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ABSTRACT
Stochastic computing (SC) generally suffers from long latency. One

solution is to apply proper random number sources (RNSs). Nev-

ertheless, current RNS designs either have high hardware cost or

low accuracy. To address the issue, motivated by that the uniform

spatial distribution generally leads to a high accuracy for an SC

circuit, we propose a basic architecture to generate the uniform

spatial distribution and a further detailed implementation of it. For

the implementation, we further propose a method to optimize its

hardware cost and a method to optimize its accuracy. The method

for hardware cost optimization can optimize the hardware cost

without affecting the accuracy. The experimental results show that

our proposed implementation can achieve both low hardware cost

and high accuracy. Compared to the state-of-the-art stochastic num-

ber generator design, the proposed design can reduce 88% area with

close accuracy.

KEYWORDS
stochastic computing, random number source, uniform spatial dis-

tribution

1 INTRODUCTION
Stochastic computing (SC), an unconventional computing paradigm

proposed in 1960s [1], has attracted much attention in recent years

[2]. It does complex computation by simple circuits based on sto-

chastic bit streams, which encode values by the ratios of ones [3].

For example, SC can implement multiplication by a single AND

gate. SC also has strong fault tolerance. Owing to these advantages,

SC has been successfully applied in many domains, such as image

processing [4] and neural networks [5].

However, to ensure high accuracy, SC generally requires long

stochastic bit streams, which lead to long latency and high energy

consumption. Note that a stochastic bit stream is generated by a

stochastic number generator (SNG) in an SC circuit, and a main

component in an SNG that controls the randomness is a random
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number source (RNS).1 Thus, one solution to the problem of long

stochastic bit stream is to design a proper RNS.

To this end, there have beenmany novel RNS designs proposed [6–

9]. They achieve high accuracy by generating random outputs that

are properly distributed. For example, the Sobol sequence genera-

tors are proposed to generate low discrepancy sequences, which

are uniformly distributed in the time domain [7]. However, these

RNS designs generally suffer from high hardware cost and occupy

most hardware cost of an SC circuit. For example, for a 2-input SC

multiplier, 2 8-bit Sobol sequence generators can even occupy 95.7%

area. Thus, it is crucial to design efficient RNSs with high accuracy

and low hardware cost, which remains as an open problem.

An SC circuit with 𝑚 inputs needs 𝑚 RNSs, which output 𝑚

random binary numbers in a clock cycle. The𝑚 numbers can be

treated as a point in an𝑚-dimensional space Ω, which we refer to

as an output point. The output points generated over all the clock

cycles within a computation period form a distribution in the space

Ω. In the following, we call the distribution the spatial distribution
of the RNS outputs, or spatial distribution for short. An example

of a random spatial distribution of the RNS outputs for𝑚 = 2 is

shown in Fig. 1(a). For an SC circuit, an output point of its RNSs

determines one bit in the output stochastic bit stream of the circuit,

and a spatial distribution determines the entire output stochastic

bit stream and hence, the accuracy of the circuit. Therefore, in order

to achieve a high accuracy, we need to design RNSs generating a

good spatial distribution.

(a) (b)

Figure 1: Example of the spatial distribution of the RNS out-
puts for𝑚 = 2: (a) random distribution; (b) uniform distribu-
tion.

A prior work points out that a uniform spatial distribution will

generally lead to a high accuracy for an SC circuit [6]. An example

of a uniform spatial distribution is shown in Fig. 1(b), where each

grid has exactly one point. Nevertheless, the work [6] only gives a

preliminary discussion about it. To the best of our knowledge, there

is still no systematic study on how to generate a uniform spatial

1
We will describe them in detail in Section 2.
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distribution with low hardware cost, and there is even no formal

definition about it in the context of SC.

In this work, to address the above issues, we systematically study

the uniform spatial distribution and exploit it to design low-cost

high-accuracy RNSs. Our main contributions are as follows.

• Wegive a formal definition of the uniform spatial distribution

and a necessary and sufficient condition for generating it (see

Section 3). We also show its difference from the traditional

notion of uniform distribution.
• We propose a basic architecture and an implementation

based on linear feedback shift registers (LFSRs) to satisfy

the necessary and sufficient condition (see Section 4). The

output points generated by the proposed implementation

form a uniform spatial distribution.

• We propose methods to optimize the hardware cost and the

accuracy of the proposed implementation (see Section 5). The

hardware cost optimization method optimizes the cost of the

proposed implementation without affecting the accuracy.

The experimental results show that our proposed implementa-

tion achieves both low hardware cost and high accuracy. Compared

to the state-of-the-art SNG design, with close accuracy, the pro-

posed design can achieve 88% area reduction.

2 BACKGROUND AND RELATEDWORKS
In this section, we introduce the background on SC circuits and

the related works on reducing the hardware cost of SNGs and

improving the accuracy of RNSs.

2.1 Stochastic Computing Circuits
To ensure a high computation accuracy, an SC circuit usually re-

quires its stochastic bit streams to be independent or with low

correlation. Thus, as shown in Fig. 2, an𝑚-input SC circuit gen-

erally has𝑚 SNGs, which produce𝑚 independent stochastic bit

streams. The SC circuit also has an SC core that computes on the

bit streams. As shown in Fig. 2, an SNG typically consists of an

RNS and a comparator, where the RNS generates a random binary

number 𝑅 in a clock cycle and the comparator compares 𝑅 with

the input binary number 𝑋 to generate a bit 1 when 𝑅 < 𝑋 , and 0

otherwise.

RNS

SNG

x
<X

R
SC core

SNG1

SNGm

X1

Xm

z

...

x1

xm

Figure 2: General architecture for an𝑚-input SC circuit.

2.2 Methods to Reduce the Hardware Cost of
SNGs

SNGs usually occupy most area of an SC circuit [10]. It is crucial

to reduce the hardware cost of SNGs. There are several methods

proposed for this purpose, such as inserting D flip-flops (DFFs) and

sharing RNSs. By inserting DFFs, we can duplicate a stochastic

bit stream and delay it for some clock cycles to generate a new

stochastic bit stream, which has the same value as the original

one but is uncorrelated to it [1]. Therefore, it helps reduce the

number of SNGs used to generate stochastic bit streams of the same

value [11, 12]. Sharing RNSs is the method to share an RNSs for

different SNGs. It applies circular shift or scrambling to generate

different random binary numbers for different SNGs in a clock

cycle [13, 14]. This method usually reduces the number of RNSs

to 1 and achieves the minimum hardware cost for RNSs. However,

these two methods usually degrade the accuracy.

