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Abstract—Recently, due to the high fault tolerance and low
hardware cost, stochastic computing (SC)-based neural network
(NN) accelerators have been widely studied. One big challenge of
it is the implementation of accumulation and activation function.
The existing designs have problems of low accuracy and high
energy consumption. In this paper, based on a special type of
stochastic encoding, the parallel thermometer coding, we propose
an accurate design for the combination of the accumulation and
non-linear function, which is called a non-linear adder. Dedicated
designs for the non-linear adders with the common activation
functions such as hyperbolic tangent (tanh), logistic (or sigmoid),
and rectified linear unit (ReLU) are proposed using the bitonic
sorting network and the selective interconnect. The experimental
results show that, at the cost of the area, the proposed non-
linear adder achieves more than three orders of magnitude
improvement in accuracy and at least 44.5× energy consumption
reduction compared with the traditional designs.

I. INTRODUCTION

Stochastic computing (SC) [1], [2] has been explored as
an alternative method to implement arithmetic calculations.
It uses the probability in a bitstream to represent a value.
It not only has lower power consumption and higher fault
tolerance than conventional binary radix computing, but also
enables a higher integration density [3]. Therefore, SC has
been applied to many neural network (NN) computations such
as multi-layer perceptrons [4], [5], deep belief networks [6],
and deep neural networks [7]–[12], where a large number of
multiplication operations make SC very attractive.

However, one big challenge for the SC-based NN acceler-
ators is to accurately and efficiently realize the accumulation
and activation function. In what follows, we call the com-
bination of the accumulation and the activation function the
non-linear addition. So far, the SC-based implementation of
the accumulation uses either an approximate parallel counter
(APC) or a MUX-based scaled adder [13], while that of the ac-
tivation functions uses a counter-based design [14]. However,
they are both imprecise. As a result, the accuracy of an SC-
based NN accelerator can easily be reduced to an unacceptable
level. In order to improve the accuracy, a bitstream long
enough is usually used. However, this causes a long latency
and a large energy consumption for the whole NN accelerator,
weakening the advantage of SC. Furthermore, to the best of
the authors’ knowledge, there is no solution to implement the
exact rectified linear unit (ReLU) function unless the bitstream
is converted into the binary format. However, an exact ReLU
is an essential part of the state-of-the-art NNs [15].

In this paper, we propose a novel non-linear adder working
with a special type of stochastic encoding, the parallel ther-
mometer coding. It is based on the bitonic sorting network and
the selective interconnect. Bitonic sorting network [16], [17]
transforms multiple parallel bitstreams into one. By selecting
different outputs of the sorting network, three widely-used
activation functions, hyperbolic tangent (tanh), logistic (or
sigmoid), and ReLU functions, are accurately implemented.
We summarize our contributions as follows:

• We propose a novel non-linear adder based on parallel
thermometer coding. The adder is implemented by a
bitonic sorting network and a selective interconnect. It
significantly improves the latency and the accuracy.

• Compared with the traditional SC implementations of the
non-linear adder, the proposed one reduces the energy
consumption by at least 44.5×.

The rest of the paper is organized as follows. Section II
discusses the related works. Section III introduces the architec-
ture of the proposed non-linear adder. Section IV presents the
experimental results. Finally, Section V concludes the paper.

II. RELATED WORKS

There are two designs of the non-linear adder in SC. They
differ in the implementations of the adder. One is based on
APC, and the other is based on MUX. In the following, we
will give a brief introduction of the two designs.
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Fig. 1. Two traditional non-linear adders in SC.



A. APC-Based Non-Linear Adder

Fig. 1(a) illustrates a non-linear adder based on APC.
Assume that the number of input bitstreams is M . The APC
calculates the sum of the M input bits in each clock cycle.
Since the weight and input data in a neural network can be
either positive or negative, the bipolar stochastic encoding is
used. The output sum of the APC in the binary format is
sent to an up/down saturation counter to realize the non-linear
activation function. By different configurations of the counter,
various activation functions can be realized [14].

