Exploiting Uniform Spatial Distribution to Design Efficient
Random Number Source for Stochastic Computing

Kuncai Zhong!, Zexi Li', Haoran Jin', Weikang Qian

1,2,%

'University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, China
2MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China
{kczhong,1zx12138,allenjin,qianwk}@sjtu.edu.cn

ABSTRACT

Stochastic computing (SC) generally suffers from long latency. One
solution is to apply proper random number sources (RNSs). Nev-
ertheless, current RNS designs either have high hardware cost or
low accuracy. To address the issue, motivated by that the uniform
spatial distribution generally leads to a high accuracy for an SC
circuit, we propose a basic architecture to generate the uniform
spatial distribution and a further detailed implementation of it. For
the implementation, we further propose a method to optimize its
hardware cost and a method to optimize its accuracy. The method
for hardware cost optimization can optimize the hardware cost
without affecting the accuracy. The experimental results show that
our proposed implementation can achieve both low hardware cost
and high accuracy. Compared to the state-of-the-art stochastic num-
ber generator design, the proposed design can reduce 88% area with
close accuracy.

KEYWORDS

stochastic computing, random number source, uniform spatial dis-
tribution

1 INTRODUCTION

Stochastic computing (SC), an unconventional computing paradigm
proposed in 1960s [1], has attracted much attention in recent years
[2]. It does complex computation by simple circuits based on sto-
chastic bit streams, which encode values by the ratios of ones [3].
For example, SC can implement multiplication by a single AND
gate. SC also has strong fault tolerance. Owing to these advantages,
SC has been successfully applied in many domains, such as image
processing [4] and neural networks [5].

However, to ensure high accuracy, SC generally requires long
stochastic bit streams, which lead to long latency and high energy
consumption. Note that a stochastic bit stream is generated by a
stochastic number generator (SNG) in an SC circuit, and a main
component in an SNG that controls the randomness is a random

*Corresponding author: Weikang Qian.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICCAD °22, October 30-November 3, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9217-4/22/10...$15.00
https://doi.org/10.1145/3508352.3549396

number source (RNS).! Thus, one solution to the problem of long
stochastic bit stream is to design a proper RNS.

To this end, there have been many novel RNS designs proposed [6-
9]. They achieve high accuracy by generating random outputs that
are properly distributed. For example, the Sobol sequence genera-
tors are proposed to generate low discrepancy sequences, which
are uniformly distributed in the time domain [7]. However, these
RNS designs generally suffer from high hardware cost and occupy
most hardware cost of an SC circuit. For example, for a 2-input SC
multiplier, 2 8-bit Sobol sequence generators can even occupy 95.7%
area. Thus, it is crucial to design efficient RNSs with high accuracy
and low hardware cost, which remains as an open problem.

An SC circuit with m inputs needs m RNSs, which output m
random binary numbers in a clock cycle. The m numbers can be
treated as a point in an m-dimensional space Q, which we refer to
as an output point. The output points generated over all the clock
cycles within a computation period form a distribution in the space
Q. In the following, we call the distribution the spatial distribution
of the RNS outputs, or spatial distribution for short. An example
of a random spatial distribution of the RNS outputs for m = 2 is
shown in Fig. 1(a). For an SC circuit, an output point of its RNSs
determines one bit in the output stochastic bit stream of the circuit,
and a spatial distribution determines the entire output stochastic
bit stream and hence, the accuracy of the circuit. Therefore, in order
to achieve a high accuracy, we need to design RNSs generating a
good spatial distribution.

64 ps - = 64
56 s - 56
48 '.. . . 8
o 0
K o
w0l e . - . I RN
£32] . S e S & 32
24 4 ..o.’ : 2
o
161 . . o 16
o N " R RN RN
° . 'l
04 : o
0 8 16 24 32 40 48 56 64 % & 16 24 32 40 48 56 64
R1 R1
(2 (b)

Figure 1: Example of the spatial distribution of the RNS out-
puts for m = 2: (a) random distribution; (b) uniform distribu-
tion.

A prior work points out that a uniform spatial distribution will
generally lead to a high accuracy for an SC circuit [6]. An example
of a uniform spatial distribution is shown in Fig. 1(b), where each
grid has exactly one point. Nevertheless, the work [6] only gives a
preliminary discussion about it. To the best of our knowledge, there
is still no systematic study on how to generate a uniform spatial

!We will describe them in detail in Section 2.

https://doi.org/10.1145/3508352.3549396

ICCAD '22, October 30-November 3, 2022, San Diego, CA, USA

distribution with low hardware cost, and there is even no formal
de nition about it in the context of SC.

In this work, to address the above issues, we systematically study
the uniform spatial distribution and exploit it to design low-cost
high-accuracy RNSs. Our main contributions are as follows.

We give a formal de nition of the uniform spatial distribution
and a necessary and su cient condition for generating it (see
Section 3). We also show its di erence from the traditional
notion of uniform distribution

We propose a basic architecture and an implementation

value [11, 17. Sharing RNSs is the method to share an RNSs for
di erent SNGs. It applies circular shift or scrambling to generate
di erent random binary numbers for di erent SNGs in a clock
cycle [13 14. This method usually reduces the number of RNSs
to 1 and achieves the minimum hardware cost for RNSs. However,
these two methods usually degrade the accuracy.