2.3 Methods to Improve the Accuracy of RNSs
Generally speaking, there are two types of methods to improve the

accuracy of the RNSs.

The first type is to design better RNSs [6–9, 15–20]. To ob-

tain accurate results, an RNS that performs deterministic com-

putation for SC is proposed [15]. However, it needs very long

stochastic bit streams. To achieve high accuracy with short sto-

chastic bit streams, several novel RNS designs are proposed to

produce properly-distributed random number sequences based on

low discrepancy sequences [6, 7, 16, 18, 20] or pseudo-random se-

quences [8, 9, 17]. However, different from our work, these works

mainly focus on producing a random number sequence properly

distributed in the time domain and do not consider generating a

good spatial distribution of the RNS outputs [6–9, 16–18]. Further-

more, they either suffer from high hardware cost [6–9, 17–19] or

are only applicable for some special circuits like multipliers [16].

R R'...

...

Figure 3: Illustration of scrambling.
The second type is to change the outputs of an RNS. Typical

examples are seeding and scrambling [21]. Seeding is applied to

LFSR-based RNS. It is to choose a proper initial value, known as a

seed, for an LFSR. Under different seeds, the output sequences of an

LFSR differ. Scrambling is to permute the output of an RNS from𝑅 to

𝑅′, as shown in Fig. 3. By applying scrambling, the output sequence

of an RNS also changes. By applying these methods to some RNSs

of an SC circuit, the spatial distribution of the RNS outputs changes

and hence, the accuracy may improve. Furthermore, these methods

can be implemented with no hardware overhead. However, the

existing works on these two methods do not discuss which spatial

distribution is good and how to generate it with the two methods.

3 DEFINITION AND CONDITION FOR THE
UNIFORM SPATIAL DISTRIBUTION

In this section, we first formally define the uniform spatial distri-

bution and compare it with the random spatial distribution. Then,

based on the definition, we derive a necessary and sufficient condi-

tion for the uniform spatial distribution.

3.1 Uniform Spatial Distribution
Consider𝑚 𝑛-bit RNSs. They output 2

𝑛
different output points in

the period of 2
𝑛
cycles. We denote each point as (𝑅1, 𝑅2, . . . , 𝑅𝑚),

where 𝑅𝑖 is the output of the 𝑖-th RNS and ranges from 0 to 2
𝑛 − 1.

To define the uniform spatial distribution on these 2
𝑛
points, we

first uniformly split the 𝑚-dimensional space Ω = [0, 2𝑛 − 1]𝑚
into 2

𝑛
grids. For the special case where 𝑛 is a multiple of𝑚, each

dimension is split into 2

𝑛
𝑚 uniform intervals. An example for 𝑛 = 6
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and𝑚 = 2 is shown in Fig. 1(b). For the general case, assume that

𝑛 = 𝑚⌊ 𝑛𝑚 ⌋ + 𝑝 , where 0 ≤ 𝑝 < 𝑚. Without loss of generality, we

choose the first 𝑝 dimensions and split each of them into 2
⌈ 𝑛
𝑚
⌉

uniform intervals, and for the rest (𝑚 − 𝑝) dimensions, we split

each of them into 2
⌊ 𝑛
𝑚
⌋
uniform intervals.

Given 2
𝑛
output points generated in the period of 2

𝑛
cycles, we

say that they form a uniform spatial distribution if each of the 2
𝑛

grids has exactly one output point in it. Fig. 1(b) shows an example

of a uniform spatial distribution on 2
6
points.

We remark that the proposed uniform spatial distribution is

different from the uniform distribution in the time domain, which

is a sequence of random numbers 𝑟1, 𝑟2, . . . , such that for any 𝑖 ≥ 1,

𝑟𝑖 is a random number uniformly distributed in a given range. In the

context of SC, the range is typically {0, 1, . . . , 2𝑛 − 1}. To generate

such a uniform distribution, there have been several RNS designs

proposed [6–9, 15–20] to randomly generate a number in the range

with the same probability as
1

2
𝑛 . However, this type of uniform

distributions only focuses on a single RNS and does not consider the

spatial distribution of the output points of𝑚 RNSs [18]. Therefore,

it cannot ensure a high accuracy for the SC circuits. In the context

of SC, it is more essential to study the spatial distribution.

Next, we compare the uniform spatial distribution with the ran-

dom spatial distribution to show its strength. The prior work [6],

which is the most related work to ours, has done a preliminary com-

parison of these two distributions by just using a special example.

In contrast, we perform a more comprehensive comparison here

by considering a large number of random samples to draw a more

solid conclusion. Specifically, we consider a 2-input SC multiplier

and 1000 random spatial distributions and 1000 uniform spatial

distributions. For each distribution, we randomly generate 1000

input pairs and calculate the mean absolute error (MAE) over these

1000 pairs as follows

MAE =
1

1000

1000∑︁
𝑖=1

����𝑓 (𝑎𝑖 , 𝑏𝑖 ) − 𝑎𝑖 × 𝑏𝑖
2
2𝑛

���� , (1)

where 𝑎𝑖 and 𝑏𝑖 are the inputs in the 𝑖-th input pair and 𝑓 (𝑎𝑖 , 𝑏𝑖 ) is
the output of the 2-input SC multiplier with 𝑎𝑖 and 𝑏𝑖 as the inputs.

We compare the minimum, the maximum, and the average MAEs

for the two types of spatial distributions over the 1000 samples. The

comparison is shown in Table 1 for 𝑛 = 6, 7, 8, where Min, Max, and

Ave denote the minimum, the maximum, and the average MAEs,

respectively. Clearly, the uniform spatial distribution has much

lower error than the random spatial distribution. Therefore, it is

desirable for𝑚 RNSs to produce a uniform spatial distribution.

Table 1: MAE comparison for different distributions.

