 
the programming pulse. Therefore, by changing the value of , a 
stochastic bit stream of an arbitrary probability can be generated. 
Previous studies showed that SNGs based on these emerging de-
vices have much smaller area and lower power consumption 
than the conventional CMOS-based SNGs. For example, the 
power consumption of the design based on memristor is 16 times 
lower than that of CMOS [8], while the design based on 
spintronic devices can achieve a power reduction of 7 times [12]. 

However, the probabilities of the stochastic bit streams gen-
erated by emerging device-based SNGs are subject to a large er-
ror due to the noise in the input control signal and the large pro-
cess variation occurred in manufacturing these devices. Take the 
memristor SNG as an example. As shown in Eq. (1), its switch-
ing probability depends both on the programming pulse and on 
its device parameters and thus, is vulnerable to both the noise in 
the programming pulse and variation in its device parameters. In 
order to fully take advantage of these emerging devices to build 
SNGs with small area and low power consumption, we should 
have a reliable design that guarantees the correct output proba-
bility even when the underlying devices are subject to large sig-
nal noise and process variation. 

In this paper, we propose a general method to design such re-
liable SNGs using these emerging devices as the random sources. 
Our method is not restricted to any specific emerging devices as 
long as they can be used to build unbiased random sources. We 
demonstrate the basic principles to build reliable SNGs from 
these unreliable unbiased random sources and show a few im-
plementations based on the design principles. Experimental re-
sults show that our proposed techniques can ensure the correct 
output probability of those emerging device-based SNGs while 
still taking their advantages in area and power consumption. 

The rest of this paper is organized as follows. In Section II, 
we introduce the background on SNGs. In Section III, we pre-
sent the proposed method to design a reliable SNG. In Section 
IV, we show the experimental results, which illustrate that our 
proposed design is very effective in improving the reliability. 
Finally, in Section V, we conclude the paper. 
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Fig. 3. A general stochastic number generator. 

II. BACKGROUND ON STOCHASTIC NUMBER GENERATORS 

A general SNG is shown in Fig. 3. It is composed of a random 
number generator (RNS) and a probability conversion circuit 
(PCC). The RNS is composed of  independent unbiased ran-
dom binary sources, each with probability of 0.5 to be a 1 and 

the same probability to be a 0. For simplicity, an unbiased ran-
dom binary source is referred to as an unbiased random bit. The 
PCC takes  unbiased random bits , , … ,  and  target 
bits , , … ,  as inputs, where  gives the precision of 
the output probability. If the k target bits encoded a binary num-
ber … , then the PCC outputs a stochastic bit 
stream with probability /2 . For simplicity, in what follows, 
we refer to a stochastic bit stream with probability  as a proba-
bility . 

One typical RNS is the LFSR shown in Fig. 2, since each bit 
of an LFSR is approximately an unbiased random bit and all of 
them are mutually independent. A commonly used PCC is a 
comparator as shown in Fig. 2. The comparator outputs a one if 
and only if the binary number …  is less than 

. Then, it is obvious that the output probability of the compar-
ator is /2 . 

Besides the comparator, there are two other widely-used 
PCCs proposed in literature. One is the weighted binary genera-
tor (WBG), first introduced by Gupta and Kumaresan in 1988 
[13]. An example of WBG with the precision 4 is shown in 
Fig. 4. It consists of a number of AND gates to implement the 
stochastic multiplication and an OR gate at the output stage to 
add all weighted probabilities together. Specifically, given that 
, …  are unbiased random bits, we have  
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Fig. 4. A weighted binary generator with 4. 

 
Fig. 5. A multiplexer chain with 4. 

Another PCC is the multiplexer (MUX) chain. An example 
with the precision 4 is shown in Fig. 5 [4]. For a MUX, if 
the probabilities of its two data inputs are  and  and the prob-
ability of its selecting input is 0.5, then its output probability is 
0.5 , a scaled sum on the two input probabilities, as 



shown in Fig. 1(b). Given the configuration shown in Fig. 5, we 
can easily see that the output probability of the MUX chain is 
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III. DESIGN OF RELIABLE STOCHASTIC NUMBER GENERATORS 

In this section, we first show the basic assumption used in our 
approach and give a motivating example. Then the design prin-
ciples for reliable SNGs are presented. 

