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ABSTRACT
Stochastic computing (SC) is an unconventional comput-
ing paradigm that computes on stochastic bit streams. It is
promising to implement complex functions with low-cost cir-
cuitry. A stochastic circuit typically consists of a randomizer
to generate the stochastic bit streams and an SC core comput-
ing on the bit streams. To design a low-cost stochastic circuit,
many works have been proposed to optimize these two parts.
However, the works optimize them insufficiently due to the
overlook of some optimization space and separately without
considering their mutual influence, thus causing the final sto-
chastic circuit sub-optimal. In this work, to address this issue,
we first introduce a low-cost randomizer architecture and
a method for optimizing the SC core. Then, by combining
these two techniques together, we further propose a method
to jointly optimize the randomizer and the SC core. Our ex-
perimental results show that compared to the conventional
method, the proposed joint optimization method can reduce
39.70% area and 42.74% power for the stochastic circuit.
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1 INTRODUCTION
Stochastic computing (SC) is an unconventional computing
paradigm proposed in 1960s [1]. It computes on stochastic
bit streams (SBSs), which consists of zeros and ones and
encodes the value by the ratio of ones. Compared to the
binary computing, it can implement complex functions with
simple circuitry and has strong fault tolerance. For example,
it only needs an AND gate to implement the multiplication.

A stochastic circuit typically consists of a randomizer and
an SC core as shown in Fig. 1. The randomizer generates 𝑑𝑖
SBSs encoding the input binary number 𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑘

and𝑚 SBSs of constant values. The SC core computes on
these SBSs to implement the target function. In this paper,
we consider optimizing the stochastic circuits that imple-
ment univariate functions. In this case, we have 𝑘 = 1. For
simplicity, in the following, we denote 𝑋1, 𝑑1, and 𝑥1,𝑖 as 𝑋 ,
𝑑 , and 𝑥𝑖 , respectively.
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Figure 1: Illustration of a stochastic circuit.
There are many works proposed for stochastic circuit op-

timization by optimizing either the randomizer [2–5] or the
SC core [6–8]. However, these methods generally optimize
the two parts insufficiently due to the overlook of some op-
timization space and separately without considering their
mutual influence, thus causing the final stochastic circuit sub-
optimal. For example, for the optimization of the randomizer,
Ting et al. [3] propose a method to efficiently generate mul-
tiple SBSs of variable values by inserting D flip-flops (DFFs).
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The method can significantly reduce the hardware cost. Nev-
ertheless, it does not give an efficient way to generate SBSs
of constant values and does not consider further optimizing
the SC core.
In this special session paper, we first review two of our

previously proposed techniques for randomizer optimization
and SC core optimization, respectively. To optimize the ran-
domizer, we proposed a low-cost randomizer architecture
and its associated configuration method in [9]. The archi-
tecture only needs a single random number source (RNS),
a single comparator, and the minimum number of DFFs to
generate all the SBSs of variable and constant values, and
the configuration method can lead to a high accuracy. To op-
timize the SC core, we proposed a dynamical approximation
method in [10]. It can efficiently obtain a low-cost SC core
satisfying the accuracy requirement.
Then, based on the above two techniques, we propose

a method to jointly optimize the randomizer and the SC
core in the work. It uses an early-termination strategy for
acceleration. The experimental results show that compared
to the conventional method, the proposed joint optimization
method can reduce 39.70% area and 42.74% power for the
stochastic circuit.
We organize the rest of the paper as follows. Section 2

introduces the background and the related works. Section 3
introduces the low-cost randomizer architecture and the
method to optimize the SC core, and presents the proposed
joint optimization method. Section 4 shows the experimental
results, and Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORKS
We introduce some background and related works about the
optimization of the stochastic circuit.