B. MUX-Based Non-Linear Adder

Fig. 1(b) shows a MUX-based non-linear adder, which con-
sists of an M -to-1 MUX and an up/down saturation counter.
The MUX realizes an addition of the M input bitstreams
with a scaling factor of 1/M . The output of the MUX is fed
into a counter, and different activation functions are realized
by different configurations of the counter. Since the weights
and the inputs of a neural network can be either positive or
negative, the bitstream adopts the bipolar format.

Unfortunately, the two existing schemes suffer from serious
problems. For the MUX-based scaled adder, its accuracy is far
less than that of the APC-based adder, due to the randomness
in the selecting signal of the MUX [13]. Although APC
can achieve a more accurate addition, it needs an additional
module to convert the bitstreams into a binary number, which
eliminates the advantages of SC including simple circuitry and
high fault tolerance. In addition, the accuracy of the non-linear
activation function implemented by the counter highly depends
on the randomness of the input bitstream. An input bitstream
not random enough reduces the computation accuracy.

III. PROPOSED ARCHITECTURE

In this section, we describe the architecture of the proposed
non-linear adder based on thermometer coding. It consists of
two parts, as shown in Fig. 2. The first part is a bitonic sorting
network, which converts M parallel input bitstreams with the
bitstream length (BSL) of N into a longer bitstream with the
BSL of MN . The second part is a selective interconnect,
which generates different non-linear addition results by se-
lecting different outputs of the sorting network.

A. Thermometer Coding

Thermometer coding is a type of unary coding. It consists
of a continuous sequence of 1s followed by a continuous
sequence of 0s. For example, 11111000 is a bitstream with
thermometer coding. Since the input data in a neural network
can be either positive or negative, the bipolar-format ther-
mometer coding is used in this work. In the bipolar format, a
bitstream with the ratio of 1s as x represents the value (2x−1).
For example, the bitstreams 11111000 and 11100000 encode
the values 1/4 and −1/4, respectively. Furthermore, we use
the parallel thermometer coding [18]–[21], where all the bits
of a stream are simultaneously input to and output from a
circuit. The computation finishes in one clock cycle.

B. Bitonic Sorting Network

Bitonic sorting network is a parallel implementation of
sorting, as shown in Fig. 2. It is composed of many arrow
modules, each comparing two inputs. There are two types
of arrow modules giving different output orders. They are
ascending sorting module and descending sorting module. In
traditional binary computing, each arrow module consists of a
multi-bit comparator and two multi-bit multiplexers. However,
in SC, since each arrow module compares two single-bit
inputs, its design is very simple and only consists of an
AND gate and an OR gate, as shown in Fig. 2. In a bitonic
sorting network, an unordered sequence of length L is first
transformed into an ascending and a descending sequence of
length L/2 by merge sorting, and then these two sequences
are transformed into a monotonic sequence.

The parallel bitstreams are input into a bitonic sorting
network simultaneously. After one clock cycle, the sorting
result of all bits of the input streams is obtained. As shown in
Fig. 2, four input bitstreams with the BSL of 4 are transformed
into a longer bitstream with the BSL of 4 × 4 through the
sorting network. It is worth noting that the output bitstream
of the sorting network is arranged in a descending order
from the top to the bottom. It is a longer bitstream based
on thermometer coding and can be seen as a scaled addition
of the input bitstreams with a scaling factor of 1/M , where
M in the number of input bitstreams. For example, in Fig. 2,
if the four input bitstreams are 0000, 1000, 1110, and 0000,
which encode −1, −0.5, 0.5, and −1, respectively, then the
output is a sorted result 1111000000000000, which encodes
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Fig. 2. The architecture of the proposed non-linear adder, which consists of a bitonic sorting network and a selective interconnect.
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Fig. 3. An example for illustrating our selective interconnect method. The
example is the tanh function with the BSL of 4 and the number of input
bitstreams of 4.

Fig. 4. The accuracy of the proposed non-linear adder with the tanh activation
function for different bitstream lengths (BSLs) from 8 to 64. The red lines
are the expected tanh curve and the blue dots are the outputs of the proposed
design.

−0.5. It can be seen that the output is the sum of the input
values scaled by 1/4. The actual sum can be easily obtained
by multiplying the scaled sum by M .