A. Basic Assumption and Motivation 

In our approach, we make the following assumption: Small-
area and low-power unbiased random bits built from emerging 
devices are available, which are used as the RNS. This is a valid 
assumption. For example, we can configure the pulse width  to 
build a memristor-based unbiased random bit. 

Note that our approach is different from that of [8], in which 
only one memristor-based random source is used. In our case, 
multiple memristor-based random sources are used. However, 
due to the small area and low power advantages of emerging 
device-based random sources, this is affordable. Furthermore, 
we argue that our approach has the benefit of reducing the over-
head to generate input control signals. With the previous ap-
proach [8], different control signals should be provided to dif-
ferent SNGs. Furthermore, each control signal should be tunable 
in order to provide different probabilities at different time. In our 
case, only one fixed control signal is required, which produces 
the 0.5 output probability under the nominal conditions. For ex-
ample, if we know the nominal value for the parameter  in Eq. 
(1) is , then we only need one pulse with width ln 2, 
which controls all the memristor-based random sources. This en-
sures that each random source is unbiased when its parameter  
is equal to the nominal value . Although in normal cases, the 
actual  for each random source fluctuates around , such a 
fluctuation can be well-tolerated by our proposed design tech-
nique, which will be introduced next. 

The basic idea of our approach is to design the PCC properly 
so that it can guarantee the reliable output probability even if the 
unbiased random sources are unreliable. Next, we first discuss 
the issue of using a traditional PCC when the unbiased random 
bits are unreliable. 

Due to the noise in the input control signals and the process 
variation of the devices, each random bit in the RNS cannot be 
guaranteed to produce a probability of 1/2. Instead, the output 
probability fluctuates around 1/2. For example, assume an RNS 
is composed of two random bits  and , which are imple-
mented by emerging devices. Their probabilities are 0.55 and 
0.59, respectively. Table I shows the probability of occurrence 
for each combination of  and . For example, the occurrence 
probability for the combination 0  and 0  is 1
0.55 1 0.59 0.1845. In the case where each random 
bit is unbiased, we expect that each combination of  and  oc-
curs with the probability of 0.25. The third column of Table I 
lists the difference of the actual occurrence probability for each 
combination from 0.25. 

Table I. The probability of occurrence for each combination of  and . As-
sume 1 0.55 and 1 0.59. The fourth and fifth columns 
show the output values of two example Boolean functions  and , both pro-
ducing the output probability 0.5 when 1 1 0.5. 

probability 0.25 ,  ,
00 0.1845 −0.0655 1 1 

01 0.2655 +0.0155 1 0 

10 0.2255 −0.0245 0 0 

11 0.3245 +0.0745 0 1 

Now assume that a 2-bit comparator is used as the PCC to 
produce the output stochastic bit stream. For a given pair of tar-
get bits  and , the output probability is the probability that 
the binary number  is strictly less than the binary num-
ber . Table II lists the expected output probability and 
the actual probability for each pair of  and . For example, 
when 1  and 1 , the expected output probability is 
0.75, while the actual output probability, based on the values in 
Table I, is 0.1845 0.2655 0.2255 0.6755. The fourth 
and the fifth columns of Table II show the absolute and the rel-
ative errors of the actual output probability over the expected 
value, respectively. We can see that using the comparator as a 
PCC, the output probability could be quite far away from the 
expected value when the unbiased random bits are unreliable. 
Similar conclusions can be drawn for other traditional PCCs. 

The key to ensure the correctness of the output probability 
lies in the proper design of the PCC, which we will explore next. 