𝑛
Random Uniform

Min Max Ave Min Max Ave

6 0.016 0.094 0.034 0.010 0.017 0.013

7 0.011 0.062 0.024 0.0063 0.010 0.0080

8 0.0081 0.045 0.017 0.0039 0.0057 0.0047

3.2 A Necessary and Sufficient Condition for
Uniform Spatial Distribution

Suppose that the 𝑖-th (1 ≤ 𝑖 ≤ 𝑚) dimension of the space Ω has

2
𝑗𝑖
intervals. According to our space partition rule mentioned in

Section 3.1, we have 𝑗𝑖 = ⌈ 𝑛𝑚 ⌉ for 1 ≤ 𝑖 ≤ 𝑝 and 𝑗𝑖 = ⌊ 𝑛𝑚 ⌋ for
𝑝+1 ≤ 𝑖 ≤ 𝑚. Consider a grid with the 𝑖-th dimensionmapped to the

𝐷𝑖 -th (1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝐷𝑖 < 2
𝑗𝑖
) interval in the 𝑖-th dimension of the

space Ω. Then, the grid can be uniquely indexed by a combination

as (𝐷1, 𝐷2, . . . , 𝐷𝑚). Since 0 ≤ 𝐷𝑖 < 2
𝑗𝑖
, 𝐷𝑖 can be represented as

a 𝑗𝑖 -bit binary number. Since

∑𝑚
𝑖=1 𝑗𝑖 = 𝑛, by cascading the binary

representations of 𝐷1, 𝐷2, . . . , 𝐷𝑚 in sequence, we will obtain an 𝑛-

bit binary number, denoted as 𝐶 (𝐷1, . . . , 𝐷𝑚). Therefore, each grid

can be uniquely indexed by the binary number 𝐶 (𝐷1, . . . , 𝐷𝑚). For
example, for the bottom-left grid in Fig. 1(b), it can be indexed by a

combination (𝐷1, 𝐷2) = ((000)2, (000)2) or a 6-bit binary number

𝐶 (𝐷1, 𝐷2) = (000000)2.
Now consider an output point 𝑃 = (𝑅1, 𝑅2, . . . , 𝑅𝑚). If the 𝑗𝑖 most

significant bits (MSBs) of 𝑅𝑖 form a binary number 𝐷𝑖 , then the

point is in the𝐷𝑖 -th interval in the 𝑖-th dimension of the space Ω. In
the following, we call the 𝑗𝑖 MSBs of 𝑅𝑖 its leading bits and the rest

bits of 𝑅𝑖 its trailing bits. Therefore, the index𝐶 (𝐷1, . . . , 𝐷𝑚) of the
grid where the point 𝑃 locates equals the cascading of the leading

bits of 𝑅1, . . . , 𝑅𝑚 , denoted as 𝐿(𝑅1, . . . , 𝑅𝑚), or 𝐿(𝑃) for short. For
example, for the output point (𝑅1, 𝑅2) = ((000100)2, (000100)2) in
Fig. 1(b), the cascading of the leading bits of 𝑅1 and 𝑅2 is (000000)2.
Therefore, it is located in the bottom-left grid.

By the above analysis and the definition of the uniform spatial

distribution, we can reach the following necessary and sufficient

for the uniform spatial distribution.

Claim 1. 2
𝑛 output points 𝑃1, . . . , 𝑃2𝑛 generated by the RNSs in

the period of 2𝑛 cycles form a uniform spatial distribution if and only
if the set {𝐿(𝑃1), . . . , 𝐿(𝑃2𝑛 )} equals the set {0, 1, . . . , 2𝑛 − 1}.

4 BASIC ARCHITECTURE AND
IMPLEMENTATION

In order to generate a uniform distribution, we only need to satisfy

the necessary and sufficient condition stated in Claim 1. In this

section, we first propose a basic architecture to satisfy the condition.

Then, we propose a detailed implementation of it using LFSRs.

4.1 Basic Architecture
n-bit uniform generator

TBG1
...TBG2

TBGm

leading bits trailing bits

Figure 4: The basic architecture for generating the uniform
spatial distribution, where TBG𝑖 denotes the 𝑖-th trailing-bit
generator.

Our proposed basic architecture that satisfies the necessary and

sufficient condition in Claim 1 is shown in Fig. 4. In the figure, the

notation 𝑁 [ 𝑗 : 𝑘] denotes the 𝑗-th to the 𝑘-th MSBs of a binary

number𝑁 . For example, 𝑅𝑖 [1 : 𝑗𝑖 ] denotes the 1-st to the 𝑗𝑖 -th MSBs

of𝑅𝑖 , i.e., the leading bits of𝑅𝑖 . The architecture has an𝑛-bit uniform
generator, which is a binary number generator that generates all

𝑛-bit binary numbers in the period of 2
𝑛
. Examples include an 𝑛-bit

counter and an 𝑛-bit pseudo-random number generator.
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RmR2R1

SRm+1SR1 SR2 SR3
...

...

...

n-bit LFSRmn-bit LFSR2n-bit LFSR1

Figure 5: Implementation to generate the uniform spatial distribution, where 𝑆𝑅𝑖 denotes the 𝑖-th scrambling module.

The architecture uses the 𝑛-bit uniform generator to produce an

𝑛-bit binary number 𝑋 in each clock cycle. To generate an output

point 𝑃 = (𝑅1, 𝑅2, . . . , 𝑅𝑚), we apply the (∑𝑖−1
𝑘=1

𝑗𝑘 + 1)-th to the

(∑𝑖
𝑘=1

𝑗𝑘 )-th MSBs of 𝑋 as the leading bits of 𝑅𝑖 , for 1 ≤ 𝑖 ≤ 𝑚.

Also, the architecture includes𝑚 trailing-bit generators (i.e., TBG𝑖 ’s),

which are used to generate the trailing bits of 𝑅𝑖 ’s. By this design,

we have 𝐿(𝑃) = 𝑋 . According to the definition of the 𝑛-bit uniform

generator, we further have {𝐿(𝑃1), . . . , 𝐿(𝑃2𝑛 )} = {0, 1, . . . , 2𝑛 −
1} for 2𝑛 output points 𝑃1, . . . , 𝑃2𝑛 generated by the architecture

in a period of 2
𝑛
cycles. Thus, by Claim 1, the basic architecture

produces a uniform spatial distribution.

4.2 Proposed Implementation Based on LFSR
In this section, we proposed a detailed implementation of the basic

architecture using LFSRs. LFSR is the most widely used RNS with

low hardware cost. An 𝑛-bit LFSR outputs all positive 𝑛-bit integers

in the period of (2𝑛 − 1) cycles. Ignoring that it does not output 0,

we can roughly treat an LFSR as a uniform generator. Furthermore,

if we scramble the output bits of an 𝑛-bit uniform generator by

the scrambling module shown in Fig. 3, we still get all 𝑛-bit binary

numbers in the period of 2
𝑛
. Therefore, a uniform generator with

its outputs scrambled is still a uniform generator.