2.1 SC core optimization
In general, the SC core approximately implements the target
function 𝑓 (𝑥) by a Bernstein polynomial 𝑓 (𝑥) as

𝑓 (𝑥) =
𝑑∑︁
𝑖=0

𝐺 (𝑖)
2𝑚

𝑥𝑖 (1 − 𝑥)𝑑−𝑖 , (1)

where 𝑑 and𝑚 are the degree and the precision, respectively,
and𝐺 (𝑖)s are the integers in the range

[
0, 2𝑚

(
𝑑
𝑖

) ]
[6; 7]. The

vector (𝐺 (0),𝐺 (1), . . . , 𝐺 (𝑑)) is called the feature vector. As
shown in Eq. (1), the degree, the precision, and the feature
vector determine the approximation error between the Bern-
stein polynomial 𝑓 (𝑥) and the target function 𝑓 (𝑥). To obtain
a high-accuracy SC core, we need to first obtain a Bernstein
polynomial with a proper choice of degree, precision, and
feature vector, and then design a core to implement this
polynomial.

To achieve this, for a specified pair of 𝑑 and𝑚, Qian et al.
first propose a method to obtain a feature vector giving the
minimum approximation error [11]. Then, for this polyno-
mial, Zhao et al. propose a core to implement it as shown in
Fig. 2 [6]. The core is based on the combinational logic and
takes as input 𝑑 SBSs of the variable value 𝑥 and𝑚 SBSs of
the constant value 0.5. To efficiently synthesize the core with
low hardware cost, Peng et al. propose a method based on
the cube assignment [7]. It tries many possible ways to itera-
tively split the feature vector into some cubes, where a cube
can be directly implemented by an AND gate, and the cubes
of a split are ORed together to form a sum-of-product (SOP)
expression. Then, it further simplifies each SOP expression
by applying the two-level logic optimization tool ESPRESSO
and obtains the corresponding SC core [12]. Finally, after
obtaining all the SC cores for all the feature vector splittings,
it chooses the one with the minimum hardware cost.
By the above methods, we can obtain a low-cost SC core

approximately implementing the target function with a small
approximation error. However, these methods only consider
and synthesize a single feature vector for a pair of 𝑑 and
𝑚. They ignore many other possible feature vectors, which
also have small approximation errors and may lead to lower
hardware costs.

2.2 Randomizer optimization
SC generally applies a stochastic number generator (SNG) to
generate an SBS. As shown in Fig. 2, an SNG typically consists
of an RNS and a comparator, where the RNS generates a
random binary number𝑅 in a clock cycle, and the comparator
outputs a 1 if 𝑅 is less than the input𝑋 . In general, to ensure a
high accuracy for the stochastic circuit, we apply 𝑑 different
SNGs to generate 𝑑 independent SBSs. However, it leads to a
considerable hardware cost.
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Figure 2: Conventional architecture of the stochastic
circuit.

To optimize it, several works are proposed [2–5]. Among
them, the one proposed in [3] has a low hardware cost for
generating the SBSs of the same value. It can generate 𝑑
SBSs of the same value by applying (𝑑 − 1) DFFs after an
SNG as shown in Fig. 2, where a DFF delays an SBS for a
clock cycle and generates another independent one of the
same value. However, it does not propose an efficient way
to generate SBSs of constant values. Note that an 𝑛-bit RNS
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generates 𝑛 bits with the probability of 0.5 to be a one in a
clock cycle, and we can use each of them to constitute an
SBS of the value 0.5 [6; 13]. Therefore, to generate𝑚 SBSs of
the value 0.5 and the length 2𝑛 , we can apply an 𝑛-bit RNS
and select𝑚 outputs from it. The conventional architecture
for the stochastic circuit is shown in Fig. 2, where BS is a
bit selection module to select𝑚 outputs from the 𝑛-bit RNS.
Note that BS costs no hardware overhead. The design only
needs 2 RNSs, a comparator, and (𝑑 − 1) DFFs to generate
(𝑑 +𝑚) SBSs. However, it still needs 2 RNSs. In this paper,
we will introduce a low-cost architecture that can reduce the
number of used RNSs to 1.

