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Abstract—Stochastic computing (SC), a computing paradigm
with strong fault tolerance, draws more attention recently. How-
ever, a drawback of SC is its long latency. One straightforward
way to reduce the latency is to use parallel bit streams to encode
data and apply multiple copies of the circuit to process the bit
streams. However, this method multiplies the circuit area. In
this work, we propose a method to share the weighted binary
generator-based stochastic number generator to reduce the area
of the parallel implementation of the stochastic circuit. Our
experimental results showed that the accuracy of our design
is slightly better than the traditional comparator-based design.
Besides, our design can reduce the area-latency product by 58.5%
compared to the serial implementation.

I. INTRODUCTION

Stochastic computing (SC) [1], first proposed in 1960s,
is an unconventional computing paradigm different from
the binary computing. It implements arithmetic computation
through applying logical operations on stochastic bit streams,
which represent values through the probability of 1s in the
bit streams [2]. For example, 11000010 represents the value
3/8. The special encoding mechanism renders strong fault
tolerance to SC. With SC, some complex arithmetic functions
can be implemented by simple circuits As shown in Fig. 1,
multiplication of two values in the range [0, 1] can be realized
by a simple AND gate. Because of strong fault tolerance and
low hardware cost, SC has been applied in various fields, such
as image processing [3], digital filters [4], and artificial neural
network [5].
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Fig. 1: SC multiplication using a single AND gate.

The circuit operating on stochastic bit streams is called
SC core. Besides SC core, an essential component of SC
is stochastic numbers generator (SNG), which converts input
binary numbers into stochastic bit streams. Compared to the
SC core, the SNG has a much larger area.
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One challenge SC faces is long latency. To reach a precision
m of a binary number, the length of a stochastic bit stream
should at least be 2m. In a serial implementation, since the
circuit handles one bit in the bit stream per clock cycle, the
latency equals the circuit delay times the bit stream length.
Thus, serial SC implementation has a large latency that grows
exponentially with the precision.

One straightforward way to reduce the latency is to adopt
parallel implementation [6]. In this method, a bit stream of
length L is replaced by P bit streams of length L/P . Instead of
using one SC circuit, P copies of the circuit are used to handle
these bit streams in parallel. However, this method achieves
latency reduction at the cost of multiplying the circuit area.
Particularly, this method multiplies the area of the SNG.

Previous studies showed that an SNG can be decomposed
into two modules, a random number source (RNS) and a
probability conversion circuit (PCC), where the RNS provides
random bits and the PCC converts these bits into a bit stream
of a specified probability [7]. For serial SC implementation,
techniques to reduce the SNG cost by sharing RNS and PCC
were proposed. In [8] and [9], two approaches were proposed
to get bit streams with low correlation by shuffling the output
of a single RNS. In [10], a solution to reduce the cost of PCCs
after RNSs being shared was proposed. It uses a type of PCC
called weighted binary generator (WBG) [11]. For parallel
implementation, the work [6] proposed a method to share the
SNGs. It also uses WBG as the PCC. However, the common
module shared among different SNGs is a large memory array,
which causes a high area cost for the design. In this work, we
propose an area-efficient WBG sharing mechanism for parallel
stochastic computing.

In summary, the main contributions of this work are:

1) We propose an area-efficient WBG-based parallel SC
implementation by properly sharing the RNSs and the
WBGs. Our method can be applied to SC circuit with
an arbitrary number of inputs and an arbitrary number of
parallel copies.

2) We analyze the theoretical area-latency product of the
proposed parallel implementation and compare it with the
serial counterpart.

3) We synthesize the circuit and obtain its area and latency.
The results show that our design achieves 58.5% reduc-
tion over the serial counterpart in terms of area-latency
product.



II. WEIGHTED BINARY GENERATOR

Weighted binary generator (WBG) is a PCC proposed
in [11]. The circuit structure for a target probability of 4-bit
precision is depicted in Fig. 2. It can be divided into two parts,
WBG part 1 and part 2 [10]. The WBG part 1 takes random
bits r3, . . . , r0, each with probability of 0.5 to be a 1, as inputs
and applies AND gates to them to get the signals wi as

w3 = r3, w2 = r3 ∧ r2, w1 = r3 ∧ r2 ∧ r1,

w0 = r3 ∧ r2 ∧ r1 ∧ r0.

where ∧ represents the logical AND. The WBG part 2 is
composed of AND gates and a tree of OR gates. The AND
gates take w3, . . . , w0 and the bits c3, . . . , c0 for specifying the
target probability as inputs and get ui = wi∧ci (i = 0, . . . , 3).
The OR gate tree finally produces the output x = u3∨. . .∨u0,
where ∨ represents the logical OR.
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Fig. 2: A weighted binary generator for a target probability of 4-bit
precision.

It can be shown that the output probability of the WBG is
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where C = (c3, . . . , c0)2, the binary number encoded by
c3, . . . , c0.