2.3 Methods to Improve the Accuracy of RNSs

Generally speaking, there are two types of methods to improve the
accuracy of the RNSs.

based on linear feedback shift registers (LFSRs) to satisfy = The rst type is to design better RNSs5[9, 15 2(. To ob-

the necessary and su cient condition (see Section 4). The
output points generated by the proposed implementation
form a uniform spatial distribution.
We propose methods to optimize the hardware cost and the
accuracy of the proposed implementation (see Section 5). The
hardware cost optimization method optimizes the cost of the
proposed implementation without a ecting the accuracy.
The experimental results show that our proposed implementa-
tion achieves both low hardware cost and high accuracy. Compared
to the state-of-the-art SNG design, with close accuracy, the pro-
posed design can achie@8%area reduction.

2 BACKGROUND AND RELATED WORKS

In this section, we introduce the background on SC circuits and
the related works on reducing the hardware cost of SNGs and
improving the accuracy of RNSs.

2.1 Stochastic Computing Circuits

To ensure a high computation accuracy, an SC circuit usually re-
quires its stochastic bit streams to be independent or with low
correlation. Thus, as shown in Fig. 2, arinput SC circuit gen-
erally has< SNGs, which produce independent stochastic bit

streams. The SC circuit also has an SC core that computes on the'

bit streams. As shown in Fig. 2, an SNG typically consists of an

RNS and a comparator, where the RNS generates a random binary

number' in a clock cycle and the comparator comparesvith
the input binary number- to generate a bit 1 wheh Y - , and O
otherwise.

Figure 2: General architecture for an < -input SC circuit.

2.2 Methods to Reduce the Hardware Cost of
SNGs

SNGs usually occupy most area of an SC circaf] It is crucial

tain accurate results, an RNS that performs deterministic com-
putation for SC is proposedlf. However, it needs very long
stochastic bit streams. To achieve high accuracy with short sto-
chastic bit streams, several novel RNS designs are proposed to
produce properly-distributed random number sequences based on
low discrepancy sequences,[7, 16 18 20 or pseudo-random se-
quences, 9, 17. However, di erent from our work, these works
mainly focus on producing a random number sequence properly
distributed in thetime domainand do not consider generating a
good spatial distribution of the RNS output§ [9, 16 1§. Further-
more, they either su er from high hardware cos#§[9, 17 19 or

are only applicable for some special circuits like multipliers [16].

Figure 3: lllustration of scrambling.

The second type is to change the outputs of an RNS. Typical
examples are seeding and scramblir&f][Seeding is applied to
LFSR-based RNS. Itis to choose a proper initial value, known as a
seedfor an LFSR. Under di erent seeds, the output sequences of an
LFSR di er. Scrambling is to permute the output of an RNS frono

* 0 as shown in Fig. 3. By applying scrambling, the output sequence

fan RNS also changes. By applying these methods to some RNSs
of an SC circuit, the spatial distribution of the RNS outputs changes
and hence, the accuracy may improve. Furthermore, these methods
can be implemented with no hardware overhead. However, the
existing works on these two methods do not discuss which spatial
distribution is good and how to generate it with the two methods.

3 DEFINITION AND CONDITION FOR THE
UNIFORM SPATIAL DISTRIBUTION

In this section, we rst formally de ne the uniform spatial distri-

bution and compare it with the random spatial distribution. Then,

based on the de nition, we derive a necessary and su cient condi-

tion for the uniform spatial distribution.

3.1 Uniform Spatial Distribution

to reduce the hardware cost of SNGs. There are several methods Consider< =-bit RNSs. They outpu®™ di erent output points in

proposed for this purpose, such as inserting D ip- ops (DFFs) and

the period ofZ™ cycles. We denote each point &sge' ¢ " " "% °,

sharing RNSs. By inserting DFFs, we can duplicate a stochastic where' gis the output of the8th RNS and ranges frofito 2= 1.

bit stream and delay it for some clock cycles to generate a new
stochastic bit stream, which has the same value as the original
one but is uncorrelated to it]). Therefore, it helps reduce the

To de ne the uniform spatial distribution on thes& points, we
rst uniformly split the <-dimensional space W2 194
into 2= grids. For the special case wheréds a multiple of< , each

number of SNGs used to generate stochastic bit streams of the samedimension is split into2< uniform intervals. An example for = 6

Exploiting Uniform Spatial Distribution to Design E icient Random Number Source for Stochastic Computing

and< = 2is shown in Fig. 1(b). For the general case, assume that
==<bZc, ?,where0 ? Y <.Without loss of generality, we
choose the rst? dimensions and split each of them int2f< €
uniform intervals, and for the rest< ?° dimensions, we split
each of them inta2°< ¢ uniform intervals.