2.3 Conventional optimization method
A conventional method optimizes the stochastic circuit based
on the above techniques. For a target function 𝑓 (𝑥) with an
error bound given, it first applies the method in [11] to ob-
tain the feature vectors for many different pairs of 𝑑 and
𝑚. Then, for these feature vectors, it applies the method
in [7] to synthesize and obtain many SC cores. Afterward, it
applies the conventional architecture shown in Fig. 2 to op-
timize the randomizer for each of these SC cores and obtain
many stochastic circuits. Finally, it outputs the stochastic
circuit, which has an error less than the error bound and
has the minimum hardware cost. The optimized stochas-
tic circuit generally has low hardware cost. However, the
method separately optimizes the SC core and the random-
izer without considering their mutual influence and needs
to synthesize many different SC cores. This generally leads
to a sub-optimal stochastic circuit and a long runtime.

3 METHODOLOGY
In this section, we first introduce a low-cost randomizer ar-
chitecture and its associated configuration method. Then, we
introduce a method to optimize the SC core. Finally, based
on them, we propose a method to jointly optimize the ran-
domizer and the SC core.

3.1 Method to optimize randomizer
For the optimization of the randomizer, we introduce a low-
cost architecture and a configuration method proposed in
our previous work [9]. The low-cost architecture is shown as
Fig. 3, where𝐵𝑆 , 𝑆𝑅𝑖 ’s, and𝑁𝐺𝑖 ’s are the bit selectionmodule,
the scrambling modules, and the negation modules, respec-
tively. Compared to the conventional architecture shown in
Fig. 2, it shares an RNS for generating the SBSs of both the
value 𝑥 and the value 0.5, and applies several scrambling
and negation modules to permute and negate the output bits,
respectively, to improve the accuracy [4; 9]. Note that the bit
selection module, the scrambling modules, and the negation
modules cost no hardware overhead, and the number of used

DFFs is the minimum to generate 𝑑 SBSs of the same value
𝑥 . Thus, the randomizer architecture has a low hardware
cost with only a single RNS, a single comparator, and the
minimum number of DFFs.
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Figure 3: Low-cost architecture of the stochastic cir-
cuit [9].
To optimize the accuracy of the randomizer, we also pro-

posed a method to configure the modules (𝑅𝑁𝑆 , 𝐵𝑆 , 𝑁𝐺1,
𝑁𝐺2, 𝑆𝑅1, 𝑆𝑅2, and 𝑆𝑅3) as shown in Fig. 4 [9]. It first initial-
izes the modules. Then, it iteratively searches the configu-
rations for some of them while fixing the others in a loop,
which consists of 3 steps. In the first step, it exhaustively
tries all possible configurations for 𝐵𝑆 , 𝑁𝐺1, and 𝑁𝐺2, and
randomly tries the configurations for 𝑅𝑁𝑆 . In the second
step, it first exhaustively tries all possible configurations for
𝑆𝑅1 and randomly tries the configurations for 𝑆𝑅2 and 𝑅𝑁𝑆 ;
then, it exhaustively tries all possible configurations for 𝑆𝑅2
and randomly tries the configurations for 𝑆𝑅1 and 𝑅𝑁𝑆 . In
the third step, it tries all possible configurations for 𝑆𝑅3. The
method updates the best configuration for the architecture
once obtaining a higher accuracy, and terminates when no
update is obtained after traversing these 3 steps. As shown
in [9], the method can generally lead to a high accuracy.
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Figure 4: Flow chart of the configuration method [9].

3.2 Method to optimize the SC core
As discussed in Section 2.1, the previous method in [7] only
considers a single feature vector for a specified pair of 𝑑 and
𝑚. It ignores other feature vectors, which may lead to lower
hardware costs. To address this issue, we propose a dynamic
approximation method in our previous work as shown in
Fig. 5 [10]. It synthesizes an SC core for a target function
𝑓 (𝑥) satisfying a given error bound. It additionally takes a
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feature vector as input, which we call input feature vector.
It synthesizes an SC core iteratively with 2 steps in each
iteration.
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Figure 5: Flow chart of the dynamic approximation
method [10].