Based on the above discussion, we propose a detailed implemen-

tation shown in Fig. 5, where SR𝑖 denotes the 𝑖-th scrambling mod-

ule. It applies an LFSR (i.e., LFSR1) with its outputs scrambled (i.e.,

by the module SR1) as the uniform generator to generate the lead-

ing bits of 𝑅1, 𝑅2, . . . , 𝑅𝑚 . To generate the trailing bits of 𝑅1, . . . , 𝑅𝑚 ,

we introduce (𝑚 − 1) extra LFSRs (i.e., LFSR2, . . . , LFSR𝑚) and𝑚

extra scrambling modules (i.e., SR2, . . . , SR𝑚+1). For each 1 ≤ 𝑖 ≤ 𝑚,

we apply the 1-st to the (𝑛 − 𝑗𝑖 )-th MSBs of the outputs of LFSR𝑖

scrambled by SR𝑖+1 as the trailing bits of 𝑅𝑖 . We note that to reduce

the hardware cost, LFSR1 are used twice to generate the leading

bits of 𝑅1, . . . , 𝑅𝑚 and the trailing bits of 𝑅1, respectively. Based on

this implementation, we can generate a uniform spatial distribu-

tion. Note that a scrambling module is logic-free. Hence, the main

hardware cost of the proposed implementation is that of𝑚 LFSRs.

5 IMPLEMENTATION OPTIMIZATION
The proposed implementation has several configuration parame-

ters. They include 1) the feedback polynomials of the𝑚 LFSRs, 2)

the seeds of the𝑚 LFSRs, and 3) the scrambling ways of the (𝑚 + 1)
scrambling modules. Different configurations of them will lead

to different hardware costs. Furthermore, although the proposed

implementation guarantees to produce a uniform spatial distribu-

tion, which typically leads to a high accuracy, we can even tune its

configuration to maximize the accuracy. Thus, in this section, we

further optimize the proposed implementation in both hardware

cost and accuracy by considering these configuration parameters.

5.1 Hardware Cost Optimization
Hardware optimization of the proposed implementation is mainly

determined by the feedback polynomials of the𝑚 LFSRs. As shown

in [11], for 2 LFSRs, if they have the same feedback polynomial but

different seeds, they can be implemented by realizing one LFSR first

and then the other by inserting DFFs after the first. An example

of implementing 2 6-bit LFSRs with the same feedback polynomial

but different seeds is shown in Fig. 6. Note that in this example, by

the selected seeds, the output sequence of 𝐿2 is a delayed version of

that of 𝐿1 by 1 clock cycle. Thus, we can implement 𝐿2 by inserting

a single DFF after 𝐿1, reducing the total hardware cost. Inspired by

this, we let all the𝑚 LFSRs have the same feedback polynomial to
reduce the hardware cost. We note that although this design choice

significantly limits the configuration space, we still have many

other parameters for configuration to reach a high accuracy.

L1 

L2 

D D D D D D D

6-bit LFSR

Clock cycle 1 2 3 4 · · ·
𝐿1 7 3 1 32 · · ·
𝐿2 14 7 3 1 · · ·

Figure 6: Implementing 2 6-bit LFSRs with the same feedback
polynomial but different seeds by 1 6-bit LFSR and 1 DFF.

Under the above design choice, we further propose a method to

optimize the hardware cost. The optimization depends on the seeds

of the𝑚 LFSRs, which are obtained by the method in Section 5.2.

Assume that the seed of LFSR𝑖 (1 ≤ 𝑖 ≤ 𝑚) is 𝑆𝑖 . For convenience,

we also introduce a reference LFSR LFSRref, which has the same

feedback polynomial as these LFSRs and its seed as 1. For any value

1 ≤ 𝑋 ≤ 2
𝑛 − 1, we assume that it is produced by the reference

LFSR LFSRref in the clock cycle𝑇 (𝑋 ), where 1 ≤ 𝑇 (𝑋 ) ≤ 2
𝑛 −1. We

assume that the seed (i.e., the initial value) of an LFSR is produced

at the clock cycle 1. Thus, by definition, we have 𝑇 (1) = 1.

In general, given 2 𝑛-bit LFSRs 𝐿1 and 𝐿2 with the same feedback

polynomial as LFSRref and the seeds as 𝑋 and 𝑌 , respectively, if

𝑇 (𝑋 ) > 𝑇 (𝑌 ), then the output sequence of 𝐿2 is a delayed version of
that of 𝐿1 by (𝑇 (𝑋 ) −𝑇 (𝑌 )) clock cycles. Fig. 6 shows an example

with 𝑇 (𝑋 ) − 𝑇 (𝑌 ) = 1. Consequently, we can implement 𝐿2 by

inserting (𝑇 (𝑋 )−𝑇 (𝑌 )) DFFs after 𝐿1, as shown in Fig. 6.We refer to

this operation as merging two LFSRs. Note that if𝑇 (𝑋 ) −𝑇 (𝑌 ) ≤ 𝑛,
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merging two LFSRs reduces the total hardware cost.
2
However, if

𝑇 (𝑋 ) −𝑇 (𝑌 ) > 𝑛, the merge needs more DFFs than an LFSR has.

Thus, in this case, using two separate LFSRs is more hardware-

efficient than merging two LFSRs.

Based on the above observation, we propose a method to opti-

mize the hardware cost of the proposed implementation. It has two

steps. The first step is to merge𝑚 LFSRs in our proposed imple-

mentation based on the above merging criteria. After the first step,

there may still exist some redundant DFFs. Then, the second step

removes them. Next, we elaborate these two steps in Sections 5.1.1

and 5.1.2, respectively. We conclude with some properties of the

proposed hardware cost optimization method in Section 5.1.3.

5.1.1 Merging LFSRs. The procedure to merge the𝑚 LFSRs based

on the above merging criteria is shown in Algorithm 1. Given

the seeds of the𝑚 LFSRs as 𝑆1, . . . , 𝑆𝑚 , it first sorts the sequence

𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚) in the descending order and obtains a new se-

quence 𝑇 (𝑆𝑟1 ), . . . , 𝑇 (𝑆𝑟𝑚 ), where (𝑟1, . . . , 𝑟𝑚) is a permutation of

(1, 2, . . . ,𝑚) satisfying that 𝑇 (𝑆𝑟1 ) > 𝑇 (𝑆𝑟2 ) > · · · > 𝑇 (𝑆𝑟𝑚 ). Then,
for each 1 ≤ 𝑖 ≤ 𝑚 − 1, it tries to merge LFSR𝑟𝑖 and LFSR𝑟𝑖+1 . If

𝑑 = 𝑇 (𝑆𝑟𝑖 ) −𝑇 (𝑆𝑟𝑖+1 ) ≤ 𝑛, it inserts 𝑑 DFFs after LFSR𝑟𝑖 to imple-

ment LFSR𝑟𝑖+1 . Otherwise, it introduces a new LFSR with the same

feedback polynomial as LFSR𝑟1 to implement LFSR𝑟𝑖+1 .