Given2™ output points generated in the period & cycles, we
say that they form auniform spatial distributionf each of theZ™
grids has exactly one output point in it. Fig. 1(b) shows an example
of a uniform spatial distribution or2® points.

We remark that the proposed uniform spatial distribution is
di erent from the uniform distribution in the time domain, which
is a sequence of random numbe@ A" ” " such that forany8 1,
Ais arandom number uniformly distributed in a given range. In the
context of SC, the range is typicalfy»1+"" "2~ 1g. To generate
such a uniform distribution, there have been several RNS designs
proposed § 9,15 2(to randomly generate a number in the range
with the same probability aszlf. However, this type of uniform
distributions only focuses on a single RNS and does not consider the
spatial distribution of the output points of RNSs 1§. Therefore,
it cannot ensure a high accuracy for the SC circuits. In the context
of SC, it is more essential to study the spatial distribution.

Next, we compare the uniform spatial distribution with the ran-
dom spatial distribution to show its strength. The prior worl6],
which is the most related work to ours, has done a preliminary com-
parison of these two distributions by just using a special example.
In contrast, we perform a more comprehensive comparison here
by considering a large number of random samples to draw a more
solid conclusion. Speci cally, we consider a 2-input SC multiplier
and 1000 random spatial distributions and 1000 uniform spatial
distributions. For each distribution, we randomly gener&it800
input pairs and calculate the mean absolute error (MAE) over these
1000pairs as follows

00

5001 0 -

1
MAE= — =

1000,

@

whereOg and1g are the inputs in theBth input pair and 510g 1g° is
the output of the 2-input SC multiplier wittDg and1g as the inputs.
We compare the minimum, the maximum, and the average MAEs
for the two types of spatial distributions over th£000samples. The
comparison is shown in Table 1 fer= 678, where Min, Max, and
Ave denote the minimum, the maximum, and the average MAEs,
respectively. Clearly, the uniform spatial distribution has much
lower error than the random spatial distribution. Therefore, it is
desirable fox RNSs to produce a uniform spatial distribution.

Table 1: MAE comparison for di erent distributions.

_ Random Uniform

7 Min Max Ave Min Max Ave

6 0.016 0.094 0.034 0.010 0.017 0.013
7 0.011 0.062 0.024 0.0063 0.010 0.0080

8 0.0081 0.045 0.017 0.0039 0.0057 0.0047

3.2 A Necessary and Su cient Condition for
Uniform Spatial Distribution

Suppose that th&th (1 8 <) dimension of the space has
2% intervals. According to our space partition rule mentioned in

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

Section 3.1, we havg = d=eforl 8 ?and$% = b=cfor
?.1 8 <.Consideragridwith thé&th dimension mappedto the
gth(l 8 <0 4 293) interval in the8th dimension of the
space . Then, the grid can be uniquely indexed by a combination
asl 1o 2#"""e .0 Sinced ; g¥Y 2%, gcanbe represented as
a %-bit binary number. Since §=1 3 = =, by cascading the binary
representations of 1¢ 2*”" " < in sequence, we will obtain an-
bit binary number, denoted as! 1+”” "+ < °. Therefore, each grid
can be uniquely indexed by the binary numbet 1¢”" "+ < °. For
example, for the bottom-left grid in Fig. 1(b), it can be indexed by a
combination! ¢ 2° = 110002+10002° or a 6-bit binary number
L g 2°=1000006p.

Now consider an output pointe=1' 1¢' ¢ " " "¢ 2 © If the g most
signi cant bits (MSBs) of g form a binary number g, then the
pointisinthe gthintervalinthe8th dimension of the space. In
the following, we call theg MSBs of gits leading bitsand the rest
bits of' gits trailing bits. Therefore, the index t 1¢”" "« < ° of the
grid where the point%locates equals the cascading of the leading
bits of' 12" " "+~ , denoted a$ ' 1¢”"""+2 © or! 198 for short. For
example, for the output point' 1¢' 2° = 12000106+1000108° in
Fig. 1(b), the cascading of the leading bits @fand’ 2 is 1000008p.
Therefore, it is located in the bottom-left grid.

By the above analysis and the de nition of the uniform spatial
distribution, we can reach the following necessary and su cient
for the uniform spatial distribution.

Claim 1. 2= output pointg4e """ *8 generated by the RNSs in
the period o2~ cycles form a uniform spatial distribution if and only
if the setf! 194% """« 19%=-°gequals the sdf»1+"" "2~ 1g.

4 BASIC ARCHITECTURE AND
IMPLEMENTATION

In order to generate a uniform distribution, we only need to satisfy
the necessary and su cient condition stated in Claim 1. In this
section, we rst propose a basic architecture to satisfy the condition.
Then, we propose a detailed implementation of it using LFSRs.

4.1 Basic Architecture

Figure 4: The basic architecture for generating the uniform
spatial distribution, where TBG gdenotes the 8th trailing-bit
generator.