The first step is to try many possible ways to split the
feature vector into a cube and a remaining feature vector.
The cube is directly implemented by an AND gate, and the
remaining feature vector will be left for the next split step.
Different than the method proposed in [7], this step does
not require that their sum exactly equals the original feature
vector. For example, when 𝑑 = 3 and 𝑚 = 2, the feature
vector (1, 1, 6, 2) can be split into the cube [0, 0, 2, 0] and the
remaining feature vector (1, 1, 4, 2), or the cube [0, 2, 4, 2]
and the remaining feature vector (1, 0, 2, 0), where the first
split is exact, while the second is inexact. The cube [0, 0, 2, 0]
can be implemented by a 4-input AND gate with 3 SBSs of
the value 𝑥 and an SBS of the value 0.5 as inputs. The cube
[0, 2, 4, 2] can be implemented by a 2-input AND gate with
an SBS of the value 𝑥 and an SBS of the value 0.5 as inputs.
The remaining feature vectors (1, 1, 4, 2) and (1, 0, 2, 0) will
be left for the next split step. For the second split, as the sum
of the cube and the remaining feature vector does not equal
the original feature vector, the sum leads to a new feature
vector for the target function 𝑓 (𝑥) with a new approximation
error, which further leads to some new SC cores. To satisfy
the accuracy requirement, we abandon any split with an
approximation error larger than the error bound.

By applying the first step, we obtain many different splits
for the input feature vector and have more possibility to
find an SC core with a lower cost. However, as the process
goes on, the number of splits grows exponentially, leading
to a very large design space that needs a very long runtime
to explore. To speed up the process, the second step prune
some unpromising splits, which are more likely to have high
hardware costs than the others. For example, for the splits
[0, 0, 2, 0] + (1, 1, 4, 2) and [0, 2, 4, 2] + (1, 0, 2, 0), their cubes
need a 4-input and a 2-input AND gates to implement, re-
spectively. The former split is more likely to have a high
hardware cost than the latter. Therefore, we can prune the
former.

The loop terminates when no feature vector is left to split.
Then, similar to [7], we construct many Boolean functions

based on the cubes and further simplify them to the SC cores
by applying ESPRESSO [12]. Among the cores, we choose the
one with the lowest hardware cost. Compared to the method
proposed in [7], this method dynamically considers many
possible feature vectors to approximate the target functions
in the synthesis process and generally obtains an SC core
with a lower cost.

3.3 Joint optimization method
To optimize a stochastic circuit, a simple method is to sepa-
rately apply the above randomizer and SC core optimization
methods. Specifically, for a target function with an error
bound given, we can first apply the dynamic approximation
method to obtain an optimized SC core based on the ini-
tial input feature vector obtained by the method from [11],
and then apply the low-cost architecture and the configu-
ration method to optimize the randomizer. The method is
very efficient to optimize a stochastic circuit. However, it
still optimizes the randomizer and the SC core separately.
Such a separate method will sometimes lead to an optimized
stochastic circuit with an error either much less or larger
than the error bound. For the former case, it means that we
can further relax the accuracy constraint for the dynamic
approximation method to obtain an SC core with a lower
cost. For the latter case, it means that the stochastic circuit
does not satisfy the accuracy requirement, and we need to
tighten the accuracy constraint for the dynamic approxi-
mation method. In the following, we call this method the
separate optimization method.
To address the issue of the separate method, we propose

a method for joint optimization of the randomizer and the
SC core as shown in Algorithm 1. Its basic idea is to dy-
namically update the accuracy constraint for the dynamic
approximation method by taking the influence of the ran-
domizer configuration method into consideration. A proper
accuracy constraint will lead to a properly optimized SC core
and finally a low-cost stochastic circuit.
For a target function 𝑓 (𝑥), based on the error bound for