Algorithm 1: LFSR merging procedure.

1 input: The seeds 𝑆1, . . . , 𝑆𝑚 of the𝑚 LFSRs;

2 output: LFSR𝑟1 , LFSR𝑟2 , . . ., LFSR𝑟𝑚 ;

3 (𝑇 (𝑆𝑟1 ), . . . ,𝑇 (𝑆𝑟𝑚 )) ← sort(𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)) ;
4 Use an LFSR to implement LFSR𝑟1 ;

5 for 𝑖 ← 1 to𝑚 − 1 do
6 if 𝑑 = 𝑇 (𝑆𝑟𝑖 ) −𝑇 (𝑆𝑟𝑖+1 ) ≤ 𝑛 then
7 Insert 𝑑 DFFs after LFSR𝑟𝑖 to implement LFSR𝑟𝑖+1 ;

8 else Use a new LFSR to implement LFSR𝑟𝑖+1 ;

9 return LFSR𝑟1 , LFSR𝑟2 , . . ., LFSR𝑟𝑚 ;

The output of Algorithm 1 is an implementation of𝑚 LFSRs by

multiple sequences of DFFs, each for a subset of the𝑚 LFSRs.

Example 1. Consider merging 3 6-bit LFSRs with the seeds 𝑆1, 𝑆2,
and 𝑆3. Suppose that (𝑇 (𝑆1),𝑇 (𝑆2),𝑇 (𝑆3)) = (10, 30, 28). First, we
sort 𝑇 (𝑆1),𝑇 (𝑆2),𝑇 (𝑆3) in descending order as 𝑇 (𝑆2),𝑇 (𝑆3),𝑇 (𝑆1).
Then, we use an LFSR to implement LFSR2. Since 𝑇 (𝑆2) − 𝑇 (𝑆3) =
2 < 6 and 𝑇 (𝑆3) −𝑇 (𝑆1) = 10 > 6, we insert 2 DFFs after LFSR2 to
implement LFSR3 and use a separate LFSR with the same feedback
polynomial as LFSR2 to implement LFSR1. Therefore, by applying
Algorithm 1, the 3 LFSRs can be implemented by 2 DFF sequences as
shown in Fig. 7, where the first sequence of 8 DFFs implements LFSR2
and LFSR3 and the second one of 6 DFFs implements LFSR1.

5.1.2 Removing Redundant DFFs. By the proposed implementation

shown in Fig. 5, for any 2 ≤ 𝑖 ≤ 𝑚, not all the outputs of LFSR𝑖 are

used. Indeed, only (𝑛 − 𝑗𝑖 ) outputs of LFSR𝑖 are used. This gives us
a further opportunity to reduce DFFs. For example, suppose that for

LFSR2 and LFSR3 in Fig. 7, each of them has 3 bits used, which are

indicated by 𝑇2 and 𝑇3 in Fig. 7, respectively. Then, the rightmost 2

DFFs in the first DFF sequence, which are shown in grey, are not

2
When𝑇 (𝑋 ) −𝑇 (𝑌 ) = 𝑛, merging reduces the number of XOR gates needed for the

two LFSRs.
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Figure 7: An implementation of three 6-bit LFSRs by two
sequences of DFFs after LFSR merging, where 𝑇2 and 𝑇3 are
the used bits from LFSR2 and LFSR3, respectively.

needed: Removing them does not affect the correct generation of𝑇2
and 𝑇3. Therefore, they are redundant and hence, can be removed.

Inspired by the above example, we propose a method to remove

the redundant DFFs. The method works on each DFF sequence in

turn. For each sequence, it starts from the rightmost DFF of the

sequence. If the output of the DFF is neither used as a bit in a random

number 𝑅𝑖 nor as an input to an XOR gate, then it is redundant and

removed. With the rightmost DFF removed, we repeat the above

step on the new rightmost DFF. The entire procedure stops until the

current rightmost DFF is either used as a bit in a random number

𝑅𝑖 or as an input to an XOR gate.

5.1.3 Properties of the ProposedHardware Cost OptimizationMethod.
The proposed method has the following properties.

(1) The method does not affect the accuracy. This is because

the method keeps the function of each bit in the random

numbers 𝑅1, . . . , 𝑅𝑚 .

(2) The total number of DFFs in the design optimized by the

proposed method is no more than (𝑛 + 𝐷), where 𝐷 =

max{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)} −min{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)}. A sketch

of the proof of this claim is as follows. According to the

LFSR merging procedure shown in Algorithm 1, LFSR𝑟1 has

𝑛 DFFs. For any 2 ≤ 𝑖 ≤ 𝑚, the additional number of DFFs

needed to implement LFSR𝑟𝑖 is at most (𝑇 (𝑆𝑟𝑖−1 ) −𝑇 (𝑆𝑟𝑖 )).
Thus, the total number of DFFs needed to implement all

the𝑚 LFSRs after the LFSR merging procedure is at most

𝑛 + ∑𝑚
𝑖=2 (𝑇 (𝑆𝑟𝑖−1 ) − 𝑇 (𝑆𝑟𝑖 )) = 𝑛 + 𝑇 (𝑆𝑟1 ) − 𝑇 (𝑆𝑟𝑚 ), where

𝑇 (𝑆𝑟1 ) = max{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)} and 𝑇 (𝑆𝑟𝑚 ) =
min{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)}. Thus, the total number of DFFs af-

ter the LFSR merging procedure is at most (𝑛 + 𝐷). The
second step, removing redundant DFF, may further reduce

some DFFs. Thus, the total number of DFFs in the design

optimized by the proposed method is no more than (𝑛 + 𝐷).

5.2 Accuracy Optimization
In this section, under the design choice from Section 5.1, i.e., all

the LFSRs having the same feedback polynomial, we propose a

method to optimize the accuracy of the proposed implementation

by configuring the available design parameters, including 1) the

common feedback polynomial, 2) the seeds of the 𝑚 LFSRs, and

3) the scrambling ways of the (𝑚 + 1) scrambling modules. With

an optimized configuration, a better uniform spatial distribution is

generated and the correlation among the outputs of the RNSs can

be further reduced, leading to an improved accuracy [21, 22].

There are (2𝑛−1) possible seeds for an𝑛-bit LFSR and𝑛! possible

scrambling ways for an 𝑛-bit scrambling module. Assume that there

are 𝑓 possible feedback polynomials for an 𝑛-bit LFSR. The size of

the entire configuration space is (2𝑛−1)𝑚 (𝑛!)𝑚+1 𝑓 ≈ 2
𝑛𝑚 (𝑛!)𝑚+1 𝑓 ,
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which is very large even when 𝑛 and𝑚 is small. Therefore, it is

impossible to search the entire configuration space to find the best

configuration. To efficiently find a good configuration, we propose

a heuristic method as shown in Algorithm 2.