Our proposed basic architecture that satis es the necessary and
su cient condition in Claim 1 is shown in Fig. 4. In the gure, the
notation # »9: : ¥denotes thedth to the : -th MSBs of a binary
number# . For examplée, g»l : ¥Ydenotes thel-st to the @-th MSBs
of' g, i.e., the leading bits dfg. The architecture has ar-bit uniform
generatarwhich is a binary number generator that generates all
=-bit binary numbers in the period of~. Examples include an-bit
counter and arF-bit pseudo-random number generator.

ICCAD '22, October 30-November 3, 2022, San Diego, CA, USA

Figure 5: Implementation to generate the uniform spatial distribution, where

The architecture uses the-bit uniform generator to produce an
=-bit binary number- in each clock cyclei. To generate an output
pOINt %= ¥' 10" 5#"" "+ ©, we apply the* 819, 1thtothe
1 5:1 9°-th MSBs of as the leading bits ofg, forl 8 <.
Also, the architecture includes trailing-bit generatorg.e., TB@s),
which are used to generate the trailing bits bf's. By this design,
we have! 198 = - . According to the de nition of the=-bit uniform
generator, we further have! 194% """ ¢19p=0g = fQele"" "2~
1gfor 2= output points%e """ *% generated by the architecture
in a period ofZ" cycles. Thus, by Claim 1, the basic architecture
produces a uniform spatial distribution.

4.2 Proposed Implementation Based on LFSR

In this section, we proposed a detailed implementation of the basic
architecture using LFSRs. LFSR is the most widely used RNS with
low hardware cost. Ar=-bit LFSR outputs all positive-bit integers

in the period of!2= 1° cycles. Ignoring that it does not output 0,
we can roughly treat an LFSR as a uniform generator. Furthermore,
if we scramble the output bits of ams-bit uniform generator by

the scrambling module shown in Fig. 3, we still get atbit binary
numbers in the period of™. Therefore, a uniform generator with

its outputs scrambled is still a uniform generator.

Based on the above discussion, we propose a detailed implemen-
tation shown in Fig. 5, where SRlenotes the8th scrambling mod-
ule. It applies an LFSR (i.e., LR$Rith its outputs scrambled (i.e.,
by the module SR as the uniform generator to generate the lead-
ing bits of' 1" ¢ """ . To generate the trailing bits df1¢ " " "¢,
we introducel< 1° extra LFSRs (i.eLFSRe " " "kFSR) and<
extra scrambling modules (i.66R+"" "SR 1). Foreaci 8 <,
we apply thel-stto thel= @P-th MSBs of the outputs of LFSR
scrambled by SR; as the trailing bits of g. We note that to reduce
the hardware cost, LFSRire used twice to generate the leading
bits of' 1¢” " "< and the trailing bits of 1, respectively. Based on
this implementation, we can generate a uniform spatial distribu-
tion. Note that a scrambling module is logic-free. Hence, the main
hardware cost of the proposed implementation is thatofLFSRs.

5 IMPLEMENTATION OPTIMIZATION

The proposed implementation has several con guration parame-
ters. They include 1) the feedback polynomials of the.FSRs, 2)
the seeds of the LFSRs, and 3) the scrambling ways of tke, 1°
scrambling modules. Di erent con gurations of them will lead
to di erent hardware costs. Furthermore, although the proposed
implementation guarantees to produce a uniform spatial distribu-
tion, which typically leads to a high accuracy, we can even tune its

(" gdenotes the 8th scrambling module.

con guration to maximize the accuracy. Thus, in this section, we
further optimize the proposed implementation in both hardware
cost and accuracy by considering these con guration parameters.

5.1 Hardware Cost Optimization

Hardware optimization of the proposed implementation is mainly
determined by the feedback polynomials of theLFSRs. As shown
in[1]], for 2 LFSRs, if they have the same feedback polynomial but
di erent seeds, they can be implemented by realizing one LFSR rst
and then the other by inserting DFFs after the rst. An example
of implementing 2 6-bit LFSRs with the same feedback polynomial
but di erent seeds is shown in Fig. 6. Note that in this example, by
the selected seeds, the output sequenckxdb a delayed version of
that of ! 1 by 1 clock cycle. Thus, we can implement by inserting

a single DFF aftet 1, reducing the total hardware cost. Inspired by
this, we let all the< LFSRs have the same feedback polynomial to
reduce the hardware codte note that although this design choice
signi cantly limits the con guration space, we still have many
other parameters for con guration to reach a high accuracy.

Clock cycle
'
2

w

32

Figure 6: Implementing 2 6-bit LFSRs with the same feedback
polynomial but di erent seeds by 1 6-bit LFSR and 1 DFF.

Under the above design choice, we further propose a method to
optimize the hardware cost. The optimization depends on the seeds
of the< LFSRs, which are obtained by the method in Section 5.2.
Assume that the seed of LF§R 8 <)is(g. For convenience,
we also introduce a reference LFSR LEgRvhich has the same
feedback polynomial as these LFSRs and its seed as 1. For any value
1 - Z= 1, we assume that it is produced by the reference
LFSR LFSRinthe clock cyclg - °©,wherel)1-° 2@ 1.We
assume that the seed¢, the initial value) of an LFSR is produced
at the clock cyclel. Thus, by de nition, we have 11° = 1.