the entire stochastic circuit, 𝐸bound, we first initialize the er-
ror bound for the dynamic approximation method, which
optimizes the SC core, as 𝐸core-bound = 𝑡𝐸bound, where 𝑡 is a
parameter. In general, to do optimization in a large design
space and avoid missing the optimal design, we let 𝑡 ≥ 1 so
that the error bound for the SC core optimization is larger
than that for the entire stochastic circuit. Then, we optimize
the stochastic circuit in a loop, which consists of 3 steps. First,
in Line 5, we consider many different pairs of 𝑑 and𝑚, and
apply the method in [11] to obtain the corresponding feature
vectors. Note that a pair of 𝑑 and𝑚 with a smaller sum is
more likely to lead to a low-cost SC core [14]. For these fea-
ture vectors, we choose the one as the input feature vector
with its approximation error 𝐸input less than the error bound
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𝐸core-bound and having the minimum sum of 𝑑 and𝑚. Then,
in Line 6, based on the input feature vector, we apply the dy-
namic approximation method to obtain an optimized SC core
under the error bound 𝐸core-bound. Finally, in Line 7, based on
the obtained SC core, we apply the low-cost architecture and
the configuration method to optimize the randomizer and
obtain the error 𝐸circuit for the optimized stochastic circuit.
If 𝐸circuit is larger than 𝐸bound, we start the next iteration by
setting 𝐸core-bound as 𝐸input in Line 8. This will ensure an im-
provement in accuracy with a new and more accurate input
feature vector obtained. Otherwise, Line 9 terminates the
loop, and Line 10 outputs the optimized stochastic circuit.

Algorithm 1: Joint optimization method.

1 input: Target function 𝑓 (𝑥) and error bound 𝐸bound;
2 output: Optimized stochastic circuit;
3 𝐸core-bound ← 𝑡𝐸bound;
4 while true do
5 Apply the method in [11] to obtain an input feature

vector 𝑉 with the error 𝐸input < 𝐸core-bound;
6 Based on the input feature vector 𝑉 , apply the dynamic

approximation method to obtain an optimized SC core
under the error bound 𝐸core-bound;

7 Based on the obtained SC core, apply the low-cost
architecture and the configuration method to optimize
the randomizer and obtain the error 𝐸circuit;

8 if 𝐸circuit > 𝐸bound then 𝐸core-bound ← 𝐸input;
9 else break;

10 return Optimized stochastic circuit;

Note that we also slightly modify the randomizer config-
uration method for acceleration. The previous randomizer
configuration method targets at minimizing the error 𝐸circuit
through an iterative improvement loop. We observe that we
only require the optimized stochastic circuit to have its er-
ror 𝐸circuit ≤ 𝐸bound. Thus, when applying the configuration
method, we terminate its loop early once it finds a configu-
ration with 𝐸circuit ≤ 𝐸bound.
Compared to the separate method, the joint method can

obtain a stochastic circuit that always satisfies the accuracy
requirement and is more likely to have a lower hardware
cost.

4 EXPERIMENTAL RESULTS
In this section, we show the experimental results.

4.1 Experimental setup
In this work, we consider linear feedback shift registers (LF-
SRs) as the RNSs. We choose 6 functions as the test cases,
which are listed in Table 1 together with their IDs. We com-
pare the proposed joint method with the conventional and
the separate optimization methods. For the joint optimiza-
tion method shown in Algorithm 1, we set 𝑡 = 3 and consider

all possible pairs of positive 𝑑 and positive𝑚 with their sums
larger than 2 and less than 8. For a fair comparison, for the
conventional optimization method, we consider the same
pairs of 𝑑 and𝑚 and optimize the randomizer by randomly
configuring the feedback polynomials and the seeds of LFSRs
for a half hour. For the separate optimization method, we
directly apply the error bound for the stochastic circuit as the
accuracy constraint for the SC core optimization and obtain
the input feature vector in the same way as the joint opti-
mization method. Note that these 3 methods need to measure
the hardware costs of some possible SC cores in the SC core
optimization step. In this work, we apply area-delay product
(ADP) as the hardware cost measurement, and obtain the
ADP by applying ABC [15] based on the MCNC standard
cell library [16]. For simplicity, in the following, we denote
the conventional, the separate, and the joint optimization
methods as Conventional, Separate, and Joint, respectively.
We test them with the bit-width as 8, and correspondingly,
the length of an SBS is 256.