The previous work [10] shows that for an SC circuit with
SNGs based on WBGs, if some inputs could be correlated,
then we could share both the RNS and WBG part 1 to generate
these inputs.

III. THE PROPOSED DESIGN

A straightforward parallel SC implementation is shown in
Fig. 3 using the multiplication z = xy for illustration. WBG
is used as the PCC. As it shows, the input x (resp. y) is
represented by two parallel bit streams x(1) and x(2) (resp.
y(1) and y(2)). The length of each parallel bit stream is half
of the original serial bit stream.

Although this parallel method reduces the latency by half,
the circuit area doubles. Inspired by the previous work [10],
we also exploit the sharing of the RNS and WBG part 1 to
reduce the area cost of SNGs. The design is shown in Fig. 4.
The SNG part contains two RNSs, two WBG part 1s, and four
WBG part 2s. We denote the set of w signals produced by the
ith (i = 1, 2) pair of RNS and WBG part 1 as −→wi. We denote
the set of binary inputs to the WBG that specify the target
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Fig. 3: A straightforward parallel stochastic computing implementa-
tion based on WBG.
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Fig. 4: The proposed parallel SC design with shared WBG for two
independent inputs.

probability x (resp. y) as −→x (resp. −→y ). For the top AND gate,
its two inputs are produced by two WBG part 2s. The first
WBG part 2 has −→w1 and −→x as inputs and produces the bit
stream x(1), while the second has −→w2 and −→y as inputs and
produces the bit stream y(1). For the bottom AND gate, its
two inputs are produced by the two remaining WBG part 2s.
The first WBG part 2 has −→w2 and −→x as inputs and produces
the bit stream x(2), while the second has −→w1 and −→y as inputs
and produces the bit stream y(2). This design has the following
three important features.

1) The two input bit streams for each AND gates are pro-
duced by two different RNSs. Thus, they are independent
and the multiplication is correctly realized.

2) The parallel bit streams x(1) and x(2) (resp. y(1) and
y(2)) are generated by two different RNSs, which ensures
that x(1) and x(2) (resp. y(1) and y(2)) are not identical.
Otherwise, if they are identical, the effective precision
encoded by the two parallel bit streams is reduced by half
and it is meaningless to have such parallel bit streams.

3) It saves two RNSs and two WBG part 1s compared to the
straightforward parallel implementation shown in Fig. 3.

The above design methodology can also be extended to
general situation where the SC circuit has N independent
inputs and each input is represented by P parallel bit streams.
Assume the N inputs are x1, . . . , xN and their corresponding
sets of binary inputs are −→x1, . . . ,

−→xN . For the general situation,
the parallel design has P copies of the SC core. The total
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Fig. 5: The proposed parallel SC design with shared WBG for three
independent inputs and two parallel copies.

number of inputs to all the SC cores is NP . Thus, it needs
NP WBG part 2s. The number of pairs of RNS and WBG
part 1 needed depends on which one of N and P is larger.

1) When N ≥ P , the design needs N pairs of RNS and
WBG part 1. This is because we need N pairs of RNS
and WBG part 1 to provide N different input streams
to each copy of the SC core. Denote the N groups of
w signals provided by these N pairs as −→w1, . . . ,

−→wN .
For the ith (1 ≤ i ≤ P ) copy of the SC core, we
let the N pairs of inputs to N WBG part 2s for that
copy be (−−−→wf(i),

−→x1), (
−−−−→wf(i+1),

−→x2), . . . , (
−−−−−−−→wf(i+N−1),

−→xN ),
where f(k) = ((k − 1) mod N) + 1. An example for
three independent inputs and two parallel copies is shown
in Fig. 5.

2) When N < P , the design needs P pairs of RNS and
WBG part 1. For the ith (1 ≤ i ≤ P ) copy of the SC core,
we let the N pairs of inputs to N WBG part 2s for that
copy be (−−−→wf(i),

−→x1), (
−−−−→wf(i+1),

−→x2), . . . , (
−−−−−−−→wf(i+N−1),

−→xN ),
where f(k) = ((k−1) mod P )+1. An example for two
independent inputs and three parallel copies is shown in
Fig. 6.

IV. ANALYSIS OF THE AREA-LATENCY PRODUCT

In this section, we will analyze the area-latency product to
show the advantages of our design. We denote the areas of the
RNS, the WBG part 1, the WBG part 2, and the SC core as
AR, AW1, AW2, and AC , respectively. We denote the circuit
delay as d. We first take an SC circuit with 2 independent
inputs as an example. For the serial implementation based on
WBG, assume the bit stream length is L. It needs 2 RNSs,
2 WBG part 1s, 2 WBG part 2s, and 1 SC core. Thus, its
area-latency product is

(2AR + 2AW1 + 2AW2 +AC)Ld.