Algorithm 2: Accuracy optimization procedure.

1 input: an SC core, LFSR bit-width 𝑛, LFSR number𝑚, number of

feedback polynomials of an 𝑛-bit LFSR 𝑓 , a parameter 𝑢 ≥ 1

controlling the total number of DFFs, and parameters 𝑡𝑑 and 𝑡𝑏 ;

2 output: minimum MAE MAEmin and the best configuration𝐶∗;

3 MAEmin ← +∞,𝐶∗ ← null;
4 for 𝑖 ← 1 to 𝑓 do
5 Choose the 𝑖-th possible feedback polynomial for the𝑚 LFSRs;

6 Choose LFSR1’s seed 𝑆1 so that𝑇 (𝑆1) = 𝑢;

7 for 𝑗 ← 1 to 𝑡𝑑 do
8 Randomly choose LFSR𝑘 ’s seed 𝑆𝑘 so that 1 ≤ 𝑆𝑘 ≤ 2

𝑛 − 1
and 1 ≤ 𝑇 (𝑆𝑘 ) ≤ 𝑢, for 𝑘 = 2, . . . ,𝑚;

9 for 𝑘 ← 1 to 𝑡𝑏 do
10 Randomly chooses a scrambling way for SR𝑟 , for

𝑟 = 1, . . . ,𝑚 + 1;
11 Simulate the circuit with the current configuration and

the specified SC core, and obtain the MAE;
12 if MAE < MAEmin then
13 MAEmin ← MAE;
14 update𝐶∗ to the current configuration;

15 return MAEmin and𝐶∗;

The proposed method takes as inputs an SC core to which the

proposed RNS implementation is applied and several parameters.

The main part of the proposed method is a triple loop. The outer-

most loop iterates over all the feedback polynomials of an 𝑛-bit

LFSR and sets the seed 𝑆1 of the 1-st LFSR so that𝑇 (𝑆1) = 𝑢, where

𝑢 ≥ 1 is a parameter to control the total number of DFFs. In the

intermediate loop, for 2 ≤ 𝑘 ≤ 𝑚, it randomly chooses the seed

𝑆𝑘 of LFSR𝑘 so that 1 ≤ 𝑇 (𝑆𝑘 ) ≤ 𝑢. In the innermost loop, it ran-

domly chooses a scrambling way for each of the (𝑚 + 1) scrambling

modules. The number of iterations for the intermediate and the in-

nermost loops are 𝑡𝑑 and 𝑡𝑏 , respectively, which are two parameters.

For each configuration of the feedback polynomial, the seeds, and

the scrambling ways generated within the triple loop, it simulates

the circuit with that configuration and the specified SC core to

obtain its MAE. Finally, the configuration with the minimum MAE

is returned. The time complexity of the method is 𝑂 (𝑓 𝑡𝑑𝑡𝑏 ), which
is far smaller than 𝑓 2𝑛𝑚 (𝑛!)𝑚 when 𝑡𝑑 and 𝑡𝑏 are small.

By Algorithm 2, we have max{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)} = 𝑇 (𝑆1) = 𝑢

and min{𝑇 (𝑆1), . . . ,𝑇 (𝑆𝑚)} = 1. Thus, by Property 2 described in

Section 5.1.3, the number of total DFFs of the proposed optimized

implementation is at most (𝑛 + 𝑢 − 1).

6 EXPERIMENTAL RESULTS
This section shows the experimental results comparing the SNG

using our optimized RNS design with some existing SNG designs.

6.1 Experimental Setup
To show whether the proposed RNS design are suitable for different

types of SC circuits, we choose 8 SC circuits as benchmarks. The

first three are the 2-input, 3-input, and 4-input SC multipliers. We

denote them as MUL-2, MUL-3, and MUL-4, respectively. The next
three are the circuits implementing cos(𝑥), sin(𝑥), and tanh(𝑥) pro-
posed in [12]. The last two are the circuits implementing 𝑥0.45 and

𝑒−2𝑥 synthesized by the method in [23] with degree and precision

as 4 and 6, respectively. For these 2 circuits, we apply 4 SNGs to

generate 4 stochastic bit streams with the probability 𝑥 and reuse

one RNS in these 4 SNGs to generate 6 stochastic bit streams with

the constant coefficient of
1

2
.

We choose 4 existing SNG designs for comparison, which are de-

noted as𝑚-SSG,𝑚-LFSR, 1-LFSR, and𝑚-FSM [7, 14, 20, 21].𝑚-SSG,
𝑚-LFSR, and 1-LFSR consist of RNSs and comparators, as shown in

Fig. 2. They differ by the RNSs. Specifically, for an SC circuit with𝑚

inputs,𝑚-SSG has𝑚 Sobol sequence generators, each responsible

for the generation of the stochastic bit stream of one input [7]. It

usually has the highest accuracy with short stochastic bit streams.

𝑚-LFSR is similar to𝑚-SSG except that each Sobol sequence gen-

erator is replaced by an LFSR [21]. It is the most widely used SNG

design. 1-LFSR has only one LFSR for the entire SC circuit and it is

shared among the SNGs for different inputs [14]. It has the lowest

hardware cost.𝑚-FSM is based on finite state machine (FSM) [20].

For an SC circuit with𝑚 inputs, it applies𝑚 FSMs, each responsible

for the generation of the stochastic bit stream of one input. The

states of each FSM are determined by a Sobol sequence. It is the

state-of-the-art SNG design with high enough accuracy and low

hardware cost. However, it does not include an RNS. Note that

for the circuits for 𝑥0.45 and 𝑒−2𝑥 , which are synthesized by the

method in [23], they need an 𝑛-bit RNS to generate the stochastic

bit streams with the constant coefficient of
1

2
. Since𝑚-FSM is essen-

tially based on Sobol sequences, we use a Sobol sequence generator

as the 𝑛-bit RNS in the circuits for 𝑥0.45 and 𝑒−2𝑥 when considering

𝑚-FSM-based SNG.

For our proposed implementation, as shown in Section 5.2, we

need to determine a parameter 𝑢 to configure it. We consider a

choice of𝑢 = max((𝑚−2)𝑛−1, 1), where the function max(𝑋, 1) en-
sures that for any𝑚 ≥ 2, 𝑢 ≥ 1, a requirement on 𝑢 in Algorithm 2.