Table 1: The target functions.
Function sin(𝑥 ) cos(𝑥 ) tanh(𝑥 ) 𝑒−𝑥 log(1 + 𝑥 ) 1

1+𝑒−𝑥
ID 1 2 3 4 5 6

4.2 Accuracy comparison
We first compare the accuracy of the 3 methods. We apply
root mean square error (RMSE) as the accuracy measure,
and compute it over 1000 different inputs. We set the error
bound 𝐸bound for the stochastic circuit as 0.02. We apply the
3 methods to optimize the stochastic circuits. The RMSEs
of the optimized stochastic circuits to implement different
functions are shown in Table 2.

Table 2: RMSE comparison for 3 methods.
function 1 2 3 4 5 6 Average

Conventional 0.007 0.012 0.006 0.009 0.012 0.003 0.008
Separate 0.006 0.005 0.007 0.005 0.007 0.004 0.006
Joint 0.011 0.014 0.013 0.019 0.019 0.007 0.014

As shown in Table 2, the RMSEs of the optimized stochas-
tic circuits for the 3 methods are all less than the error bound.
Thus, the optimized stochastic circuits satisfy the accuracy
requirement. Note that the RMSEs of Joint are higher than
those of the other 2 methods. This is because we terminate
the randomizer configuration process early once finding a
configuration satisfying the accuracy requirement as intro-
duced in Section 3.3. Actually, the accuracy of Joint can be
further improved. However, this will lead to a longer runtime.

4.3 Hardware cost comparison
For the hardware cost comparison, we first compare the
3 methods in terms of area. We synthesize the optimized
stochastic circuits by Synopsys Design Compiler [17] and
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obtain their areas based on the Nangate 45nm library [18].
The results are shown in Fig. 6.
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Figure 6: Area comparison for 3 methods.

As shown in the figure, the optimized stochastic circuits
obtained by Joint generally have the smallest area. Compared
to Conventional and Separate, Joint can achieve 39.70% and
3.59% area reduction on average, respectively.
Then, we compare the 3 methods in terms of power. We

analyze the optimized stochastic circuits by Synopsys Prime
Time [17] and obtain their power based on the Nangate 45nm
library [18]. The results are shown in Fig. 7.
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Figure 7: Power comparison for 3 methods.

As shown in the figure, the optimized stochastic circuits
obtained by Joint generally have the smallest power. Com-
pared to Conventional and Separate, Joint can achieve 42.74%
and 3.57% power reduction on average, respectively. There-
fore, the proposed joint optimization method can achieve a
lower hardware cost compared to the conventional and the
separate methods under the same accuracy bound.

Note that compared to Separate, Joint only slightly reduces
the hardware cost. This is because these 2 methods generally
produce randomizers with the same hardware cost and the
improvement of Joint mainly lies in the SC core, which does
not occupy a large portion of a stochastic circuit.

4.4 Runtime comparison
Finally, we compare the runtime of the methods. Note that
we randomly configure the randomizer for a half hour for
Conventional, and it needs to try many different pairs of
degree and precision for each target function. This leads to
a much longer runtime than the other 2 methods. Therefore,
we only compare Separate and Joint on runtime. The results
are listed in Table 3.
Table 3: Runtime (𝑠) comparison for Separate and Joint.
function 1 2 3 4 5 6 Average
Separate 665.5 237.7 421.1 1100.6 812.9 177.8 569.3
Joint 13.0 0.3 468.8 1066.0 1162.7 0.2 451.8

As shown in the table, compared to Separate, Joint has
a smaller runtime on average. Particularly, the runtime for

functions 1, 2, and 6 is much shorter. This is because for these
functions, Joint finds a valid stochastic circuit in the first
round and the randomizer configuration process terminates
early. In summary, Joint is efficient to optimize the stochastic
circuit with a lower hardware cost.

5 CONCLUSION
In this work, aiming to design low-cost stochastic circuits,
we first introduce a randomizer optimization method and
an SC core optimization method. Then, by properly combin-
ing them, we propose a joint method to efficiently optimize
the stochastic circuits. The experimental results show that
compared to the conventional and the separate methods,
the proposed joint method can generally achieve a lower
hardware cost using a shorter synthesis time. In the future,
we will explore a more efficient joint method to optimize
stochastic circuits.
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