In general, given Z-bit LFSR4 1 and! > with the same feedback
polynomial as LFSR: and the seeds as and. , respectively, if
) - 2) 1 ©° thenthe output sequence bb is a delayed version of
thatof! 1 by) - ©) 1 %0 clock cycles. Fig. 6 shows an example
with) 1-©)1 © =1 Consequently, we can implemehp by
inserting?) 1- ©) 1, °°DFFs aftet 1, as shown in Fig. 6. We refer to
this operation asnergingtwo LFSRs. Note that)ft- ¢) 1 °

Exploiting Uniform Spatial Distribution to Design E icient Random Number Source for Stochastic Computing

merging two LFSRs reduces the total hardware colbwever, if
) 1. 0

e cient than merging two LFSRs.

Based on the above observation, we propose a method to opti-

mize the hardware cost of the proposed implementation. It has two
steps. The rst step is to merge LFSRs in our proposed imple-
mentation based on the above merging criteria. After the rst step,

there may still exist some redundant DFFs. Then, the second step

) L. % =, the merge needs more DFFs than an LFSR has.
Thus, in this case, using two separate LFSRs is more hardware-

ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

Figure 7: An implementation of three 6-bit LFSRs by two
sequences of DFFs after LFSR merging, where) 2 and) 3 are
the used bits from LFSR 2 and LFSRs, respectively.

removes them. Next, we elaborate these two steps in Sections 5.1.1needed: Removing them does not a ect the correct generatioyyof

and 5.1.2, respectively. We conclude with some properties of the
proposed hardware cost optimization method in Section 5.1.3.

5.1.1 Merging LFSREhe procedure to merge the LFSRs based
on the above merging criteria is shown in Algorithm 1. Given
the seeds of the LFSRs aé1*”" "4, it rst sorts the sequence

) (1% " " "¢} < ° in the descending order and obtains a new se-
quence) (A% """ }(A ° wherelAe """« is a permutation of
11e20 7" "o @ satisfying that) 1(p° i) Y(A° i i) YA ° Then,
foreachl 8 < 1, ittries to merge LFSRand LFSR ;. If
3=)Yp°) Ha,° = itinserts3 DFFs after LFSRto imple-
ment LFSR ,. Otherwise, it introduces a new LFSR with the same
feedback polynomial as LFRRo implement LFSR ;.

Algorithm 1: LFSR merging procedure.

1 input: The seed$1+”" "L of the< LFSRs;

2 output: LFSR;, LFSR,,””" LFSR. ;

3 1) 1(/_\10. " ".)1(/3< 00 SOI’tl) 1(100" ".)1(< oo:
4 Use an LFSR to implement LE$R

5 for8 1lto< 1do
6 if 3=) *(a°) *ng,° =then
7 \ Insert3 DFFs after LFSRto implement LFSR ,;

8 elseUse a new LFSR to implement LESR
9 return LFSR , LFSR,,”"" LFSR. ;

The output of Algorithm 1 is an implementation &f LFSRs by
multiple sequences of DFFs, each for a subset oktHd=SRs.

Example 1. Consider merging @bit LFSRs with the sedds(2,
and (3. Suppose thd} 1(1°) 1(2%) 1(3°° = 1103028. First, we
sort) 1(1%) 1(2%) 1(3° in descending order pg(2%) 1(3%) 1(1°.
Then, we use an LFSR to implement £ FSRcg 1(2°) 1(3° =
2Y 6and) 1(3°) 1(1°=10; 6, we inserR DFFs after LFSR

and) 3. Therefore, they are redundant and hence, can be removed.
Inspired by the above example, we propose a method to remove
the redundant DFFs. The method works on each DFF sequence in
turn. For each sequence, it starts from the rightmost DFF of the
sequence. Ifthe output of the DFF is neither used as a bitin arandom
number' gnor as an input to an XOR gate, then it is redundant and
removed. With the rightmost DFF removed, we repeat the above
step on thenewrightmost DFF. The entire procedure stops until the
current rightmost DFF is either used as a bit in a random number
' gor as an input to an XOR gate.

5.1.3 Properties of the Proposed Hardware Cost Optimization Method.
The proposed method has the following properties.

(1) The method does not a ect the accuracy. This is because
the method keeps the function of each bit in the random
numbers' 107" "o .

(2) The total number of DFFs in the design optimized by the
proposed method is no more thak=, ©°, where =
maxf) 1(1%"""*}(<°g minf) 1(1%"""+}(< °g A sketch
of the proof of this claim is as follows. According to the
LFSR merging procedure shown in Algorithm 1, LirSRas
=DFFs. Forang 8 <, the additional number of DFFs
needed to implement LF@Rs at most?) (4 ,°) Y(a°°
Thus, the total number of DFFs needed to implement all
theg LFSRs after the LFSR merging procedure is at most
=, 520 Ma.°) Ua®==,) A%) (A %where

) H(a®=maxf) 1(1%"""+}(< °gand) (A ° =

minf) (1% """ +}(< °g Thus, the total number of DFFs af-

ter the LFSR merging procedure is at mdst, °. The

second step, removing redundant DFF, may further reduce
some DFFs. Thus, the total number of DFFs in the design
optimized by the proposed method is no more than, °.