Table II. Comparison between the actual and the expected output probabilities 
with the PCC as a comparator. The same assumption for Table I is used. 

expected
probability

actual 
probability 

absolute 
error 

relative
error (%)

00 0 0 0 0 
01 0.25 0.1845 0.0655 26.2 
10 0.5 0.45 0.05 10 
11 0.75 0.6755 0.0745 9.9 

B. Design Principle for a Reliable Fixed Output Probability 

In this section, we first demonstrate the principle to design a 
circuit to produce a reliable fixed output probability. Such a cir-
cuit takes a number of unreliable unbiased random bits as inputs 
and produces a given target probability /2  as accurately as 
possible. In what follows, we focus on the Boolean function of 
such a circuit. 

In the ideal case where all the random bits are with probability 
of 0.5 to be a 1, in order to produce an output probability /2 , 
we only need  random bits , … ,  and we can use any 
Boolean function , … ,  with the on-set size as  [16]. 
Here, the on-set of a Boolean function refers to the set of input 
combinations that make the Boolean function evaluate to 1. For 
example, the fourth and the fifth columns of Table I show the 
output columns of two truth tables of Boolean functions that pro-
duce the output probability 2/4 for the ideal case. Indeed, for the 
ideal case, each input combination occurs with the probability 
1/2 . With  minterms in the on-set of the Boolean function, 
the output probability is /2 . 

However, in real situations, the probability of a random bit 
fluctuates around 0.5. Assume the probability of  (0



1) is 0.5 , where | | ≪ 1. Next we consider the proba-
bility that , … , , where , … ,  is any 
fixed input combination in the Boolean space 0,1 . We denote 
such a probability as , … . 

For illustration purpose, consider 3  and 0,
1, 0. The probability of 0, 1, 0 is 

0,1,0 0, 1, 0 	
1 0.5 0.5 1 0.5 	
0.5 0.5 0.5 	
1
8

1
4

∆, 

where ∆ contains higher-order products on ’s. Given that ’s 
are small, we can ignore ∆. Therefore, we have 

0,1,0
1
8

1
4

. 

In the general case, we have 

, …
1
2

1
2

2 1 . 

In the ideal case, the probability 	 , …  should be 
1/2 . We denote the error of the probability , …  
compared to its ideal value as , … . Therefore, we 
have 

, …
1

2
2 1 . 

From the above equation, we can also obtain 

, … 1 ,… ,1 	

1
2

1 2 ,… , . 

This indicates that the error of the occurrence probability of 
the input combination , … ,  could exactly cancel that of 
the input combination , … ,  under the first order ap-
proximation. Therefore, if we assign the pair of input combina-
tions , … ,  and , … ,  into the on-set of the 
Boolean function, they will contribute a value of 1/2  to the 
output probability with a very small error. Therefore, when  is 
an even number, we can arbitrarily assign /2 distinct pairs of 
the input combinations of the form , … ,  and 

, … ,  into the on-set of the Boolean function. This will 
realize the output probability /2  very closely. 

For the example in Table I, if the desired output probability is 
1/2 (i.e., 2), one possible assignment of the input combina-
tions to the on-set of the Boolean function is , 0,0  
and 1,1 , as shown by the fifth column in Table I. With this 
assignment, the actual output probability is 

, 0,0 , 1,1 	
0.1845 0.3245 0.509, 

which is only 1.8% away from the desired value of 1/2. In con-
trast, if the input combinations , 0,0  and 0,1  are 
chosen, which corresponds to using a comparator as the PCC, 
the actual output probability is 

, 0,0 , 0,1 	
0.1845 0.2655 0.45, 

 which is 10% away from the desired value (see Table II). 
However, the above principle cannot be followed exactly 

when  is odd, since no matter how the input combinations are 
assigned to the on-set, there always exists one input combination 

, … ,  in the on-set for which the matching one 
, … ,  is not in the on-set. This could introduce a large 

error when  is odd. To further address this problem, we pro-
pose to use 1 unbiased random bits to realize an arbitrary 
target probability /2 . In this case, in order to realize the out-
put probability /2 , we can arbitrarily assign  distinct pairs 
of the input combinations of the form , … ,  and 

, … ,  into the on-set of the Boolean function. It is clear 
that a Boolean function , … ,  constructed by the above 
way has no output error under the first order approximation, due 
to the error cancelling effect of each pair of matching input com-
binations in the on-set. Therefore, we refer to this type of Bool-
ean function as error cancelling function (ECF) for the output 
probability /2 .  