By the discussion at the end of Section 5.2, this choice of 𝑢 also

ensures that the total DFF number of our proposed implementation

is no more than (𝑛+𝑚𝑎𝑥 ((𝑚−2)𝑛−1, 1)−1 =𝑚𝑎𝑥 ((𝑚−1)𝑛−2, 𝑛)).
Note that the number of DFFs in𝑚-LFSR is 𝑛𝑚. Thus, this choice of

𝑢 ensures that the hardware cost of the SNGs using our proposed

implementation is less than that of𝑚-LFSR by the cost of at least

one LFSR. In the following, we denote the SNG design using the

proposed implementation as Proposed.
For the accuracy optimization method, we set both 𝑡𝑑 and 𝑡𝑏

as 100. Thus, the total number of configurations searched by our

method is 10000𝑓 . Note that for 𝑚-SSG and 𝑚-FSM, we need to

properly choose its Sobol sequence generators or FSMs, and for

𝑚-LFSR and 1-LFSR, we need to properly determine their feedback

polynomials, seeds, and scrambling ways. For a fair comparison, we

also randomly configure these SNG designs for the same runtime as

we use to configure our design and choose the best configuration

with theminimumMAE. In the following, we compare the 4 existing

SNG designs and Proposed for the bit-width 𝑛 = 8.
3
We repeat each

experiment for 10 times and obtain the average experimental results.

3
We also did experiments for bit-width 𝑛 = 6 and 7. The results are similar to 𝑛 = 8

and hence, are omitted due to space limit.
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The average runtime for configuring Proposed by Algorithm 2 for

each benchmark over 10 times is listed in Table 2.

Table 2: The average runtime for configuring Proposed for
each benchmark.

Benchmark MUL-2 MUL-3 MUL-4 cos(𝑥 )

Runtime (s) 551.36 879.51 1414.71 1246.92

Benchmark sin(𝑥 ) tanh(𝑥 ) 𝑥0.45 𝑒−2𝑥

Runtime (s) 1003.14 1308.48 517.81 498.23

6.2 Accuracy Comparison
We first compare the accuracy of the SNG designs. For the SC

multipliers, we obtain the MAE over 1000 random input groups. For

the other benchmarks, we obtain the MAE over all possible inputs.

The experimental results are listed in Table 3, where Ave-MUL and

Ave-All denote the average MAEs over the SC multipliers and all

benchmarks, respectively. To show the comparison more clearly,

in the table, we highlight the minimum MAE among all the SNG

designs in bold, and underline the cases where Proposed are better

than𝑚-LFSR.
Table 3: Accuracy comparison for different SNG designs.

Design 𝑚-SSG 𝑚-FSM 𝑚-LFSR 1-LFSR Proposed

MUL-2 0.00171 0.00158 0.00189 0.00155 0.00178

MUL-3 0.00265 0.00260 0.00349 0.01004 0.00334

MUL-4 0.00321 0.00306 0.00414 0.01837 0.00413

cos(𝑥 ) 0.00261 0.00262 0.00239 0.00221 0.00232

sin(𝑥 ) 0.00168 0.00188 0.00228 0.00243 0.00262

tanh(𝑥 ) 0.00231 0.00268 0.00269 0.00282 0.00291

𝑥0.45 0.00555 0.00637 0.00647 0.0110 0.00618

𝑒−2𝑥 0.00340 0.00336 0.00372 0.00642 0.00389

Ave-MUL 0.00252 0.00241 0.00317 0.00998 0.00308

Ave-All 0.00289 0.00302 0.00338 0.00685 0.00340

As shown in this table, Proposed achieves very close accuracy

as𝑚-SSG and𝑚-FSM, which generally have the highest accuracy.

Furthermore, Proposed has almost the same accuracy as𝑚-LFSR and

far higher accuracy than 1-LFSR on average. Overall, it achieves a

high accuracy for these benchmarks.

6.3 Hardware Cost Comparison
For the hardware cost, we first compare the areas of the SC circuits

using different SNG designs. Note that the SNGs generally occupy

most area of an SC circuit. Thus, for the area comparison, we focus

on the SNG area. For all the SNG designs except𝑚-FSM, their areas

equal the sum of the areas of the RNSs and the comparators. For

𝑚-FSM, its area equals the sum of the areas of the FSM-based SNGs

and the Sobol sequence generator, where the area of the Sobol

sequence generator is only considered for the circuits for 𝑥0.45 and

𝑒−2𝑥 . In the following, we obtain the area of SNGs by summing

up the area of its components. These components are specified

by hardware description language and synthesized by Synopsys

Design Compiler [24] using the Nangate 45nm library [25] to obtain

their areas. The area of each component is listed in Table 4, where

SNGFSM denotes an FSM-based SNG [20] and SSG denotes a Sobol

sequence generator [7].

The area comparison for different SNG designs is shown in Figs. 8.

Clearly, the area of Proposed is far smaller than that of𝑚-SSG and

Table 4: Area of each component.

Component SSG SNGFSM LFSR Comparator DFF

Area (𝜇𝑚2
) 613.66 380.65 43.76 26.87 4.77

𝑚-FSM, and is always smaller than that of𝑚-LFSR. Compared to

𝑚-SSG,𝑚-FSM, and𝑚-LFSR, the area of Proposed is reduced by 92%,

88%, and 27%, respectively, on average.
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Figure 8: Area comparison for different SNG designs.

Then, we compare the powers and the delays of the SC circuits

using different SNG designs. Note that for these circuits, the dif-

ferences of their powers and delays lie in their SNGs. Therefore,

to compare their powers and delays, we only need to compare

their SNGs. For each existing SNG design, we obtain its power by

summing up those of its components. For Proposed, as described
in Section 6.1, its hardware cost is less than that of𝑚-LFSR by the

cost of at least of one LFSR. Thus, its cost is no more than the total

cost of (𝑚 − 1) LFSRs and𝑚 comparators for an𝑚-input SC circuit.

Note that (𝑚−1) LFSRs and (𝑚−1) comparators constitute (𝑚−1)
LFSR-based SNGs. Therefore, for Proposed, its power is no more

than the total power of (𝑚− 1) LFSR-based SNGs and 1 comparator

for an𝑚-input SC circuit. By Synopsys Design Compiler [24] based

on the Nangate 45nm library [25], we obtain the power of a com-

parator, a Sobol sequence generator-based SNG, an FSM-based SNG,

and an LFSR-based SNG as 1.10𝜇𝑊 , 30.1𝜇𝑊 , 9.06𝜇𝑊 , and 4.54𝜇𝑊 ,

respectively. Then, based on the above power model, we obtain the

powers of different SNGs for an𝑚-input SC circuit, which are listed

in Table 5. For the delay of an SNG design, since it is independent

of𝑚, we measure the delay of an SNG design by setting𝑚 = 1. The

delays of different SNGs for an𝑚-input SC circuit are also listed in

Table 5. As shown in the table, Proposed has a much smaller power

and a smaller delay than𝑚-SSG. Compared to𝑚-FSM, Proposed has

a smaller power and a 45% delay reduction. Compared to𝑚-LFSR,
Proposed has a smaller power and the same delay.