implement LFSfand use a separate LFSR with the same feedback

polynomial as LFSRo implement LFSRTherefore, by applying

5.2 Accuracy Optimization

Algorithm 1, the 3 LFSRs can be implemented by 2 DFF sequencesiashis section, under the design choice from Section 5.1, i.e., all
shown in Fig. 7, where the rst sequence of 8 DFFs implements LFSkhe LFSRs having the same feedback polynomial, we propose a

and LFSgand the second one of 6 DFFs implementg LFSR

5.1.2 Removing Redundant DERsthe proposed implementation
shown in Fig. 5, foran2 8 <, not all the outputs of LFS§are
used. Indeed, only= @° outputs of LFSRare used. This gives us

a further opportunity to reduce DFFs. For example, suppose that for
LFSR and LFSRin Fig. 7, each of them has 3 bits used, which are
indicated by) 2 and) 3 in Fig. 7, respectively. Then, the rightmost 2
DFFs in the rst DFF sequence, which are shown in grey, are not

2When) 1- ©) 1, © == merging reduces the number of XOR gates needed for the
two LFSRs.

method to optimize the accuracy of the proposed implementation
by con guring the available design parameters, including 1) the
common feedback polynomial, 2) the seeds of th&FSRs, and
3) the scrambling ways of thé< | 1° scrambling modules. With
an optimized con guration, a better uniform spatial distribution is
generated and the correlation among the outputs of the RNSs can
be further reduced, leading to an improved accuracy [21, 22].
There arel2~ 1° possible seeds for anbit LFSR ané! possible
scrambling ways for ar-bit scrambling module. Assume that there
are 5 possible feedback polynomials for ambit LFSR. The size of
the entire con guration space i$2= 1°° 1=lo<. 15 =< 1=jo<, 15

ICCAD '22, October 30-November 3, 2022, San Diego, CA, USA

which is very large even wher and< is small. Therefore, it is
impossible to search the entire con guration space to nd the best
con guration. To e ciently nd a good con guration, we propose

a heuristic method as shown in Algorithm 2.

Algorithm 2: Accuracy optimization procedure.

1 input: an SC core, LFSR bit-width LFSR numbes , number of
feedback polynomials of an-bit LFSR5, a parameteD 1
controlling the total number of DFFs, and paramet&sandG ;

2 output: minimum MAE MAEq, and the best con guration ;

3 MAEnin ,1 , null;

4 for 8 1to 5do

5 Choose the3th possible feedback polynomial for the LFSRs;

Choose LFSFs seed 1 so that) 1(1° =D;

for 9 1to G do

® N o

Randomly choose LFSR seed . sothatl (. 2 1
andl) 1(.° D,for: =2"""eg
9 for : 1to G do
10 Randomly chooses a scrambling way for S or
A= 17770 1

11 Simulate the circuit with the current con guration and
the speci ed SC core, and obtain thAE
if MAEY MAEni, then
MAEmin MAE
14 update to the current con guration;

15 return MAEminh and

12
13

The proposed method takes as inputs an SC core to which the
proposed RNS implementation is applied and several parameters.
The main part of the proposed method is a triple loop. The outer-
most loop iterates over all the feedback polynomials of abit
LFSR and sets the seggof the 1-st LFSR so that!(1° = D, where
D 1lis a parameter to control the total number of DFFs. In the
intermediate loop, fo2 <, it randomly chooses the seed
(. of LFSR sothatl) *(.° D.Intheinnermost loop, it ran-
domly chooses a scrambling way for each of the , 1° scrambling
modules. The number of iterations for the intermediate and the in-
nermost loops ar& andG, respectively, which are two parameters.
For each con guration of the feedback polynomial, the seeds, and
the scrambling ways generated within the triple loop, it simulates
the circuit with that con guration and the speci ed SC core to
obtain its MAE. Finally, the con guration with the minimum MAE
is returned. The time complexity of the method $5 G °, which
is far smaller thans2™< 1=1°< whenG andG are small.

By Algorithm 2, we havemaxf) 1(1%"""*}(<°g=) ¥(1°=D
andminf) (1% """ +}(< °g= 1. Thus, by Property 2 described in
Section 5.1.3, the number of total DFFs of the proposed optimized
implementation is at most=_, D 1°.

6 EXPERIMENTAL RESULTS

This section shows the experimental results comparing the SNG
using our optimized RNS design with some existing SNG designs.

6.1 Experimental Setup

To show whether the proposed RNS design are suitable for di erent
types of SC circuits, we choose 8 SC circuits as benchmarks. The
rst three are the 2-input, 3-input, and 4-input SC multipliers. We

denote them a$qUL-2, MUL-3, andMUL+4, respectively. The next
three are the circuits implementing c&&, sint@, and tani @ pro-
posed in L. The last two are the circuits implementing”® and

4 Gsynthesized by the method ir2 with degree and precision

as 4 and 6, respectively. For these 2 circuits, we apply 4 SNGs to
generate 4 stochastic bit streams with the probabiland reuse

one RNS in these 4 SNGs to generate 6 stochastic bit streams with
the constant coe cient of 3.