The following theorem gives a characterization of an ECF. 

Theorem 1 
A ( 1)-input Boolean function , … ,  is an ECF for the 
output probability /2  (0 2 1) if and only if it sat-
isfies that , … , , … ,  and the size of its on-set 
is 2 . ∎ 

Proof: “only if” part: by the way of constructing an ECF for 
the output probability /2 , it is clear that , … ,

, … ,  and the size of its on-set is 2 . 
“if” part: since , … , , … ,  and the size of the 

on-set of  is 2 , the on-set can be partitioned into  distinct 
pairs of the input combinations of the form , … ,  and 

, … , . By the definition,  is an ECF for the output prob-
ability /2 .	∎ 

In summary, in order to reliably generate an output probabil-
ity /2 , a solution is to use an ECF , … ,  for that prob-
ability, taking 1 unbiased random bits as inputs. 

C. Design Principle for Reliable Probability Conversion 
Circuits 

In this section, we extend the design principle for a reliable 
fixed output probability to design reliable PCCs. Again, we fo-
cus on the Boolean function of a reliable PCC. 

Based on the design principle for a reliable fixed output prob-
ability, a reliable PCC should take 1 unbiased random bits 
, … ,  as inputs. Besides, same as a traditional PCC, a reliable 

PCC should take  extra target bits , … ,  as inputs. There-
fore, the Boolean function of a reliable PCC has 2 1 inputs. 
We assume it is , … , , , … , . 

Now consider any fixed target bit combination 
, … , ∈ 0,1 . By the basic function of a PCC, we re-

quire that the output probability of the func-
tion	 , … , , , … ,  is /2 , where … . 
Note that given that , … ,  are all fixed, the function 



, … , , , … ,  is a function that only depends on var-
iables , … , . Indeed, the function , … , , , … ,  is 
just a cofactor of the function , denoted as … ,… , . 
Therefore, we require that the output probability of the cofactor 
of , … ,… , , be /2 , when , … ,  are all unbi-
ased random bits. Furthermore, we require the output probability 
of the cofactor … ,… ,  to be reliable when the input 
random bits are unreliable. Therefore, an immediate solution to 
design a reliable PCC is to let the cofactor of , 

… ,… , , be an ECF for the probability /2 , for all 
input combinations , … , ∈ 0,1 . To be formal, we 
first give the following definition.  

Definition 1 
A (2 1)-input Boolean function , … , , , … ,  is 
an error cancelling probability conversion function (ECPCF) 
for a precision  if it satisfies the condition that for all 

, … , ∈ 0,1 , the cofactor … , … , is an 
ECF for the probability /2 , where … . ∎ 

Based on the above discussion, we conclude that one valid 
way to design a reliable PCC is to use an ECPCF. 

Next, we show that there exists an important link between an 
ECPCF and the Boolean function of a traditional PCC. On the 
one hand, given an arbitrary traditional PCC, we can construct 
an ECPCF from the Boolean function of the traditional PCC. On 
the other hand, given an arbitrary ECPCF, we can extract from 
it the Boolean function of a traditional PCC. The above two 
claims are more formally presented by Theorems 2 and 3 below. 
For simplicity, these two theorems are described assuming 
2. 

Theorem 2 
Given a traditional PCC with its Boolean function as 
, , , , where  and  are the inputs for the random 

bits and  and  are the inputs for the target bits, then the func-
tion 

, , , , , , , , , ,  

is an ECPCF.	∎ 

Proof: By Definition 1, we only need to show that for all 
, ∈ 0,1 , the cofactor , ,  is an ECF for the 

probability /2 , where . 