Table 5: Powers (𝜇𝑊 ) and delays (𝑛𝑠) of different SNGs for an
𝑚-input SC circuit.

Design 𝑚-SSG 𝑚-FSM 𝑚-LFSR 1-LFSR Proposed
Power 30.1𝑚 9.06𝑚 4.54𝑚 3.44 + 1.10𝑚 ≤ 4.54𝑚 − 3.44
Delay 2.00 3.39 1.88 1.88 1.88

In summary, compared to𝑚-SSG and𝑚-FSM, Proposed can achieve
far lower hardware cost and very close accuracy. Furthermore, com-

pared to𝑚-LFSR, Proposed can achieve lower hardware cost and

almost the same accuracy. In conclusion, Proposed has both low

hardware cost and high accuracy.
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6.4 Accuracy-Area Trade-off Comparison
As shown in Section 5.2, our proposed RNS design has an im-

portant parameter 𝑢. In this section, we study the influence of

𝑢 on the accuracy and the hardware cost. We choose 5 𝑢s, which

are 𝑢1 = 1, 𝑢2 = max(⌊ (𝑚−2)𝑛−1
3

⌋, 1), 𝑢3 = max(⌊ (2𝑚−4)𝑛−2
3

⌋, 1),
𝑢4 = max((𝑚 − 2)𝑛 − 1, 1), and 𝑢5 = 100 in ascending order. We

obtain 5 corresponding SNG designs based on the proposed RNS

implementation. Then, we apply these SNG designs to the 8 bench-

marks and obtain the average MAEs and the average SNG areas. In

Fig. 9, we plot how the average SNG area and the average MAE of

the proposed implementation changes with 𝑢. For comparison, we

also add the results of𝑚-SSG,𝑚-FSM,𝑚-LFSR, and 1-LFSR.

Figure 9: The SNG areas and the MAEs of the proposed im-
plementation for different choices of the parameter 𝑢.

As the figure shows, for the proposed implementation, the SNG

area increases with 𝑢, while the MAE decreases with 𝑢. This is

expected.With a larger𝑢, on the one hand, the design space is larger

and hence, it is possible to find a configuration with a lower MAE.

On the other hand, 𝑇 (𝑆1), . . .𝑇 (𝑆𝑚) span a larger range, hence

potentially requiring more DFFs to implement all the𝑚 RNSs. This

indicates that by tuning the parameter 𝑢, we can trade the accuracy

for area for the proposed implementation.

Compared to other SNG designs, the SNG designs using the pro-

posed implementation have far lower hardware cost than𝑚-SSG
and 𝑚-FSM, and the design point with 𝑢 = 𝑢5 can achieve both

higher accuracy and lower hardware cost than𝑚-LFSR. Further-
more, for the case where 𝑢 = 1, the SNG design using the proposed

implementation has higher accuracy than 1-LFSR. Note that in this

case, it has only one LFSR and has the same hardware cost as 1-
LFSR. Therefore, the proposed implementation can achieve higher

accuracy than 1-LFSR with the same hardware cost.

Finally, we remark that this study also demonstrates another

advantage of our proposed design, that is, it gives design flexibility.

By changing the value of 𝑢, we can generate different SNG designs

to adapt to different requirements of accuracy and hardware cost.

6.5 Case Study: Gamma Correction
To show the application-level quality, we apply the different SNG

designs to a gamma correction circuit, which is just the design for

the function 𝑥0.45 described in Section 6.1. The input image and

the output image by the accurate gamma correction circuit are

shown in Figs. 10(a) and (b), respectively. The output images by

the SC gamma correction circuits based on𝑚-SSG,𝑚-FSM,𝑚-LFSR,
1-LFSR, and Proposed are shown in Figs. 10(c)-(g), respectively. To

more clearly show the quality, we calculate the peak signal-to-noise

ratios (PSNRs) and structural similarities (SSIMs) for Figs. 10(c)-(g),

which are listed below each figure. We can see that the output

image by the SC gamma correction circuit based on Proposed has

the highest PSNR among all the SNG designs. It also has a high

enough SSIM. The PSNR and the SSIM values are above 40dB and

0.99, respectively, which indicates only a slight degradation in the

quality compared to the accurate output image. Therefore, Proposed
has a good application effect.

(a) (b) (c) PSNR=36.21 dB (d) PSNR=41.17 dB

(a) (b) (c) PSNR=44.0 dB (d) PSNR=38.9 dB

(a) (b) (c) PSNR=36.75 dB (d) PSNR=41.99 dB

(a) (b) (c)

(d) (e) (f)

(b)

(a)

(d) PSNR = 39.83dB

SSIM  = 0.995dB

(e) PSNR = 40.29dB

SSIM  = 0.994dB
(e) PSNR = 40.29dB

SSIM  = 0.994dB
(f) PSNR = 33.64dB

SSIM  = 0.996dB
(f) PSNR = 33.64dB

SSIM  = 0.996dB
(g) PSNR = 42.73dB

SSIM  = 0.994dB

(c) PSNR = 41.56dB

SSIM  = 0.997dB
(c) PSNR = 41.56dB

SSIM  = 0.997dB

Figure 10: Comparison of various SNGs for the gamma cor-
rection application. (a): the input image; (b): the output image
by the accurate gamma correction circuit; (c)–(g): the output
images by the SC gamma correction circuit based on𝑚-SSG,
𝑚-FSM,𝑚-LFSR, 1-LFSR, and Proposed, respectively.

7 CONCLUSION
In this paper, aiming at designing RNSs with low hardware cost

and high accuracy for SC, we propose a basic architecture and an

LFSR-based implementation to generate output points uniformly

distributed in space. We also propose methods to optimize the

hardware cost and accuracy of the proposed implementation. The

experimental results show that compared to the existing SNG de-

signs, our proposed one achieves far lower hardware cost with

close accuracy or higher accuracy with the same hardware cost. In

addition, our method gives design flexibility to adapt to different

requirements of accuracy and hardware cost. Our work shows the

great potential of the uniform spatial distribution for SC. Our future

work will further exploit it to design a more efficient RNS for SC.
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