C. Selective Interconnect

By observing the output results of the sorting network, we
can see that the output of each bit is a comparison result. For
M input bitstreams with the BSL of N , if the output y[i] of
the sorting network is 1, it means that the output bitstream has
more than i 1s out of MN bits. This indicates that the scaled
sum of the inputs is larger than 2i

MN − 1, or the actual sum is
larger than 2i

N −M ; otherwise, it means that the actual sum
is smaller than or equal to 2i

N −M . Based on this observation
and inspired by a method described in [22], we propose a
selective interconnect method, which chooses N outputs from
the MN outputs y[i] of the sorting network as the final outputs
to implement the non-linear activation function. Notice that
the method in [22] implements a function with thermometer
coding and the BSLs of its input and output are the same.
However, our method handles the situation where the BSLs of
the input and the output are different.

We use the tanh function as an example to illustrate our
method. We assume that the number of the input bitstreams
is M = 4 and the BSL is N = 4. The horizontal axis a
represents the sum of the inputs, ranging from −4 to 4. It is
the input to the tanh function. We divide the range [−4, 4]
into MN + 1 = 17 equidistant points (a0, a1, . . . , a16) =
(−4,−3.5, . . . , 4). Except the first point a0, we link each
remaining point ai+1 (0 ≤ i ≤ 15) to the output y[i] of
the sorting network, as shown in Fig. 3. By the previous
observation, we can see that if the input to the tanh function
changes from ai (i.e., i

2 − 4) to ai+1 (i.e., i+1
2 − 4), then the

output y[i] flips from 0 to 1. The vertical axis b represents
the output of the tanh function, ranging from −1 to 1. We
divide the range [−1, 1] into N + 1 = 5 equidistant points
(b0, b1, . . . , b4) = (−1,−0.5, . . . , 1). To decide which y[i]’s
should be selected as the final outputs, we further discretize

Fig. 5. The accuracy of three non-linear adders with 16 input bitstreams.
The red lines are the expected curves and the blue dots are the outputs of the
non-linear adders.

the tanh curve. For each ai (0 ≤ i ≤ 16), we round tanh(ai)
to the closest point f(ai) ∈ {b0, b1, . . . , b4}. This gives the 17
blue dots (a0, f(a0)), . . . , (a16, f(a16)) in Fig. 3. Then, we
scan these dots from left to right. If f(ai+1) increases over
f(ai) by a value of 2k/N ≥ 2/N , then it means that with
the input value changing from ai to ai+1, the output value
increases by 2k/N . Note that the input value changing from
ai to ai+1 is indicated by the output y[i] flipping from 0 to 1.
Furthermore, since the output is also in bipolar thermometer
coding, the increase of the output value by 2k/N indicates
that the number of 1s in the output bitstream should increase
by k. Given these two facts, we simply choose k y[i]’s as the
outputs. In our example, since f(a7) increases over f(a6) by a
value of (2 ·1)/4, y[6] is selected as a final output. The final 4
outputs are y[6], y[7], y[8], y[9] for this example, as highlighted
in red in Fig. 3.

Fig. 4 shows the implementation result of the tanh acti-
vation function with different BSLs. As the BSL increases,
the accuracy of the proposed non-linear adder improves. It is
worth noting that for the three common activation functions,
only the middle part of the sorting network outputs is selected
as the final outputs. Therefore, some arrow modules in the
later layers of the sorting network can be omitted since they
do not contribute to the selected outputs, thus reducing the
area.

IV. EXPERIMENTAL RESULTS

A. Accuracy

Compared with the traditional SC-based non-linear adders,
our proposed design is accurate and deterministic. Its accuracy
loss is only due to the insufficient BSL. Fig. 5 shows the
results of three non-linear adders with three different activation
functions. The number of input bitstreams is 16. For the
traditional implementations, the BSL is 1024, while for our
design, the BSL is 16.

For the MUX-based non-linear addition, in each clock cycle,
one of the M input bitstreams is randomly selected as the
output, while the information carried by the other M − 1



TABLE I
COMPARISON OF DIFFERENT NON-LINEAR ADDERS.