Consider any , ∈ 0,1 . We have 

, , , , , , 	
, , , , , , 	

, , .	
Thus, we have 

, , , , 	
, , . 

Since , , ,  is the Boolean function of a traditional 
PCC, the size of the on-set of the cofactor ,  is 

. Note that when 1 , , ,
, ; when 0 , , , , . 

Therefore, the size of the on-set of the function , ,  

is 2 . Thus, the output probability of the function 
, ,  is /2 . Based on Theorem 1, we conclude that 
, ,  is an ECF for the probability /2 . This finishes 

the proof. ∎ 

Theorem 3 
Given an ECPCF , , , , , where , , and  are the 
inputs for the unbiased random bits and  and  are the inputs 
for the target bits, then the function 

, , , 0, , , , . 

is the Boolean function of a traditional PCC of precision 
2.	∎ 

Proof: In order to prove the claim, we only need to show that 
for any , ∈ 0,1 , the output probability of the cofactor 

, , , ,  is /2 , where . 

Now, consider any , ∈ 0,1 . By the definition of an 
ECPCF, the cofactor , ,  of  is an ECF for the 
probability /2 . Given this, by Theorem 1, we have 

, , , ,  and the size of the on-set of 
, ,  is 2 . Therefore, the size of the on-set of the 

function 0, ,  is . Since 0, ,
, , the output probability of the function ,  

is /2 . This concludes the proof. ∎ 

Theorem 2 shows a concrete way to construct a circuit for an 
ECPCF from a traditional PCC. An example of this for 2 is 
shown in Fig. 6. The circuit contains two copies of a traditional 
PCC, which can be a comparator, a WBG, or a MUX chain. One 
copy takes unbiased random bits  and  and the other takes 
their negations as the random input bits. The third unbiased ran-
dom bit is used as the selection input to a MUX. Given that an 
ECPCF is a valid way to realize a reliable PCC, the circuit 
shown in Fig. 6 is a reliable PCC. Note that by our design, the 
unbiased random bit as the selection input to the MUX can also 
be unreliable. 

The proposed design of a reliable PCC roughly doubles the 
area and power consumption of those of the underlying tradi-
tional PCC. However, as long as the area and power consump-
tion of the RNS using emerging devices are much smaller than 
those of the LFSR, the overall area and power consumption of 
the SNG composed of emerging device-based RNS and the reli-
able PCC will still be smaller than those of the traditional 
CMOS-based SNG. 
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Fig. 6. Proposed design of a reliable probability conversion circuit. 

IV. EXPERIMENTAL RESULTS 

In this section, we show the experimental results on our pro-
posed reliable design of SNG. 



A. Reliability of the Output Probability 

We first study the reliability of the output probability when 
the input unbiased random bits are unreliable. To model these 
unreliable unbiased random bits, we assume that the probability 
of each is 0.5 , where  is the noise. We assume  is a Gauss-
ian random variable with mean of 0 and standard deviation . 
For all the experiments in this section, the precision  is chosen 
as 8. 

 
Fig. 7. The actual output probability generated by a comparator versus the target 
output probability. 

Fig. 7 shows the curves of the actual output probability versus 
the target probability for a traditional PCC using a comparator. 
Fig. 8 shows the same curves for our proposed reliable PCC 
based on comparators. The standard deviation  for each ran-
dom bit is set as 0.1. In both figures, the blue curve, which is a 
straight line, indicates the expected relation between the actual 
output probability and the target output probability. There are 
also 50 purple curves in both figures. Each purple curve corre-
sponds to the real relation between the actual output probability 
and the target output probability for a set of 8 random bits with 
randomly generated noises added to their expected values. 
Clearly, our proposed reliable PCC generates more accurate out-
put probability than the traditional PCC for any target probabil-
ity. 

 
Fig. 8. The actual output probability generated by our proposed reliable com-
parator-based PCC versus the target output probability. 