For our proposed design with 2 parallel copies, as shown in
Fig. 4, it needs 2 RNSs, 2 WBG part 1s, 4 WBG part 2s, and
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Fig. 6: The proposed parallel SC design with shared WBG for two
independent inputs and three parallel copies.

2 SC cores. However, the bit stream length is reduced to L/2.
Thus, the area-latency product of our design is

(2AR + 2AW1 + 4AW2 + 2AC)
L

2
d

=(AR +AW1 + 2AW2 +AC)Ld.

Thus, our design reduces the area-latency product over the
serial design by (AR +AW1)Ld.

For a general stochastic circuit with N independent inputs,
its serial implementation needs N SNGs. Its area-latency
product is

(NAR +NAW1 +NAW2 +AC)Ld. (1)

For the proposed implementation with P parallel copies, the
area-latency product can be obtained as

(MAR +MAW1 +NPAW2 + PAC)
L

P
d

=

(
M

P
AR +

M

P
AW1 +NAW2 +AC

)
Ld,

where M = max{N,P}. Compared with Eq. (1), the reduc-
tion of the area-latency product is (N−M/P )(AR+AW1)Ld.

V. EXPERIMENTAL RESULTS

In this section, we experimentally study the accuracy and
the hardware cost of the proposed design. Three different
SC designs are considered for comparison. The first one is
a serial implementation using the widely-used comparators as
the PCCs. The second one is also a serial implementation, but
it uses the WBGs as the PCCs. The last one is our proposed
parallel implementation with WBG sharing. For simplicity,
we refer to these three designs as the serial CMP, the serial
WBG, and the parallel WBG, respectively. 8-bit LFSRs were
used as the RNSs. In the experiments, we first evaluated the
accuracy of the SC circuits. Then, we synthesized the circuits
and obtained their hardware costs.



A. Accuracy Comparison
In this section, we compare the accuracy of the three

designs. We used the multiplication z = xy as the target
function. For the parallel WBG, we chose the number of
parallel copies as 2. We tested on 5 different bit stream
lengths 16, 32, 64, 128, 256. For each length, we performed the
simulation 100 times and for each simulation, we randomly
chose the LFSR seed and the input probabilities. We calculated
the mean absolute error (MAE) over the 100 simulations for
each length. Fig. 7 plots how MAE changes with bit stream
length for the three designs. From the figure, we can see that
our design has the smallest MAE among the three designs.

Fig. 7: Mean absolute error comparison for three different SC
designs implementing z = xy over different bit stream lengths.

B. Hardware Cost Comparison
In this section, we compare the area and the latency of

the three designs. The latency equals the circuit delay times
the bit stream length. We set the bit stream length for the
serial implementations as 256. We focused on the SNG part
and ignored the SC core and the derandomizer, which further
converts the bit stream representation back into the binary
representation. The technology library that we used is SMIC
40nm library [12].

We first considered implementing a function with 2 indepen-
dent inputs. We assumed that the parallel WBG has 2 parallel
copies. The experimental results for the three designs are listed
in Table I. Both the area and the latency of the serial CMP are
the largest. The latency of the parallel WBG reduces by 38.3%
over the serial WBG although its area increases by 8.3%. In
terms of the area-latency product, the parallel WBG achieves
51.9% reduction over the serial CMP and 33.1% reduction
over the serial WBG. It should be noted that the area of the
serial CMP design is even larger than that of the parallel WBG.
This is because the area of one comparator is larger than the
total area of one WBG part 1 and two WBG part 2s.

We also compared the hardware cost of the three designs for
a function with 3 independent inputs. For the parallel WBG,
we set its number of parallel copies as 3. The results are listed
in Table II. From the table, we can see that the area-latency
product of our design achieves 68.2% and 58.5% reduction
over those of the serial CMP and the serial WBG, respectively.
Compared to the 2-input case, the reduction ratio increases.

TABLE I: Hardware cost comparison of three SC designs for a
function with 2 independent inputs.

Design serial CMP sreial WBG parallel WBG
Area (µm2) 264 240 260
Latency (ns) 182.24 144.16 88.96
Area-latency

product (µm2 · ns) 48111.4 34598.4 23129.6

TABLE II: Hardware cost comparison of three SC designs for a
function with 3 independent inputs.

Design serial CMP serial WBG parallel WBG
Area (µm2) 438 423 453
Latency (ns) 177.6 140.96 54.56
Area-latency

product (µm2 · ns) 77788.8 59626.1 24715.7

VI. CONCLUSION

In this paper, we considered parallel implementation of SC
circuit. It could reduce the latency of an SC circuit but at
the cost of a large area. We proposed a method to reduce
the area by using WBGs as the PCCs and sharing the RNSs
and the WBGs. We showed the design methodology for SC
circuit with an arbitrary number of inputs and an arbitrary
number of parallel copies. Our experimental results showed
that our proposed parallel implementation could reduce the
area-latency product by 58.5% over the serial implementation.
In our future work, we will study how to efficiently implement
the derandomizer for the parallel implementation.
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