Non-Linear Function Variance (%) Area (µm2) Power (µW) Latency/Operation (µs) Energy/Operation (fJ)

MUX-based (1024 BSL)
Tanh 105.45 135.65 18.7 10.24 191.5

Sigmoid 17.65 131.41 18.9 10.24 193.5
ReLU 22.51 115.01 11.3 10.24 115.7

APC-based (1024 BSL)
Tanh 0.35 261.25 25.4 10.24 260.1

Sigmoid 0.5 106.37 18.7 10.24 191.5
ReLU 1.78 253.31 22.2 10.24 227.3

This work (16 BSL)
Tanh 0.08 5607.58 701 0.01 7.0

Sigmoid 0.04 5602.11 609 0.01 6.1
ReLU 0 5354.62 693 0.01 6.9

This work (8 BSL)
Tanh 0.29 2082.93 250 0.01 2.5

Sigmoid 0.13 2009.73 210 0.01 2.1
ReLU 0 1981.15 258 0.01 2.6

bitstreams is lost. With the increase in the number of input
bitstreams, the error caused by the information loss becomes
larger. As shown in Fig. 5, for 16 input bitstreams, the MUX-
based non-linear addition cannot guarantee accurate output
results. For the APC-based non-linear addition, although the
stochastic-to-binary conversion improves the accuracy of the
addition operation, the counter-based implementation of the
non-linear activation function needs a large BSL to achieve
relatively accurate results. Even with a BSL of 1024, the non-
linear function still randomly fluctuates. Especially for the
ReLU function, there are large errors for x near zero.

Compared with the existing SC implementations, the pro-
posed design is accurate and only has rounding errors. With
only a small BSL, such as 16, it can achieve accurate non-
linear functions, especially for the piecewise linear function
like ReLU.

B. Overall Performance

TABLE I compares the proposed non-linear adder with
the traditional MUX-based and APC-based non-linear adders,
in terms of variance, area, power, latency per operation,
and energy per operation for three commonly-used activation
functions. We synthesize different non-linear adders using
Synopsys Design Compiler with TSMC 40nm technology. The
operating frequency is 100MHz.

The results indicate that, compared with the two traditional
designs, the proposed one reduces the variance by more than
three orders of magnitude and improves the accuracy of three
kinds of non-linear addition. Our design with the BSL of 16
is more accurate than the traditional designs with the BSL
of 1024. Even for a particularly small BSL of 8, our design
is still more accurate than the traditional ones. Especially for
ReLU, a piecewise linear function, our design can achieve
accurate results, which means that the variance is 0, without
considering the quantization error due to the limited BSL.

The proposed parallel design significantly reduces the la-
tency from BSL clock cycles to only one cycle. Nevertheless,
the latency is a trade-off with the area. As shown in TABLE I,
even for the BSL of 8, the area of the proposed design is at
least 7.8× larger than that of the APC-based design and 15.3×
larger than that of the MUX-based design. This increase in area
is because our design method expands the input parallelism by

a factor of the BSL. Moreover, the increase in area results
in a substantial increase in static power consumption. The
proposed design with the BSL of 8 has at least 9.8× and 11.1×
more power consumption than the APC-based and MUX-based
designs, respectively.

Given the reduction of latency and the increase of power
consumption, in order to make a fair comparison, we further
compare the overall energy consumption. The proposed adder
with the BSL of 8 achieves at least 44.5× and 87.4× energy
improvement over the MUX-based one and the APC-based
one, respectively. The reason is because we adopt parallel ther-
mometer coding, which has no intrinsic errors (e.g., random
fluctuation error) except the rounding error, and thus improves
the computation accuracy. Therefore, a small BSL can meet
the accuracy requirement of arithmetic calculations. Such a
decrease in BSL reduces the energy consumption significantly.

In summary, the proposed non-linear adder achieves high
accuracy. Although it has a larger area, the total energy
consumption is reduced by more than an order of magnitude
compared with the traditional designs.

V. CONCLUSION

In this paper, we propose a new non-linear adder based
on parallel stochastic computing, where all calculations are
implemented by a bitonic sorting network and a selective
interconnect. Compared with the traditional designs, ours is
accurate and deterministic with only rounding errors. For a
short BSL, such as 8 or 16, the accuracy improves by more
than three orders of magnitude compared with the traditional
designs. Particularly, the ReLU function has no error. The
experimental results show that the proposed non-linear adder
achieves at least 44.5× and 87.4× energy consumption im-
provement compared with the MUX-based one and the APC-
based one, respectively.
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