In Fig. 9, we vary the standard deviation of the injected noise 
from 0.025 to 0.25 and compare the average absolute error of 
the output probability for the traditional PCC and the reliable 
PCC. To obtain the average absolute error for each standard de-

viation , we generate 8000 sets of 8 random bits with the stand-
ard deviation of the injected noise as . For each set of fixed 
random bits, we obtain the average absolute error over all the 
target probabilities of 8-bit precision. The final absolute error is 
calculated as the average of these 8000 runs. It can be seen that 
the average absolute error increases with the noise level for both 
PCCs, which is expected. The proposed reliable PCC is much 
more accurate than the traditional PCC when the noise level is 
low. However, the slope of the curve for the reliable PCC in-
creases with the noise level. This is because when the noise level 
is large, the higher-order errors caused by the noise in the ran-
dom source are not ignorable, which causes the absolute error to 
increase faster. Nevertheless, the slope of the curve for the reli-
able PCC is always smaller than that for the traditional PCC, due 
to the ability of the reliable PCC to cancel the first-order errors 
induced by the noise in the random source. 

 
Fig. 9. The average absolute error of the output probability versus the standard 
deviation of the injected noise for the traditional PCC and our proposed reliable 
PCC. 

 
Fig. 10. The average relative error of the output probability versus the standard 
deviation of the injected noise for the traditional PCC and our proposed reliable 
PCC for three target probabilities, 1/8, 1/2, and 7/8. 

In Fig. 10, we further show how the average relative error 
changes with the standard deviation of the injected noise for 
three specific target probabilities, 1/8, 1/2, and 7/8. Again, we 
vary the standard deviation from 0.025 to 0.25. To calculate the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Probability

A
ct

ua
l P

ro
ba

bi
lit

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Probability

A
ct

ua
l P

ro
ba

bi
lit

y

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Standard Deviation of Noise

A
ve

ra
ge

 A
bs

ol
ut

e 
E

rr
or

 

 

Traditional

Reliable

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

Standard Deviation of Noise

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 (
%

)

 

 

Traditional 1/8
Reliable 1/8

Traditional 1/2

Reliable 1/2

Traditional 7/8
Reliable 7/8



relative error for a specific target probability and a standard de-
viation , we generate 8000 sets of 8 random bits with the stand-
ard deviation of the injected noise as . For each set of fixed 
random bits, we calculate the relative error for the specific target 
probability. The final average relative error is the average of 
these 8000 runs. It can be seen that for both PCCs, as the target 
probability decreases, the relative error increases, which is ex-
pected. For our proposed PCC, even if the target probability is 
as small as 1/8 and the noise level is as large as 0.25, the relative 
error is still within 4%. In contrast, for the traditional PCC, when 
the target probability is small, such as 1/8, the relative error 
could be more than 20% for a large noise level. 

B. Area and Power Consumption 

In this section, we study the area and power consumption of 
our proposed reliable PCC. Obviously, it increases the area and 
power consumption for the PCC part. However, with the small 
area and low power advantages of those emerging device-based 
random bits, it is possible that the entire area and power con-
sumption of the reliable emerging device-based SNG (RESNG), 
which is built with the emerging random source and our reliable 
PCC, are still less than those of the traditional CMOS-based 
SNG (TCSNG), which is built with an LFSR and a traditional 
PCC. As our method is generally applicable to any emerging de-
vice-based random bits, in this section, we will obtain the limits 
on the area and power consumption for those random bits show-
ing that our proposed SNG has smaller area and lower power 
consumption than the TCSNG. 

 We consider three PCCs, which are comparator, WBG, and 
MUX chain. For each PCC, we synthesize a TCSNG and a reli-
able PCC (RPCC) using that PCC. All the circuits are synthe-
sized by Synopsys design compiler [17] and placed and routed 
by Cadence SoC encounter [18]. A 45nm Nangate open cell li-
brary is used as the technology library [19]. Precisions 
4,8,12,16 are considered. Table III shows the simulation results 
of the area and power consumption of the TCSNG and the 
RPCC for each chosen PCC and precision . The seventh col-
umn and the eighth column show the area budget and the power 
budget for one random bit with emerging device. If the area con-
sumptions of the TCSNG and the RPCC are  and , respec-
tively, and the precision is , then the area budget for the emerg-
ing device-based random source is  and that for one single 
random bit is / 1 . Similarly, we can obtain the 
power budget for a single random bit.  