We choose 4 existing SNG designs for comparison, which are de-
noted as< -SSG< -LFSRI-LFSRand< -FSM[7, 14, 20, 21]. < -SSG
< -LFSRand1-LFSReonsist of RNSs and comparators, as shown in
Fig. 2. They di er by the RNSs. Speci cally, for an SC circuit with
inputs,< -SSCGhas< Sobol sequence generators, each responsible
for the generation of the stochastic bit stream of one inp@i.[It
usually has the highest accuracy with short stochastic bit streams.
<-LFSRs similar to< -SSGexcept that each Sobol sequence gen-
erator is replaced by an LFSRY]]. It is the most widely used SNG
design.1-LFSRhas only one LFSR for the entire SC circuit and it is
shared among the SNGs for di erent inputd 4. It has the lowest
hardware cost< -FSMis based on nite state machine (FSMJ({.

For an SC circuit with< inputs, it applies< FSMs, each responsible
for the generation of the stochastic bit stream of one input. The
states of each FSM are determined by a Sobol sequence. It is the
state-of-the-art SNG design with high enough accuracy and low
hardware cost. However, it does not include an RNS. Note that
for the circuits for*® and4 26, which are synthesized by the
method in 23, they need ar=-bit RNS to generate the stochastic

bit streams with the constant coe cient of%. Since< -FSMis essen-
tially based on Sobol sequences, we use a Sobol sequence generator
as the=-bit RNS in the circuits foi*®and4 25 when considering
<-FSMbased SNG.

For our proposed implementation, as shown in Section 5.2, we
need to determine a paramet@rto con gure it. We consider a
choice oD = maxti< 2°= 1¢1° where the functiormaxt-« 1°en-
suresthatforanyk 2,D 1, arequirement orDin Algorithm 2.

By the discussion at the end of Section 5.2, this choicB afso
ensures that the total DFF number of our proposed implementation
isnomore than'=, <0G!i< 20= 1¢1° 1=<0Gli< 10= 200,
Note that the number of DFFs i -LFSRs=<. Thus, this choice of

D ensures that the hardware cost of the SNGs using our proposed
implementation is less than that &f -LFSRby the cost of at least
one LFSR. In the following, we denote the SNG design using the
proposed implementation aBroposed

For the accuracy optimization method, we set baghand G
as 100. Thus, the total number of con gurations searched by our
method is1000®. Note that for< -SSGand< -FSM we need to
properly choose its Sobol sequence generators or FSMs, and for
<-LFSRand 1-LFSRwe need to properly determine their feedback
polynomials, seeds, and scrambling ways. For a fair comparison, we
also randomly con gure these SNG designs for the same runtime as
we use to con gure our design and choose the best con guration
with the minimum MAE. In the following, we compare the 4 existing
SNG designs anBroposetbr the bit-width = = 8.3 We repeat each
experiment for 10 times and obtain the average experimental results.

3We also did experiments for bit-widtlr = 6 and 7. The results are similar tg = 8
and hence, are omitted due to space limit.

Exploiting Uniform Spatial Distribution to Design E [icient Random Number Source for Stochastic Computing ICCAD 22, October 30-November 3, 2022, San Diego, CA, USA

The average runtime for configuring Proposed by Algorithm 2 for
each benchmark over 10 times is listed in Table 2.

Table 2: The average runtime for configuring Proposed for
each benchmark.

Benchmark MUL-2 MUL-3 MUL-4 cos(G)
Runtime (s) 551.36 879.51 1414.71 1246.92
Benchmark sin(G) tanh(G) G%% 4%

Runtime (s) 1003.14 1308.48 517.81 498.23

6.2 Accuracy Comparison

We first compare the accuracy of the SNG designs. For the SC
multipliers, we obtain the MAE over 1000 random input groups. For

the other benchmarks, we obtain the MAE over all possible inputs.

The experimental results are listed in Table 3, where Ave-MUL and
Ave-All denote the average MAEs over the SC multipliers and all
benchmarks, respectively. To show the comparison more clearly,
in the table, we highlight the minimum MAE among all the SNG
designs in bold, and underline the cases where Proposed are better
than m-LFSR.

Table 3: Accuracy comparison for different SNG designs.

Design <-SSG <-FSM <-LFSR 1-LFSR Proposed

MUL-2 0.00171 0.00158 0.00189 0.00155 0.00178
MUL-3 0.00265 0.00260 0.00349 0.01004 0.00334
MUL-4 0.00321 0.00306 0.00414 0.01837 0.00413
cos(G) 0.00261 0.00262 0.00239 0.00221 0.00232
sin(G) 0.00168 0.00188 0.00228 0.00243 0.00262
tanh(G) 0.00231 0.00268 0.00269 0.00282 0.00291
G%% 0.00555 0.00637 0.00647 0.0110 0.00618
4% 0.00340 0.00336 0.00372 0.00642 0.00389

Ave-MUL 0.00252 0.00241 0.00317 0.00998 0.00308
Ave-All 0.00289 0.00302 0.00338 0.00685 0.00340

As shown in this table, Proposed achieves very close accuracy

as m-SSG and m-FSM, which generally have the highest accuracy.