From these results, we can clearly see that different types of 
PCC have different area and power budgets. For area budget, on 
average, using a MUX chain as the PCC gives the smallest area 
budget, while using a comparator as the PCC gives the largest 
one. For power consumption, using a WBG as the PCC gives the 
smallest power budget, while using a comparator as the PCC 
gives the largest one. Based on the preliminary data reported in 
some research works, we find that our proposed approach is very 
promising in reducing the area and power consumption of the 
SNGs. For example, the work [9] proposes an implementation 
of random bit using magnetic tunnel junction (MTJ) device. In 
this work, a 64 64 MTJ array-based multi-bit true random 
number generator is reported to have an area of 139.96 μm2 with 

45 nm technology node. Therefore, the area of a single MTJ-
based random bit is 0.034 μm2, which is much smaller than all 
the area budgets reported in Table III. Another work [8] esti-
mated that a single memristor-based unbiased random bit con-
sumes 5μW, which is much smaller than some power budgets 
reported in Table III. 

Table III. Area and power consumption comparison between the traditional 
PCC and our proposed reliable PCC. 

PCC 
Preci-
sion

Clock
period

(ns)
Circuit

Area 
(μm2) 

Power 
(μW) 

Area 
budget for 

one  
random
bit (μm2)

Power 
budget for 

one  
random 
bit (μW)

Compara-
tor 

4 2.16
TCSNG 34.58 55.67

2.61  5.87  
RPCC 21.54 26.29

8 2.25
TCSNG 80.33 99.92

4.17  6.93  
RPCC 42.82 37.56

12 2.56
TCSNG 114.38 146.99

3.85  8.70  
RPCC 64.37 33.84

16 2.65
TCSNG  155.87 188.72

4.51  8.96  
RPCC 79.26 36.39

WBG

4 2.44
TCSNG 34.04 63.14

2.39  2.77  
RPCC 22.07 49.29

8 2.70
TCSNG 71.28 107.00

3.58  6.16  
RPCC 39.10 51.54

12 3.10
TCSNG 110.92 70.82

3.74  1.01  
RPCC 62.24 57.70

16 3.38
TCSNG 145.23 92.10

3.71  1.02  
RPCC 82.19 74.78

MUX 
Chain

4 2.52
TCSNG 31.65 65.17

2.13  5.30  
RPCC 21.01 38.69

8 3.35
TCSNG 65.70 92.97

3.31  3.92  
RPCC 35.91 57.68

12 4.18
TCSNG 96.55 139.70

3.52  6.42  
RPCC 50.80 56.20

16 5.00
TCSNG 127.41 164.55

3.63  6.83  
RPCC 65.70 48.49

 

V. CONCLUSION 

Due to their small area and low power consumption, emerg-
ing device-based random sources are a promising choice for 
building the stochastic number generators (SNGs) for stochastic 
computing. However, one challenge to use them to build SNGs 
is that the output probability of the SNG is not reliable, due to 
the noise in the input control signal and the large process varia-
tion for these emerging devices. In this work, we propose a gen-
eral method to design reliable SNGs with these emerging de-
vices-based random sources. The key is to build a reliable prob-
ability conversion circuit (PCC). We propose general principles 
to design such a PCC. Based on these principles, we find that a 
reliable PCC can be easily constructed from a traditional PCC. 
Experimental results showed that our proposed PCC generates 
much more accurate output probability than the traditional PCC. 
We also evaluated area and power consumption of the proposed 
PCC, and obtained the area and power budget for the random 
sources used in the SNG, which can be used as a guideline to 



design novel emerging device-based random sources for sto-
chastic computing. 
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