Furthermore, Proposed has almost the same accuracy as m-LFSR and
far higher accuracy than 1-LFSR on average. Overall, it achieves a
high accuracy for these benchmarks.

6.3 Hardware Cost Comparison

For the hardware cost, we first compare the areas of the SC circuits
using different SNG designs. Note that the SNGs generally occupy
most area of an SC circuit. Thus, for the area comparison, we focus
on the SNG area. For all the SNG designs except m-FSM, their areas
equal the sum of the areas of the RNSs and the comparators. For
m-FSM, its area equals the sum of the areas of the FSM-based SNGs
and the Sobol sequence generator, where the area of the Sobol
sequence generator is only considered for the circuits for x° 43 and
¢~ In the following, we obtain the area of SNGs by summing
up the area of its components. These components are specified
by hardware description language and synthesized by Synopsys
Design Compiler [24] using the Nangate 45nm library [25] to obtain
their areas. The area of each component is listed in Table 4, where
SNGgsym denotes an FSM-based SNG [20] and SSG denotes a Sobol
sequence generator [7].

The area comparison for different SNG designs is shown in Figs. 8.

Clearly, the area of Proposed is far smaller than that of m-SSG and

Table 4: Area of each component.

Component SSG SNGpsm LFSR Comparator DFF

Area (“<?) 613.66 380.65 43.76 26.87 4.77

m-FSM, and is always smaller than that of m-LFSR. Compared to
m-SSG, m-FSM, and m-LFSR, the area of Proposed is reduced by 92%,
88%, and 27%, respectively, on average.

10000
1000 m-SSG
100 m-FSM
10 mLFSR
1 1-LFSR
ﬁ\&” @ovﬂ’ @’V RS q,@@ Q@,@we N Proposec
Benchmark

Figure 8: Area comparison for different SNG designs.

Then, we compare the powers and the delays of the SC circuits
using different SNG designs. Note that for these circuits, the dif-
ferences of their powers and delays lie in their SNGs. Therefore,
to compare their powers and delays, we only need to compare
their SNGs. For each existing SNG design, we obtain its power by
summing up those of its components. For Proposed, as described
in Section 6.1, its hardware cost is less than that of m-LFSR by the
cost of at least of one LFSR. Thus, its cost is no more than the total
cost of (m — 1) LFSRs and m comparators for an m-input SC circuit.
Note that (m—1) LFSRs and (m — 1) comparators constitute (m —1)
LFSR-based SNGs. Therefore, for Proposed, its power is no more
than the total power of (m — 1) LFSR-based SNGs and 1 comparator
for an m-input SC circuit. By Synopsys Design Compiler [24] based
on the Nangate 45nm library [25], we obtain the power of a com-
parator, a Sobol sequence generator-based SNG, an FSM-based SNG,
and an LFSR-based SNG as 1.10uW, 30.1uW, 9.06puW, and 4.54uW,
respectively. Then, based on the above power model, we obtain the
powers of different SNGs for an m-input SC circuit, which are listed
in Table 5. For the delay of an SNG design, since it is independent
of m, we measure the delay of an SNG design by setting m = 1. The
delays of different SNGs for an m-input SC circuit are also listed in
Table 5. As shown in the table, Proposed has a much smaller power
and a smaller delay than m-SSG. Compared to m-FSM, Proposed has
a smaller power and a 45% delay reduction. Compared to m-LFSR,
Proposed has a smaller power and the same delay.

Table 5: Powers (¢W) and delays (ns) of different SNGs for an
m-input SC circuit.

Design <-SSG <<-FSM <-LFSR 1-LFSR Proposed
Power 301< 906< 454< 344+110< <454<-344
Delay 200 339 188 188 188

In summary, compared to m-SSG and m-FSM, Proposed can achieve
far lower hardware cost and very close accuracy. Furthermore, com-
pared to m-LFSR, Proposed can achieve lower hardware cost and
almost the same accuracy. In conclusion, Proposed has both low
hardware cost and high accuracy.

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Stochastic Computing Circuits
	2.2 Methods to Reduce the Hardware Cost of SNGs
	2.3 Methods to Improve the Accuracy of RNSs

	3 Definition and Condition for the Uniform Spatial Distribution
	3.1 Uniform Spatial Distribution
	3.2 A Necessary and Sufficient Condition for Uniform Spatial Distribution

	4 Basic Architecture and Implementation
	4.1 Basic Architecture
	4.2 Proposed Implementation Based on LFSR

	5 Implementation Optimization
	5.1 Hardware Cost Optimization
	5.2 Accuracy Optimization

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Accuracy Comparison
	6.3 Hardware Cost Comparison
	6.4 Accuracy-Area Trade-off Comparison
	6.5 Case Study: Gamma Correction

	7 Conclusion
	References

